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Abstract

Modern CAD systems offer the most simple and natural way to represent complex
mechanical structures heavily constrained through a variety of functional, aesthetic,
and manufacturing demands. We present two concepts for evolutionary design op-
timization directly relying on CAD-based design encodings of arbitrary mechanical
structures. One relies on the associative-parametric description of the design. Its
full potential is shown by the successful optimization of a race car rim, a com-
plex structure heavily constrained through manifold requirements. In the second
concept, we present an Evolutionary Algorithm that directly relies on the represen-
tation of mechanical structures in a CAD system, on CAD features as ribs or webs.
This approach is implemented in CATIA V5, using its C++ component application
architecture (CAA) and the Evolving Objects (EO) framework. We demonstrate
the superior performance of this concept in comparison to a natively in CATIA
implemented Simulated Annealing optimizer by means of a minimum compliance
test problem. Finally, the weight of an end plate of a fuel cell stack subject to a
stress constraint is optimized resulting in a new and very appealing design.

Keywords: Evolutionary Design, Evolutionary Algorithms, Structural Optimiza-
tion, Computer Aided Design, CATIA V5, CAA V5

1 Introduction

Within the scope of this paper the combination of modern knowledge-based Com-
puter Aided Design (CAD) systems with Evolutionary Algorithms (EAs) is pre-
sented. CAD systems build the backbone of modern product development processes
by offering the most simple and natural way of representing complex mechanical
structures that are heavily constrained through a variety of functional, aesthetic,
and manufacturing demands. We present two concepts for evolutionary design op-
timization. One relies on the associative-parametric description of the design. A
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Table 1: Four important forms of Evolutionary Algorithms

Algorithm Abbreviation References

Genetic Algorithms GA [10, 8, 9]
Evolutionary Programming EP [7]
Evolution Strategies ES [15, 16, 22, 1]
Genetic Programming GP [12]

second is directly based on the representation of mechanical structures in CAD
systems.

The paper is structured to first give an introduction to the general concepts of
Evolutionary Algorithms in Section 2. Then, the representation and the handling
of mechanical structures in the CAD system CATIA V5 are discussed in Section 3.
Section 4 presents two concepts for the adaptation of EAs for CAD-based design
optimizations. The optimization of a race car rim discussed in Section 5 highlights
the potential of using EAs within associative-parametric CAD designs. The paper
concludes with an application of the CAD-feature based EAs in Section 6 and a
discussion of the results in Section 7.

2 Basics of Evolutionary Algorithms

Evolutionary Algorithms use an analogy with natural evolution to perform search by
evolving solutions to problems, usually working with a large collection of solutions
at a time. The common underlying idea behind the techniques is to have a given
population of individuals (solutions), whereas the environmental pressure causes
natural selection and thereby the fitness of the population is improving.

In structural optimization, EAs are used in many different forms. Commonly,
they are divided into four categories, see Table 1. However, they are all based on
similar evolutionary principles. Thus, we will use a more modern terminology also
used by [4] and [21]: we generally speak just of Evolutionary Algorithms. All the
above listed strategies can be considered as specializations of general EAs, which
we will describe below.

EAs use two separate spaces, i.e. the search space and the solution space, re-
spectively. The search space contains coded solutions (genotype) to the problem,
whereas the solution space contains actual solutions (phenotype). EAs maintain a
population of P ∈ N individuals, each individual consisting of a genotype and a cor-
responding phenotype. A simple EA works as outlined in Figure 1. A population of
a given number of individuals is randomly initialized. The fitness of each individual
of the population is determined by evaluating the objective function and assigning
the resulting fitness value (Evaluation). The fitness value from the evaluation is then
used to determine how many copies of each individual are placed into a temporary
area often termed the mating pool. For the reproduction process parents are picked
from the mating pool with some pressure of preferring parents with better fitness
values (Selection). Offspring are generated by applying the crossover operator that
randomly allocates genes from each parent’s genotype to each offspring’s genotype.
Then, mutation is occasionally applied to the offspring. A new population is built
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Figure 1: Basic scheme of an Evolutionary Algorithm

by deterministic or stochastic choice of parents and offspring (Replacement). Sub-
sequently, the new fitness values of the individuals of the population are evaluated.
The entire process of evaluation, reproduction and replacement continues until a
given stopping criterion is achieved. This can for example be defined with the
values of a time or a generation counter or the best fitness of the population.

3 Handling of mechanical structures in CA-

TIA V5

With regard to the presented concepts for the combination of EAs and CAD systems
in Section 4, the representation of mechanical structures in the CAD system CATIA
V51 is discussed. The commercial program CATIA V5 was chosen because it rep-
resents the most modern CAD system available regarding programming concepts
and data structures. In the following it will also be outlined how the mechanical
behavior of a mechanical structure can be analyzed with this software. The expla-
nations given are based on the manuals of CATIA V5 and on the documentation of
its C++ interface CAA.

3.1 Representation of mechanical structures

A complex mechanical structure, e.g. a car or an airplane, can be represented in
a Product document in CATIA V5. A Product document consists of different
components which can be Product documents themselves or which can be single
mechanical structures represented in Part documents. Part documents hold four
containers:

Product container. It manages the integration of a Part document into the
Product document.

Specification container. It contains the actual design representation of the me-
chanical object. The design is defined by a list of mechanical features being
hierarchically grouped in a specification tree.

1http://www.ibm.com/catia
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Scope container. This container is concerned about generic naming concepts pro-
viding stable and flexible ways to reference topological geometry objects in the
specification container.

Geometrical container. Mechanical features handled in the specification con-
tainer essentially capture the design intent of the user. From this features
the actual shape of a mechanical object is then computed using an underlying
modeler, also called update mechanism, and the topological results are stored
in the geometrical container.

Figure 2 shows such a Part document of a simplified shaft structure with its list
of mechanical features in the specification tree and with its topological result as
simple solid body. Being interested in the representation of structures, the list of

Figure 2: CATIA representation of a mechanical structure.

mechanical features in the specification container is further analyzed. There are two
kinds of mechanical features:

Structural features. They structure the Part document by aggregating mechan-
ical features. Every structural feature represents a certain topological object
as it is defined at this stage of the update process. Looking at the example
shaft structure in Figure 2, structural features are Part2, PartBody, Body2,
all sketches, and Open Body.1.

Geometrical features. These are features to which the update mechanism as-
sociates a topological result. Again looking at Figure 2, Shaft BaseBody,
Groove, Remove.1 and Chamfer.1 are geometrical features.

If the shaft structure is updated, the program first creates the basic shaft body
from the defining Sketch.1 and adds it to the empty PartBody. Then the Groove

subtracts some material from the basic solid. Another body for the nut is created
and is immediately subtracted from the PartBody. Finally, some sharp edges are
removed by the feature Chamfer.1.

The presented representation of a mechanical object is needed to provide a
parametric-associative CAD. The mechanical features are finally defined through
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parameters or through direct contact with neighbor objects. After changing a pa-
rameter or a defining entity, an automatic update of the structure shall succeed and
result in an adapted topological body.

3.2 Analyzing the mechanical behavior of structures

The CAD system CATIA provides a variety of possibilities to analyze the mechanical
behavior of structures:

• After assigning a material specification to a body, CATIA can directly display
properties such as weight, center of gravity, or moment of inertia.

• Dimensions, distances, areas etc. of the resulting structures can directly be
measured.

• Through a fully integrated FE tool sensors can be applied to the structure
measuring e.g. the stress level at a certain location, evaluating the maximum
deformation, or calculating eigenfrequencies.

Fitness values for an evolutionary optimization can easily be computed from this
measures and sensors.

3.3 Parameter optimization workbench in CATIA V5

The Product Engineering Optimizer (PEO) workbench in CATIA offers an easy-to-
use parameter optimization interface. Any real-valued parameters accessible from
within CATIA V5 can be selected as parameters to be optimized. They are typically
provided with an upper and a lower limit for the optimization as can be seen in
Figure 3. Additionally, an optimization objective has to be specified which must

Figure 3: User interface of the CATIA Product Engineering Optimizer workbench.
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be a parameter from within CATIA V5 as well. Further, it has to be defined
whether this parameter should be minimized, maximized, or if a target value has
to be achieved. Typically, the parameter selected as design objective is an analysis
result, e.g. a maximum von Mises stress value from FEA, or a sensor value defined
somewhere on the structure, e.g. a minimum distance between two objects. Finally,
constraints for the optimization can be defined by comparing parameter values with
given limits as can be seen in Figure 3.

As optimization engines the PEO provides three basic algorithms:

Conjugate Gradients: This optimization engine is based on classical mathemat-
ical programming techniques [6, 13]. For smooth search space topologies it
is very efficient, but it is not able to get out of local search space extrema.
Consequently, it is mainly suited for optimization tasks providing a smooth
convex search space.

Simulated Annealing: This is a stochastic optimization procedure inspired by
the thermal relaxation in solid state physics [14]. It can be applied to almost
any optimization problem. The search domain is sampled more and more
locally during the search process controlled by the annealing strategy. The
performance of this procedure is strongly dependent on the kind of problem it
is applied to.

Design of Experiments: Actually, this is not a real optimization method. A step
size for each parameter has to be provided, hence defining a regular grid over
the search space. The points of this grid are systematically explored and the
corresponding parameter dependencies can be evaluated.

Finally, it is important to note that in the PEO workbench an optimization problem
defined through a list of parameter values, an objective, and some constraints can
be set up independently from the algorithm used. The optimization problem is then
passed to an optimization engine evaluating the given problem appropriately, where
own optimization engines can be implemented.

4 EAs for CAD based design optimization

Within this Section, it is explored how Evolutionary Algorithms can be adapted to
take advantage of the available representations of mechanical structures in modern
CAD systems. Therefore, two concepts to map a structure defined in the specifica-
tion tree of CATIA V5 to a genotype of an EA are introduced.

4.1 Genotype of CAD parameters

A first possibility to utilize the CAD system for evolutionary design optimization
consists of mapping all the parameters used to define the different features in the
specification tree to a genotype. Standard evolutionary operators are then applied
on this list of parameter genes, and new solutions (phenotypes) are simply created
by updating the CAD structure. The optimization of a race car rim discussed in
Section 5 represents an application for this approach.
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4.2 Genotype of CAD features

EAs operate most effective, if the properties of the parents are directly inherited
to the offspring (see [23] for a detailed discussion of this topic). With other words,
individuals being similar in the genotype space should also be similar in the phe-
notype space. The plain parameter encoding approach described above does not
guarantee such a correlation, since a component of the mechanical structure in the
phenotype space is not necessarily represented by a single parameter in the geno-
type space. This reduces the correlation between the parents and their offspring
and can harm the efficiency of the evolutionary operators and thus the efficiency of
the whole optimization process.

In the following, we present a novel concept, which better accounts for the
specific properties of the representation of mechanical structures in CAD systems.
Considering the different information containers used by CATIA V5 to model a
mechanical part as outlined in Section 3.1, the Specification Container and the
Geometrical Container attract attention. They perfectly provide the necessary
separation between genotype space and phenotype space. Consequently the goal
must be to directly use them in the Evolutionary Algorithm. The real components
of a mechanical structure, e.g. ribs or webs, are typically modeled as features in
the specification tree of the CAD system. These features should be defined in a
modular way correctly representing the structure of the design to be optimized.
For optimization, a genotype consisting of a list of features can be built, where
one feature-gene can consist of sub-features and is finally defined through a set of
parameters. An example of such a gene is the Groove feature in Figure 2 which is
defined through parameters defining its length, depth, and width. Therefore, such
a genotype consists of a heterogeneous list of different features with a fixed order.
For the implementation this genotype can also be seen as a heterogeneous list of
grouped parameters, where every group denotes a feature in the CAD system. This
perception is advantageous because finally there is again a simple list of parameters
with fixed length and order to be handled by the EA.

To make the CAD-feature genotypes perform effective, it is crucial to introduce
adequate evolutionary operators. In the following, crucial points concerning such
operators suited for the handling of CAD-feature genes are discussed.

Mutation operators. Mutation operators should increase diversity in a popu-
lation by random variation of single genes. For the CAD-feature genotype it makes
therefore sense to apply mutation on CAD-feature genes rather than on parameter
gene level. Therefore, if mutation is called for a single gene, a whole feature or
substructure of the CAD model is mutated. This is superior to changing the same
amount of information regardless to the CAD features. With mutation on CAD-
feature gene level, a whole component of the structure is modified at once by an
operator call, whereas mutating only one single parameter per call will often not
effect correlated and substantial changes in the structure.

Crossover operators. The same thoughts as for the mutation operator basi-
cally also affect the design of adequate crossover operators, but now the inheritance
of knowledge from the parents to their offspring is desired. This can be achieved
efficiently by exchanging entire components of the structure using n-point type
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crossover. If reasonable superpositions of CAD-features are defined, arithmetic-
type crossovers can also be applied on CAD-feature level.

4.3 Knowledge-Based Initialization

Initialization operators using knowledge-seeding mechanisms can easily be ap-
plied when representing structures in CAD systems. Thereby, already existing so-
lutions, typically based on some conceptual ideas of the designer, are incorporated
in the CAD model by manually adjusting the defining parameters of the differ-
ent features. The CAD system CATIA V5 even provides an own container named
DesignTable to manage parameter sets of a specific CAD model. To seed these
solutions into the start population for the evolutionary optimization, the parame-
ter sets only have to be mapped to individuals, so that a single set represents one
individual. In the majority of cases this knowledge seeding mechanisms accelerate
the optimization process drastically, given that the designer’s intuition provides at
least some useful concepts.

4.4 Fitness evaluation

In order to complete the presented optimization concept, a fitness function F (~p)
has to be defined giving an adequate rating for each possible design with respect
to the demands. F directly depends on the phenotype ~p, i.e. the CAD structure
represented by the Geometrical Container in CATIA. Furthermore, the CATIA opti-
mization workbench provides a reasoned interface to define the design objective and
constraints by selecting arbitrary parameters defined in the model, see Section 3.3.
We propose to define the fitness function to be a weighted sum

F (~p) =
∑

i

wiDi (~p) , (1)

where Di (~p) represents the rating for an objective or a specific constraint and wi is
the corresponding relative weight. In order to avoid that one of these terms becomes
very large and therefore dominant, only bounded functions Di (~p) are used that are
scaled to the interval [0, 1].

5 Parameter optimization of a race car rim

This application highlights how EAs can be successfully applied to a highly hetero-
geneous and complex structural optimization problem. The structure to optimize is
heavily constrained through manifold requirements from regulatory, manufacturing,
and functional demands. Therefore the optimization task is not to evolve a com-
pletely new rim design, but rather to adjust parameters of the existing rim structure,
fully compliant with the requirements, in an optimal way. In that context, the ap-
plication demonstrates how parametric-associative CAD systems can be integrated
in automated optimization processes. Additionally, this complex problem presents
a typical example where the parameterization has to be chosen carefully so that
useful results can be obtained within available computation times.
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5.1 Problem description

Motorcar racing is a field where limits are pushed in many ways. The wheels form
via the tires the important link to the ground into which most acceleration forces
are transferred. The performance of a racing car rim as shown in Figure 4 depends
on several factors: weight should be as low as possible, the moment of inertia along
the rotation axis has to be small, and the stiffness should be high at the same time.
The weight of the rim does not only influence the performance as a part of the cars

Figure 4: CAD-Model of the racing car rim.

overall weight. Since the wheels belong to the so called unsprung mass, a low rim
weight improves the mechanical grip of the car especially on bumpy road surfaces.
The moment of inertia along the wheels rotational axis should be minimal for
several reasons. Low moments of inertia allow faster acceleration and deceleration
of the wheels and therefore of the whole car. Furthermore, the moment of inertia
leads through the gyro effect to higher steering forces as well as a higher inertia
of the car with respect to direction changes. Finally, the stiffness of the rim is of
high importance in turns at high speed. Vertical loads of 5700N , resulting from
the car’s weight and aerodynamical descending forces, as well as maximum lateral
forces of 7000N , as a result of the centripetal forces, build up a bending moment
on the rim. Additionally, strength requirements must be fulfilled. Plastic yield
must not occur in use, whereas some parts reach temperatures well above 200◦C.
Manufacturing starts with a forging blank, the rim’s bed is shaped by CNC-lathe,
and the spokes form the interspace of CNC-milled pockets. The forging blank’s
shape is not to be changed, as this would exceed costs. FIA2 regulations affect the
bead diameter as well as dimensions of the lower rim-bed.

For the optimization presented in this chapter, maximum bending stiffness is

2Fédération International d’Automobiles (http://www.fia.com)
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defined as main design objective from the rim manufacturer. Nevertheless, the
desired properties

• Low mass

• Low rotational moment of inertia

• Sufficient margin of safety for mechanical stresses

of the existing design should also be matched or even surpassed by the optimized
design. Furthermore, the optimization must also take into account the functional,
regulatory, and manufacturing requirements discussed earlier in this section. Alto-
gether, this constitutes a highly constrained optimization problem, which can not
be tackled with classical mathematical optimization techniques.

Since all original data is confidential, arbitrary new geometries for the rim and
the forging blank, as well as modified load cases are created and optimized for the
presentation in this paper

5.2 CAD model and parameterization

In the following, a parameterization of the rim structure implemented in the para-
metric associative CAD system CATIA V5 is presented. The goal is to implicitly
include as many of the manifold requirements as possible into the parameterization
without excluding relevant designs from the solution space. Moreover, the number
of optimization variables allowed is determined through the available computational
resources.

Considering computational limitations. EAs require a certain minimum
number of evaluations. When the evaluation of one individual includes the creation
of a new CAD-model followed by a Finite Element Analysis (FEA) on that model,
CPU-time becomes a hard restriction. Measuring the time needed for one evaluation
showed that it would be around 20 minutes consisting of roughly 5 minutes for the
creation of the CAD-model, and about 15 minutes for the FEA (using a Sun Blade
1000, 750 MHz, 1 GB RAM). Being able to run 6 workstations in parallel during
20 hours limits the number of evaluations to about 360.

From experience, one can say that an optimization should run at least over
about a dozen of generations to make the evolutionary strategies work on a level
beyond pure stochastical search. Further, in order to obtain reasonable optimization
performance (with respect to pure stochastical search), the number of parameters
to be optimized should not exceed the population size. These rough assumptions
limit the number of optimization variables for the actual task to 30. Therefore a
design parameterization with only 30 parameters has to be found that is as general
as possible.

Geometric constraints. There are three different classes of constraints geo-
metrically restricting the solution space that shall be included implicitly into the
CAD parameterization:

Manufacturing constraints. They include the shape of the forging blank which
is not to be changed. Moreover a 1 mm distance to the blank’s outer contour
has to be kept to allow properly machined surfaces. In addition, manufacturing
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techniques are not to be changed. Finishing is restricted to a CNC-lathe and
a CNC-mill. The minimum wall thickness of the rim’s bed of 2 mm is also a
manufacturing constraint.

Assembly constraints. They include contact areas to the car’s suspension as well
as to the nut holding the wheel and the tire. An additional constraint is a 3 mm

distance to the brake assembly positioned on the inside of the rim.

Regulatory constraints. Finally, there are FIA-regulations applying to the rim.
The maximum bed diameter is limited to 330 mm. The minimum depth of the
lower bed3 is 13.57 mm and the maximum distance from the outside surface
is 43.3 mm.

Structure of the CAD Model. Actually the CAD model used is quite simple.
Four substructures (features) build up the basic geometry of the CAD model as
shown in Figure 5:

• A rotational body for the rim’s bed.

• A second rotational body for the spokes.

• Two pockets that remove the spokes’ interspace.

(a) Half of the rim bed. (b) Spoke body with the two
pocket features already sub-
tracted.

Figure 5: Structure of the CAD model of the rim.

All these features are built on fully parametric two-dimensional sketches. In addition
to these basic features, various chamfers are applied, chosen completely parametric
as well. The basic design is taken from an existing racing car rim.

3for definition of terms see [18], [17]
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5.3 Parameterization

For performance reasons as outlined before, a parameterization including implicitly
as many of the mentioned constraints as possible has to be found, without excluding
relevant feasible solutions.

The bed is parameterized by 9 wall thicknesses including the inner and the outer
bead as shown in Figure 6. With this approach the manufacturing constraint of a

distances

wall thicknesses

radii

point

coordinates

Figure 6: Optimization variables for spoke-body and bed contour.

minimum wall thickness of 2 mm can directly be included. The bed’s outer contour
can not be altered in some sections. The outer bead diameter and some shoulder
diameters are restricted by FIA regulations. The inner bed’s maximum diameter is
limited to the shoulder’s diameter to allow the assembly of the tire. The lower bed’s
minimum depth and the maximum distance from the rim’s outer face are also subject
to FIA regulations. Therefore the coordinates of the point in question also form
parameters allowing to comply with those restrictions. For the remaining degrees
of freedom of the bed, contour lines of the forging blank and the brake assembly
limit the geometric design space. To make sure the minimum distances of 1 mm to
the forging blank and 3 mm to the braking contour can be approached as closely as
possible without crossing them, the contour lines form construction elements in the
sketch and the bed’s contour is directly dimensioned to those contours, setting the
distances as parameters.

The rotational body for the spokes is parameterized in a way similar to the rim’s
bed. Front and rear contour are dimensioned to the blank’s contours. The parts of
the contour-forming interfaces to the suspension and the nut are non-parametric.
The interface between spokes and bed depends on the shape of both features. The
sketch for the bed contains the spokes’ rear and front contour lines as construction
elements. The second sketch for the rotational body of the spokes is referenced to
those construction elements and the interface line with reference dimensions. This
way, the parameterization for both features is done in only one sketch and update
loops are avoided. At the same time, two separate features are needed, because the
base part between the spokes is not defined by prismatic pockets but the contour
of the bed. The pockets are removed from the spoke body going beyond the outer
diameter. The remaining spokes are then added to the rim bed. The sharp angled
base of the spokes is then smoothened out by two parametric fillet features.
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The two pockets are parameterized in a third sketch (see Figure 7). A base line

Pocket 2
Pocket 1

Figure 7: Optimization variables for the pockets.

with a constant radius is defined. Parameters for the larger pocket include height
and width at the base as well as at a continuous transition point, and the radius
of the upper rounding. The gap between the two pockets, forming the spoke, is
parameterized by two widths, one at the base and one at the same transition point.
This leaves only the upper rounding as a free parameter of the small pocket.

Altogether, the rim is parameterized with 36 float parameters. For every gene,
adequate lower and upper limits are estimated by varying the parameters in the
CAD model, and testing whether the update process in the CAD program still
succeeds, and whether feasible solutions are created. However, the former is not
realistic in practice for all possible variations in the defining parameter set. For a
small percentage of evolved individuals the CAD update fails.

As a result, a CAD geometry for an individual at hand (expressed through
the phenotype ~p) is created, and its weight W (~p) and moment of inertia I (~p) are
computed using CATIA built-in functionalities. The geometry is stored in CATIA
V4 format, which can be imported to the Finite Element program ANSYS in order
to carry out the Finite Element analysis. There the bending stiffness D (~p) and the
margins of safety for mechanical stresses S (~p) are evaluated for the given loads.
The effective fitness F (~p) of a single solution is then computed as a weighted sum
of all these different demands.

5.4 DynOPS - Dynamic Optimization Parameter Sub-

stitution

DynOPS (Dynamic Optimization Parameters Substitution) is a parallelized and
object-oriented evolutionary optimization program entirely written in C++ code.
It has been developed at our chair, a detailed discussion can be found in [11]. The
program concatenates simulation software controllable by ASCII input files over
file transfer with Evolutionary Algorithms. As optimization engine, Evolutionary
Algorithms based on the component-made EO (Evolving Objects) library are im-
plemented. On the other side, the most common way to interact with commercial
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Figure 8: General functionality of the optimization process with DynOPS

(simulation) software is to use their batch mode, i.e. running simulations through
input-files.

As indicated in Figure 8, DynOPS is, so to say, the master-mind within this
optimization. It performs the following sub-steps of a run:

• Reading genetic information from the EA.

• Creating batch files for the external programs, one set per individual to be
evaluated.

• Parallel distribution and start of the program sequence needed for evaluation.

• Waiting for the simulation programs to finish and reading of results of the
evaluations.

• Passing results to EA.

In our case batch-file-types used are ∗.CATScript and ∗.cmd to run CATIA and
ANSYS. Apart from parameters, DynOPS also handles names and paths of files
that form interfaces between different programs, making sure no files are erroneously
overwritten. This is especially important when running the optimization in parallel.
Further on, DynOPS automatically assigns error fitness values to individuals that
could not be evaluated in the external simulation programs. This occurs, especially
in the beginning of an optimization, quite often if e.g. the CAD program can not
evaluate a consistent 3D geometry from the parameter set given.

5.5 Results

As mentioned before, due to confidentiality reasons, only exemplary results for an
optimization run based on modified geometries and loads can be shown in this public
document. The Evolutionary Algorithm is run for 15 generations with a population
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Table 2: Comparison of objective values of optimized and original design.

Properties Original Optimized Improvement

Bending compliance [deg] 0.257 0.206 19.8%
Mass [kg] 3.51 3.27 6.8%
Inertia [kg · m2] 0.063 0.059 6.3%

size of 30. This corresponds to an overall CPU-time of approximately 150 hours or
25 hours when running 6 workstations in parallel.

Figure 9 shows the fitness evolution of the best individual over the 15 generations.
In Table 2 the objective values of the optimized rim are compared with the ones
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Figure 9: Progress of best fitness values for the rim optimization.

of the original design. Although having evaluated only a relative small number
of individuals and generational steps, clear improvements can be noticed in all
aspects considered within fitness calculation. The main design objective bending
stiffness is improved by 19.8% and all the constraints are fulfilled. These significant
improvements are quite surprising when considering that only slight changes in the
design can be noticed in Figure 10 and 11. Most of these design changes can hardly
be motivated by pure engineering intuition and therefore indicate the potential of
automated optimization algorithms in high-performance applications where it is
necessary to approach the limits very closely.
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(a) original (b) optimized

Figure 10: Original and optimized rim design.

Figure 11: Lower bed shape: optimized and original (dashed).

6 CAD-feature based optimization of a fuel

cell end plate

This problem sample applies the concepts regarding evolutionary design optimiza-
tion with a CAD-feature genotype as proposed in Section 4.2. The novel approach
is verified and compared with a CATIA native optimization engine based on Sim-
ulated Annealing (SA). Other experiments will show the superior performance of
CAD-feature driven EAs in comparison with plain parameter representations. For
computational reasons, these experiments are processed with a verification model.
It is based on the same CAD-model and the same genotype as the fuel-cell end
plate, but the optimization goal is chosen differently to speed up fitness evaluation.
Only this simplification allows proper performance comparisons of the algorithms
taking into account the stochastical nature of EAs and Simulated Annealing.

However, the potential of the approach will finally be demonstrated by solving
the engineering problem of minimizing the weight of an end plate of a fuel cell stack
under strength constraints.

6.1 Problem description

The weight of an end plate of a fuel cell stack shall be minimized. The problem
arose in fuel cell research projects4 [19, 20] at the Swiss Federal Institute of Tech-

4http://www.powerpac.ethz.ch
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nology Zurich. The end plates for the fuel cell stacks developed in these projects
were designed by Tribecraft AG5 [5], which also provided the detailed problem de-
scription for the optimization presented in this section. A fuel cell stack, as shown
in Figure 12, consists of bipolar plates, two collectors, electrical insulation, and the
end plates that are connected with tie bolts. The fuel and cooling supply line runs
through the upper end plate. The weight of such an end plate is minimized sub-

tie bolts

bipolarplates

collector

endplate

el. insulation

medium flow

fuel cooling

Figure 12: Conceptual model of a fuel cell stack.

ject to a stress constraint and manufacturing requirements, whereas the structure is
foreseen to be manufactured by extrusion molding. The objective is to increase the
power density, i.e. power per weight, of a fuel cell stack. In a second optimization
procedure, described in [5], the bottom surface of the end plate can be cambered
independently to guarantee a constant pressure distribution on the fuel cell stack
in built-in state. This sequential partitioning of the optimization problem allows to
first minimize the weight of the plate under a stress constraint without concern for
the stiffness of the plate.

For the verification model mentioned above, the same CAD-model and genotype
is used to optimize a bridge-like structure. The objective of this optimization is to
minimize its compliance subject to a constant mass given in percent of the fully-filled
design domain.

6.2 Mechanical structures to be optimized

Verification model. The mechanical structure to be optimized with a CAD-
based representation is a bridge-like 3D girder. Figure 13 illustrates the design
domain in which the structure can evolve (indicated by dashed lines), the mechanical
boundary conditions, and the CAD model itself. The relevant mechanical data are
specified in Table 3. The girder shall be a symmetric and extrudable rib structure
assembled through a lower and an upper plate that is loaded by a constant pressure
f at the bottom of the lower plate. A support at the right end and the symmetry
conditions in the middle complete the mechanical model. For the results presented,
the structure shall fill ftm = 20% of the design domain with material.

5http://www.tribrecraft.ch

Weimarer Optimierungs- und Stochastiktage 1.0 – 2./3. Dezember 2004

17



Figure 13: CAD model of the bridge-like structure with mechanical boundary conditions
and given design domain.

Table 3: Specifications of the verification model.

Parameter Denotation Value Unit

Dimensions l × w × h 73.7 × 15 × 40 [mm]
Pressure f 1.44 · 106 [ N

m2 ]
Elastic modulus E 7 · 1010 [ N

m2 ]

Material density ρ 2710 [ kg

m3 ]
Target mass fraction ftm 20 [%]

End plate of a fuel cell stack. Figure 14 shows a quarter model of the end
plate with mechanical boundary conditions. The relevant specifications for this
structure are given in Table 4. The end plate is loaded on the bottom surface by

Table 4: Specifications of the fuel cell end plate.

Parameter Denotation Value Unit

Dimensions l × w × h 166 × 147.4 × 40 [mm]
Stack pressure ps 1.6 · 106 [ N

m2 ]
Bolt force Fb 8800 [N ]
Elastic modulus E 7 · 1010 [ N

m2 ]

Material density ρ 2710 [ kg

m3 ]
Stress limit σmax 3 · 108 [ N

m2 ]

the given stack pressure ps. The reaction forces, hold through four tension bolts,
are also applied as forces on the bolt contact faces. This ensures a proper load
introduction into the structure and does not restrict the rotation of the bolt areas.
In addition, symmetry conditions are applied, and the end plate is statically definite
restrained to prevent rigid-body motions.
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Figure 14: Quarter model of fuel cell end plate with mechanical boundary conditions.

6.3 CAD build-up and feature genotype

The CAD model is assembled from three types of CAD features: the lower plate,
the upper plate, and four ribs. Figure 15 details how these entities are defined. The
lower plate is bounded through a planar functional face at the bottom and through
assembled face segments at the top. These segments are defined through equidis-
tant sampling points defining six optimization variables tl1...tl6 of the lower plate.
Additionally, the edges of the top faces are chamfered. The upper plate is defined
through two sets of sampling points, i.e. six equidistant height parameters hu1...hu6

defining the bottom face and six thickness variables tu1...tu6 defining the top face
of the upper plate. Again, the edges of these faces are chamfered. Finally, each
rib is defined through three optimization variables: a lower position xli, an upper
position xui, and a thickness tri. For all these optimization parameters a range and
a step size σ for Gaussian mutation or initialization are assigned as listed in Table 5.
The genotype for the Evolutionary Algorithm is defined as follows. The ribs are

Table 5: Ranges and step sizes for the optimization variables.

Parameters Range Step
[mm] [mm]

tl1...tl6 [1, 7] 1
hu1...hu6 [1, 33] 4
tu1...tu6 [1, 7] 1
xl1...xl4 [0.1, 73.3] 8
xu1...xu4 [0.1, 73.3] 8
tr1...tr4 [1, 7] 1

chosen as CAD features to be optimized; one rib is defined by three parameters that
are represented in one gene. For the lower and upper plate sampling positions are
chosen as genes. That means for the lower plate each thickness represents a gene,
and for the upper plate the height and the thickness at a sampling position form
a gene. This leads to the following genotype, where each gene is marked through
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Figure 15: CAD features: lower plate, upper plate and a rib.
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accolades:

{tl1} {hu1, tu1} {tl2} {hu2, tu2} {tl3} {hu3, tu3} {tl4} {hu4, tu4} {tl5} {hu5, tu5} {tl6}
{hu6, tu6} {xl1, xu1, tr1} {xl2, xu2, tr2} {xl3, xu3, tr3} {xl4, xu4, tr4}.

This representation implicitly fulfills the manufacturing requirement, i.e. extrusion
molding. For the end plate, the holes for medium flow and the tension bolts are
made in a subsequent machining process, and the global vertical edges are rounded.
Since material can only be removed from the extruded base block, planar horizontal
faces have to be machined into the upper plate for a well defined load introduction
from the bolts to the end plate. The position of these contact faces must be adapted
to the varying slope and curvature of the top face of the upper plate, whereas for
some solutions this face even can be split in two subregions.

6.4 Fitness evaluation

Fitness functions are again computed as weighted sum of the different demands.

Fitness of the bridge-like verification model. Fitness values are computed
from the compliance design objective and a mass penalty. If subject to fixed loads,
the compliance of a mechanical structure is proportional to its elastic energy as
discussed [3, 2]. In the Finite Element workbench of CATIA the elastic energy can
directly be accessed through a sensor. The mass constraint is implemented as upper
limit constraint.

Fitness of the fuel cell end plate. For the end plate, the design objective is
to minimize its mass. The maximum von Mises stress needed for the penalty term
of the fitness function is captured by a sensor in the Finite Element workbench
of CATIA. Computation of stresses using the Finite Element method is sensible
to the fineness of the mesh and to a proper load introduction. Thus, a relatively
fine mesh is defined using 10-node tetrahedrons with quadratic form functions. In
addition, the load introduction of the bolt forces is done using the Smooth Virtual
Part feature of CATIA which smoothly introduces a concentrated load on an area
using beam spiders.

6.5 Integration of EAs into CATIA using CAA V5

A proper implementation of the CAD-feature genotype used within this application
requires direct access to the CAD representation of mechanical structures. There-
fore, the C++ Component Application Architecture6 (CAA V5) offered by CATIA
V5 is used.

The Product Engineering Optimizer (PEO) workbench in CATIA (see Sec-
tion 3.3) provides a very convenient graphical interface to set up a design opti-
mization. Therefore it is self-evident to directly implement the new optimization
strategy in this prepared environment. A design optimization problem, interactively

6http://www.caav5.com
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defined through the user by specifying optimization variables, an optimization ob-
jective, and constraints, is then transferred to an EA-type formulation. Figure 16
pictures the integration of the EA into CATIA. The design objective and the con-

Figure 16: Integration of the generic EA into CATIA’s optimization workbench.

straints, also specified in the graphical interface by the user, are directly mapped
to a fitness function.

With the interface presented, setting up an evolutionary design optimization be-
comes possible for standard users of CAD systems without specialized ’evolutionary’
know-how.

6.6 Demonstration of an optimization run

For all evolutionary optimizations of the verification problem the population size is
set to npop = 60 and the runs are terminated after ngen = 120 generations. Start
populations for this structure are initialized randomly, typically resulting in struc-
tures as shown in Figure 17 with an average mechanical compliance of C = 2.22 J

and an average mass of m = 0.034 kg . The evolutionary process over 120 genera-
tions can be tracked in Figure 18. Since the currently best solution is kept in the
population through an elitism mechanism, the best fitness values are monotonically
decreasing, whereas the average fitness values of the populations sometimes raise
temporarily in order to escape local minima or because of single error-fitness values.
The final population after 120 generations is presented in Figure 19. The individuals
of the final generation have an average compliance of C = 0.099 J and an average
mass of m = 0.025 kg complying with the target mass fraction of 20%. Finally, the
best individual ever found (C = 0.0947J , m = 0.024 kg) is pictured in Figure 20. It
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Figure 17: Sorted variety of individuals in random initial population.
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Figure 18: Average and best fitness progress over 120 generations.
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Figure 19: Sorted variety of individuals in generation 120.

Figure 20: Best individual ever found after 120 generations
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definitely matches with the intuitive expectations of a bridge design. Only two of
the four ribs given in the original representation survived as independent features,
whereas the other two ribs reinforce the right edge of the design. Generally, the
application of the CAD-feature approach on the verification problem produces very
appealing results.

6.7 Comparison with a Simulated Annealing algorithm

In order to demonstrate the performance of the CAD-feature driven EA, a compar-
ison with the Simulated Annealing algorithm natively implemented in the Product
Engineering Optimizer of CATIA V5, see Section 3.3, is presented. The comparison
is based on seven identical runs of each algorithm in order to take into account
the stochastic nature of Evolutionary Algorithms as well as of Simulated Annealing
strategies. First, seven EA optimizations of the verification model are run, identi-
cally to the one presented in Section 6.6 with a random initial population. For the
SA optimization runs, the same problem set-up in the PEO can be used, consisting
of the bounded parameters with step sizes, the compliance objective, and the mass
constraint. Since the SA algorithm starts from a single design solution, the seven
SA runs are started from the best individuals of the initial populations of the seven
EA runs. Furthermore, the SA convergence speed setting infinite in CATIA is
chosen, because it provides the best results for the problem at hand.

Figure 21 presents the averaged best fitness values from 700 evaluations for both
algorithms, i.e. approximately twelve generations when using EAs. As already ex-
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Figure 21: Comparison of averaged best fitness values of seven EA and seven SA opti-
mizations.

plained, both curves start after 60 evaluations from the random initial populations
or from the best individuals of this initial pool of solutions, respectively. Optimiza-
tion runs with Simulated Annealing crash shortly after 700 evaluations due to a
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memory leak in CATIA, hence limiting the comparison to this range. For Evolu-
tionary Algorithm runs the memory leak could be bypassed by restarting CATIA
and the optimization after every fifth generation. The increase of fitness at the
beginning of the SA runs seems to be caused by an initial overestimation of the
compliance objective resulting in too heavy designs. Since details of the CATIA
SA implementation are not known, this aspect can not be further investigated.
Nevertheless, Figure 21 shows that the CAD-entity based Evolutionary Algorithm
approach clearly outperforms the CATIA native Simulated Annealing concept for
the problem at hand.

6.8 Convergence speed of CAD-feature driven EAs

As a last verification experiment, EA runs with the CAD-feature genotype are
compared to EA runs with simple parameter based representation. Results of the
CAD-feature genotype with custom EA operators are taken again from the seven
optimization runs used in Section 6.7. Then, a genotype consisting of a simple list
of the optimization parameters as listed in Table 5 is built. Seven EA optimization
runs with this genotype and standard operators with adequate settings are finally
evaluated to produce averaged fitness results of the parameter based representation.

Figure 22 illustrates how the different genotypes affect the performance of the
Evolutionary Algorithm. Since random initialization is identical for both, the fit-
ness values coincide for the initial population. Then, for the first stage of the
optimization until approximately generation number 50, the plots reveal that the
CAD-feature based runs perform better. This can be explained by the fact that the
global placement and adjustment of the different features in the structure is done
in the beginning of the optimization. In fact, the expected increase in efficiency
using CAD-feature genotypes arises in this phase of the optimization through a
faster decay of fitness values. In a second stage of the optimization starting from
generation number 50, the fitness of the structures can only be gradually improved
by fine tuning single parameters as for example the thickness of a rib. Thereby,
the genotype seems not to influence the performance of the algorithm anymore,
since the fitness values are similar for both representations. Looking at the entire
optimization process, the observed increase in performance is rather small, because
the problem at hand consists of only a few CAD-features, whereof some ribs even
disappear during the optimization. For more complex structures it can be expected
that the presented CAD-feature genotype improves the efficiency of EA runs more
significantly.

6.9 Results for the fuel cell end plate

The optimization is run with a population size of npop = 60 over ngen = 135 genera-
tions, corresponding to approximately 8100 CAD updates and FEM analyses. Such
a run takes about 65 hours computing time, made possible by restarting CATIA
and the optimization each third generation because of the memory leak in the CAD
system.

Figure 23 shows the progression of the mass of the best individual over all
generations resulting in a weight of m = 0.385kg for the best individual ever found.
The best design ever found is presented in Figure 24. The Finite Element analysis
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Figure 22: Comparison of averaged fitness values of seven EA runs each with CAD-feature
genotypes and with plain parameter genotypes.
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Figure 23: Progress of weight of the fuel cell end plate over 135 generations.
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Figure 24: Best end plate design ever found after 135 generations.

presented in Figure 25 is evaluated with a finer discretization than used for the
optimization. However, the stress constraint is observed very well, apart from a few
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Figure 25: Von-Mises stresses of best plate design ever found. The plot also shows true
scale deformations of the loaded structure.

FE introduced singularities at the bolt load introduction faces.
In the resulting structure, only one independent rib survives, the other three are

melted into the load introduction domain. It is noteworthy that this load introduc-
tion zone is reduced to a fully filled block. It seems that only this way the occurring
stresses can be kept under the given limit of σmax. Furthermore, a corrugated upper
plate is proposed by the optimization. Comparisons with an endplate with a planar
upper plate showed that this stiffness reduction in the upper plate decreases the
stresses over the upper end points of the ribs, and is therefore mandatory for this
design.

Recapitulating, one can say, that the CAD-feature optimization of the fuel cell
end plate resulted in a very lightweight design that fulfills the strength constraint
and is manufacturable by extrusion molding. For a structure ready for production,
the cambering of the bottom face has to be done and a potential influence on the
stress level in the lower plate should be investigated.
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7 Conclusions

We efficiently adapt an existing CAD-system as a parameterization interface for its
use with Evolutionary Algorithms.

The parameter optimization of a race car rim demonstrates that EAs can tackle
complex and highly-constrained problems where only a very limited number of eval-
uations is affordable. Starting from a rim, well designed through engineering ex-
perience, the optimization has successfully exploited the limits of this structure by
adjusting 36 parameters of the geometry. Experience and know-how developed in
years is therefore not thrown over board but forms the foundation of a new dimen-
sion of what has been engineering everyday life ever since: Trial and Error.

The novel approach based on a CAD-feature genotype is verified on a minimum-
compliance problem leading to very appealing results. The superior performance of
this CAD feature driven EA, if compared to the CAD system’s natively included
Simulated Annealing optimizer, is proven. Furthermore, a comparison between
parameter-based and CAD-feature driven EAs showed slight advantages for the
novel concept. Finally, the weight minimization of an end plate of a fuel cell stack
under strength constraints is addressed, yielding surprising results.

Overall, the approach to implement EAs directly based on the representation of
mechanical structures in CAD systems shows great potential to exploit the limits
of modern products far beyond human intuition.
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