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Methoden der
stochastischen Analyse

Introduction

® Structural Models become increasingly detailed
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Outline

® |ntroduction
® Probability and Statistics

® Optimization with stochastic parameters

Probability-based analysis

® Analysis of variances (global variability, robustness)

® Perturbation approach, Taylor series expansion
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Probability Distribution and Probability
Density Functions

“Six Sigma”

® Representation of “rare” events i1
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Joint probability density

® Depends on all random
variables involved €2
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® Prescribed marginal

Statistics and Estimation

® Samples of three correlated random variables
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Failure probability

® Failure condition is
defined in terms of a
(non-unique) limit 4 My
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state function M 7
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Calculation of failure probability

® |ntegrate the joint
probability density V
function of the basic A \

variables over the failure




First order reliability method
FORM

Importance Sampling

® Transform to
uncorrelated
Gaussian space
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Importance Sampling Random fields

® Probabilistic properties depend on continuous spatial

® Concentrate samples in the failure region variable(s)

® Compensate for unlikeliness by weighting e Spatial discretization required for stochastic finite element

analysis
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® Obtain an unbiased estimator for failure probability with




Correlation length

Static stability of shells with random
imperfections

® Measure of “waviness” of random fields

® |nfinite correlation length reduced random field to simple
random variable
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8 Spectral decomposition 8 Measured imperfections

:)_ . :)_ ® Singer, Arbocz, Babcock 1971
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Eigenvectors of random field

® Aluminum shell with geometrical imperfections (FE-model:
stringer stiffened shell, 10.000 DOF)
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Samples of random field
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Buckling shapes
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Results

® Probability of exceeding critical load as function of deterministic
load factor

Probability of failure

(logarithmic scale) o ContT
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Robustness of a design

® Situation: random perturbation of
® design parameters
® other parameters

® |ntuitively: The performance of a robust design is largel

Case |: Design variables have randomness

® Consider two correlated random variables (normal and log-
normal with a COV = 30% and a correlation coefficient of
70%)
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Anthill-Plot
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Optimization in the presence of
randomness

® Optimization can provide e.g. mean values of the design
variables

® Example objective function

Histogram of objective function

® |n this case, objective can only become larger than in the
deterministic optimal case
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Which variable is responsible?

e Correlation

analysis

® X3 isthe

p XI X2 X3

Histogram of objective function value

® |n this case, the objective may become smaller than in the
deterministic case
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Case 2: Design variables and objective
function have randomness

® Objective function similar as before

C

8 Correlation coefficients
—C:B_ ® Significant correlation between input and output becomes
O visible




Safety oriented design problems

® Choose cross section and material
strength in order to carry the load
safely
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Design optimization

® Cost function - include all factors relevant for the cost of a
design
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CT — CA(A) - CU(O'f) — Min.!

Deterministic Optimization
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® As an example, let
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® Unconstrained optimization: leads to the trivial solution

Reliability-based Optimization

® Expected value of cost as objective function
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E[Cr] = E[CA(A) - Cy(0y)] + Cy - Pr + E[Cy(A)]




Reliability-based Optimization (ctd.)

® Ultilization cost is increasing with A, e.g.

Cu(A) — Cutil A
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Objective function

® |ncludes “penalties”

® | ogarithmic scale
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Effect of safety “penalty”
(Cost of failure) on the optimal design

0,50

I Minimum Cost
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Optimization with Reliability Constraint

® Dynamic load characterized by random amplitude and
frequency
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Probability of Failure

e Compute probability of violating constraint by using FORM

o dUyNay

Response surface method

® Monte Carlo methods may become prohibitively expensive

® |imit state function may contain “noise” thus making FORM

Exploration of design space
(Design of Experiments)
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® Cover relevant regions in the space of random variables

Saturated designs

® Just as many support points as required
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Oversaturated designs

® More support points than minimally required

Linear models

® Dependence on free parameters is linear; dependence on
design variables is generally non-linear

Fitting by regression

® Response surface model

n= q(01’027' .. 701);3;1’3:27' .. ’wn) — Q(G,X)

Improvement of accuracy
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Check accuracy of approximate design .
O v Ot app 8 O Adaptation of response surface
C point C
—C:B_ —(:3_ ® Requires adaptation of the DOE scheme
O X () ® Shiftand Shrink

Search

i< X # Direction O X, X,

Correction by sampling near the ,
, o Example: nonlinear frame structure

approximate limit state

® Random loads, deterministic structure

® | inear-elastic ideally-plastic material
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Stress distribution at limit state

E8

® Vertical load effect only

® Horizontal (y) load effect
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Stress distribution at limit state

® Horizontal () load effect
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E8

Stress distribution at limit state
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Distribution of random variables
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Number | Variable | Mean | Standard Deviation | Type
1 p, [kKN/m] | 12.0 0.8 Gumbel
2 F, [kN] | 30.0 2.4 Gumbel




Visualization of limit state function

® Ranges +5 standard deviations around the mean
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Visualization of limit state function

® Details near the design point
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Support points for quadratic response
surface

1 12.000 30.000 | 40.000

2 21.513 30.000 | 40.000
3 -21.516 | 30.000 | 40.000
4 12.000 | 113.180 | 40.000
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Visualization of response surface

® Details near the design point
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Concluding remarks

o dUyNay

® Combination of optimization and stochastic analysis opens new
erspectives




