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Outline
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• Structural Models become increasingly detailed

• Numerical procedures  become more and more complex

• Substantially more precise data is required for the analysis

• Optimized designs lead to high imperfection sensitivities

! Consideration of random uncertainties becomes 
mandatory

Introduction
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• Analysis of variances (global variability, robustness)

• Perturbation approach, Taylor series expansion

• Plain Monte Carlo simulation, Latin Hypercube sampling

• Safety analysis (extremely rare events, reliability-based 
optimization)

• Approximations (response surface method, first order 
reliability method)

• Exact solutions (integration, advanced Monte Carlo 
simulation)

Probability-based analysis
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• Mean value and standard deviation

• Coefficient of variation of one variable

• Coefficient of correlation between two variables

Statistical Characterization of random 
variables

cov =
σX

X̄

ρ12 =
E[X1X2]

σX1
σX2

X̄ = E[X]; σX =
√

E[(X − X̄)2]
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Probability Distribution and Probability 
Density Functions
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d

dx
FX(x)

∫ ∞

−∞
fX(x)dx = 1

fX(x)

FX(x)
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Normal and Lognormal Distribution
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“Six Sigma”
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Normal 6 ! 1 x 10
-9

Lognormal 6 ! 0.000224

Unknown (Chebyshev 
bound)

6 ! 0.0278

Lognormal 16 ! 1 x 10
-9

• Representation of “rare” events
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• Depends on all random 
variables involved

• Prescribed marginal 
distribution

• Prescribed coefficient of 
correlation

Joint probability density

x1

x2

x1

x2

10

• Samples of three correlated random variables

Statistics and Estimation
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• Failure condition is 
defined in terms of a 
(non-unique) limit 
state function

• Failure set and 
probability are unique

Failure probability

F = {(F, L, Mpl) : FL ≥ Mpl}

= {(F, L, Mpl) : 1 −
FL

Mpl

≤ 0}

P (F) = P [{X : g(X) ≤ 0}]
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• Integrate the joint 
probability density 
function of the basic  
variables over the failure 
domain

• Monte Carlo is 
ineffective

Calculation of failure probability

x1

x2

g(x) = 0g(x) > 0

g(x) < 0

P (F) =

∫
∞

−∞

∫
∞

−∞

. . .

∫
∞

−∞

Ig(x)fX1...Xn
dx1 . . . dxn

Ig(x1 . . . xn) =

{
1 : g(x1 . . . xn) ≤ 0

0 : else

F
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First order reliability method
FORM

• Transform to 
uncorrelated 
Gaussian space

• Find design point 
with minimum 
distance from origin

• Linearize at design 
point

P (F) = Φ(−β)

u1

u∗

u2

s1

s2

g(u) = 0

β

ḡ(u) = 0
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• Concentrate samples in the failure region

• Compensate for unlikeliness by weighting

• Obtain an unbiased estimator for failure probability with 
reduced estimation error

Importance Sampling

P̄ (F) =
1

m

m∑

k=1

fX(x)

hY(x)
Ig(x) = E[

fX(x)

hY(x)
Ig(x)]
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Importance Sampling

fX(x)

hY(x)

x
∗

g(x) = 0

x1

x2

p
d
f

X̄

Safe domain

Failure domain
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• Probabilistic properties depend on continuous spatial 
variable(s)

• Spatial discretization required for stochastic finite element 
analysis

Random fields

x

L

F (x)
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• Measure of “waviness” of random fields

• Infinite correlation length reduced random field to simple 
random variable

Correlation length

L =

∫
∞

0
r|CHH(r)|dr

∫
∞

0
|CHH(r)|dr
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• Representation of the 
random field in terms of:

• Orthogonal spatial shape 
functions

• independent random 
variables

Spectral decomposition

Fi =
∞∑

k=1

φk(xi)ck =
∞∑

k=1

φikck

φk(xi)

ck

CFF (x,y) =
∞∑

k=0

λkφk(x)φk(y)
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• Random geometrical imperfections

• Random field estimation from measured data

• Spectral decomposition of spatial randomness

• Geometrically nonlinear bifurcation analysis

• Reliability estimation

Static stability of shells with random 
imperfections

20

• Singer, Arbocz, Babcock 1971

Measured imperfections
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Abbildung 5.17: ! p f Beziehung für das Stabtragwerk bei Projektion des Zu-

fallsfeldes auf die Singulärvektoren

5.3 Mit Stringern verstärkte Schale

Als drittes Beispiel wird eine mit Stringern verstärkte Schale unter axialer Bela-

stung untersucht, vgl. Abb. 5.18. Die betrachtete Struktur wurde unter anderem in

[6, 7, 8] behandelt.

Abbildung 5.18: Geometrie und Abmessungen der Schale [5]

Die Struktur wird durch 4800 Finite Elemente und 1600 Knoten diskretisiert. Die

Schalenstruktur wird mit dem in Kap. 4.2.1 beschriebenen Platten-Membranele-
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• Aluminum shell with geometrical imperfections (FE-model:
stringer stiffened shell, 10.000 DOF)

Eigenvectors of random field

XY

Z

XY

Z

XY

Z
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Samples of random field
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Z

XY

Z
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Buckling shapes

X

Y
Z

X

Y
Z
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• Probability of exceeding critical load as function of deterministic 
load factor

Results
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• Situation: random perturbation of

• design parameters

• other parameters

• Intuitively: The performance of a robust design is largely 
unaffected by random perturbations

• Statistical indicator: The coefficient of variation (COV) of the 
objecive function and/or constraint values is smaller than the 
COV of the input variables

Robustness of a design
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• Optimization can provide e.g. mean values of the design 
variables

• Example objective function

• The global minimum
is located at (1,1)

Optimization in the presence of 
randomness

f(X1, X2) = 1 + (X1 − 1)2 + 2(X2 − 1)2

X1

X2
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• Consider two correlated random variables (normal and log-
normal with a COV = 30% and a correlation coefficient of 
70%)

Case 1: Design variables have randomness 

28

• In this case, objective can only become larger than in the 
deterministic optimal case

Histogram of objective function

Mean Value: 1.18
Standard Deviation: 0.25

(COV = 21%)
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• Correlation 
analysis

• X3 is the 
objective function

• Moderate 
correlation 
between input 
and output

Which variable is responsible?

! X1 X2 X3

X1 1.00 0.70 0.14

X2 0.70 1.00 0.37

X3 0.14 0.37 1.00
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• Objective function similar as before

• The global minimum is located at (b,1)

• Assume a and b to be random variables with mean value 1 and 
COV of 30%

Case 2: Design variables and objective 
function have randomness

f(X1, X2, a, b) = a + (X1 − b)2 + 2(X2 − 1)2
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• In this case, the objective may become smaller than in the 
deterministic case

Histogram of objective function value

Mean Value: 1.27
Standard Deviation: 0.44
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• Significant correlation between input and output becomes 
visible

Correlation coefficients

! X1 X2 a b X3

X1 1.00 0.70 0.00 0.00 0.04

X2 0.70 1.00 0.00 0.00 0.16

a 0.00 0.00 1.00 0.00 0.68

b 0.00 0.00 0.00 1.00 0.20

X3 0.04 0.16 0.68 0.20 1.00
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• Choose cross section and material 
strength in order to carry the load 
safely

• Consider uncertainties in all 
quantities

• “Reasonable” choice of level of 
safety

• Maintain economical design

Safety oriented design problems

F

A, σf
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• Cost function - include all factors relevant for the cost of a 
design

• Safety Constraint - make sure that the design is sufficiently safe

• Utilization Constraint - make sure that the design can be 
effectively used

Design optimization

CT = CA(A) · Cσ(σf ) → Min.!

A · σf > F

A < Al
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• As an example, let

 

• Unconstrained optimization: leads to the trivial solution 

• Consider safety constraint, assume that solution lies at the 
boundary. This leads to 

• Including utilization constraint leads to 

Deterministic Optimization

A = 0; σf = 0

σf = 0; A = ∞

CT = A · σ
2

f

A = Al; σf =
F

Al
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• Expected value of cost as objective function

• Assume F and A to be Gaussian random variables with 
coefficients of variation 0.3 and 0.1, respectively

• Calculate probability of failure from

Reliability-based Optimization

pf = Φ(−β); β =
σf Ā − F̄√

(0.1σf Ā)2 + (0.3F̄ )2

E[CT ] = E[CA(A) · Cσ(σf )] + Cf · Pf + E[Cu(A)]
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• Utilization cost is increasing with A, e.g.

• Final objective function (unconstrained problem!)

• Optimization parameters are

Reliability-based Optimization (ctd.)

Cu(A) = Cutil · A

E[CT ] = Ā · σ
2

f + Cf · Φ(
σf Ā − F̄

√
(0.1σf Ā)2 + (0.3F̄ )2

) + Cutil · Ā

Ā, σf
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• Includes “penalties”

• Logarithmic scale

Objective function

σf

Ā
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Effect of safety “penalty”
(Cost of failure) on the optimal design
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Optimization with Reliability Constraint

• Dynamic load characterized by random amplitude and 
frequency

• Minimize structural mass while keeping the probability of 
exceeding a dynamic deflection of 10 mm less than 1%.
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Probability of Failure

• Compute probability of violating constraint by using FORM

• Disjoint admissible domains !"use Genetic algorithms
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• Monte Carlo methods may become prohibitively expensive

• Limit state function may contain “noise” thus making FORM 
analysis difficult

• Prior knowledge about the general shape of the limit state 
function may be available

• Results from deterministic design variations should be re-
utilized

Response surface method
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• Cover relevant regions in the space of random variables

• For reliability analysis, this is the region around the design 
point(s)

• Provide some redundancy to allow for error checking

Exploration of design space
(Design of Experiments)
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• Just as many support points as required

Saturated designs

X
Y

Z

c

X
Y

Z

c

linear quadratic
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• More support points than minimally required

Oversaturated designs

X
Y

Z

c

X
Y

Z

c

full factorial central composite
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• Response surface model

• Points of experiments

• Measured responses

• Regression

Fitting by regression

x
(k) = (x(k)

1 , . . . , x(k)
n )′, k = 1, 2, . . . , m

s(θ) =
m∑

k=1

(
z
(k)

− q(θ;x(k))
)2

→ Min.!

η = q(θ1, θ2, . . . , θp;x1, x2, . . . , xn) = q(θ;x)

z(k); k = 1, 2 . . . , m
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• Dependence on free parameters is linear, dependence on 
design variables is generally non-linear

Linear models

η = θ1q1(x) + θ2q2(x) + · · · + θpqp(x)

z =




z(1)

z(2)

...
z(m)


 =




q1(x(1)) q2(x(1)) · · · qp(x(1))
q1(x(2)) q2(x(2)) · · · qp(x(2))

...
...

...
q1(x(m)) q2(x(m)) · · · qp(x(m))







θ1

θ2
...
θp


 +




ε(1)

ε(2)

...
ε(m)


 = Qθ + ε
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• Adaptation of response surface

• Pointwise checks of accuracy

• Regional checks of accuracy

Improvement of accuracy
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Check accuracy of approximate design 
point

g(x)

!(x)

x
1

x
2

µ
F

Mean Value

µ*
F

Search 

Direction
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Correction by sampling near the 
approximate limit state

g(x)

!(x)

x
1

x
2

+

-

!h"(!)
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• Requires adaptation of the DOE scheme

• Shift and Shrink

Adaptation of response surface

g(x)

!(x)

x
1

x
2

µ
F

Initial DOE

g(x)

!(x)

x
1

x
2

µ
F

Adapted DOE
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• Random loads, deterministic structure

• Linear-elastic ideally-plastic material

Example: nonlinear frame structure

X
Y

Z

Fx

Fy

pz

5 m
4 m

3 m
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• Vertical load effect only

Stress distribution at limit state
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• Horizontal (x) load effect

Stress distribution at limit state
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• Horizontal (y) load effect

Stress distribution at limit state

E8
2.40

2.10

1.80

1.50

1.20

0.90

0.60

0.30

0.00

X
Y

Z

56

• Exact failure probability (directional sampling)

Distribution of random variables

21
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Figure 10: Limit state function g(u) in standard normal random variable space for different values
of T .

Table 4: Random variables used in 3-dimensional frame analysis

Number Variable Mean Standard Deviation Type

1 pz [kN/m] 12.0 0.8 Gumbel

2 Fx [kN] 30.0 2.4 Gumbel

3 Fy [kN] 40.0 3.2 Gumbel

Since this type of collapse analysis is typically based on a discontinuous function (convergence—

no convergence), it is imperative that the support points for the response surface be located exactly

at the limit state. A bisection procedure is utilized to determine collapse loads with high precision

(to the accuracy of 1% of the respective standard deviation).

The geometry of the limit state separating the safe from the failure domain is shown in Fig. 13.

The limit points were obtained from directional sampling using 500 samples. The size of the dots

indicates visual distance from the viewer. It can be easily seen that there is considerable interaction

between the random variables 2 and 3 (i.e. Fx and Fy) at certain levels. Near the region of most

importance for the probability of failure (this is where most of the points from the directional

sampling are located) is essentially flat, and mainly governed by the value of Fy. This is clearly

seen from Fig. 12. The box in this figure indicates a space of ±5 standard deviations around the
mean values. The probability of failure obtained from directional sampling is P (F ) = 2.3 · 10−4

with an estimation error of 20%.

A saturated quadratic scheme including pairwise interactions is utilized for the initial layout of

experimental design scheme. The support points thus generated are interpreted as direction vectors

along which all loads are incremented. Starting from the mean values, and incrementing along this

21
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The geometry of the limit state separating the safe from the failure domain is shown in Fig. 13.

The limit points were obtained from directional sampling using 500 samples. The size of the dots

indicates visual distance from the viewer. It can be easily seen that there is considerable interaction

between the random variables 2 and 3 (i.e. Fx and Fy) at certain levels. Near the region of most

importance for the probability of failure (this is where most of the points from the directional

sampling are located) is essentially flat, and mainly governed by the value of Fy. This is clearly

seen from Fig. 12. The box in this figure indicates a space of ±5 standard deviations around the
mean values. The probability of failure obtained from directional sampling is P (F ) = 2.3 · 10−4

with an estimation error of 20%.

A saturated quadratic scheme including pairwise interactions is utilized for the initial layout of

experimental design scheme. The support points thus generated are interpreted as direction vectors

along which all loads are incremented. Starting from the mean values, and incrementing along this
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• Ranges ±5 standard deviations around the mean

Visualization of limit state function
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• Details near the design point

Visualization of limit state function
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• Approximate failure probability

Support points for quadratic response 
surface

23

Figure 13: Visualization of limit state function, details near mean.

directions lead to a set of 9 support points on the limit state function. These support points (cf.

Tab. 5) have a function value of g(X) = 0. By adding the mean value as first support point with a
function value of g(X) = 1, a quadratic response surface can be defined. Considering lines 2 – 7
in Tab. 5 it has been decided to consider combination terms in which all variables are incremented

up from the mean. This leads to the final three support points given in lines 8 – 11 of Tab. 5.

Table 5: Support points for response surface.

Number pz [kN/m] Fx [kN] Fy [kN] g
1 12.000 30.000 40.000 1

2 21.513 30.000 40.000 0

3 -21.516 30.000 40.000 0

4 12.000 113.180 40.000 0

5 12.000 -81.094 40.000 0

6 12.000 30.000 59.082 0

7 12.000 30.000 -59.087 0

8 19.979 109.790 40.000 0

9 13.527 30.000 59.084 0

10 12.000 45.275 59.094 0

A Monte Carlo simulation based on this quadratic surface is carried out. The sampling scheme

utilized is adaptive sampling which iteratively updates the importance sampling density. The re-

sulting probability of failure from three consecutive runs with 3000 samples each was found to be

P (F ) = 1.7 · 10−4 with an estimation error of 2%. Alternatively, directional sampling with 1000

samples was carried out yielding the same value for P (F ). As a by-product, simple visualizations
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• Details near the design point

Visualization of response surface
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• Combination of optimization and stochastic analysis opens new 
perspectives

• Robustness analysis helps to detect “weak spots” in a design

• Reliability analysis provides a rational basis for safety-related 
design decisions

• Stochastic analysis requires substantial computer power

• Response surfaces require careful checking procedures

Concluding remarks
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Thank you very much
for your kind attention!


