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Abstract

Sequential quadratic programming (SQP) methods are widely used for
solving practical optimization problems, especially in structural mechanics.
The general structure of SQP methods is briefly introduced and it is shown
how these methods can be adapted to distributed computing. However, SQP
methods are sensitive subject to errors in function and gradient evaluations.
Typically they break down with an error message reporting that the line search
cannot be terminated successfully. In these cases, a new non-monotone line
search is activated. In case of noisy function values, a drastic improvement
of the performance is achieved compared to the version with monotone line
search. Numerical results are presented for a set of more than 300 standard
test examples.
Keywords: SQP, sequential quadratic programming, nonlinear program-
ming, non-monotone line search, distributed computing
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1 Introduction

We consider the general optimization problem to minimize an objective func-
tion f under nonlinear equality and inequality constraints,

x ∈ IRn :

min f(x)
gj(x) = 0 , j = 1, . . . ,me

gj(x) ≥ 0 , j = me + 1, . . . ,m
xl ≤ x ≤ xu

(1)

where x is an n-dimensional parameter vector. It is assumed that all problem
functions f(x) and gj(x), j = 1, . . ., m, are continuously differentiable on the
whole IRn. But besides of this we do not suppose any further mathematical
structure of the model functions.

Sequential quadratic programming is the standard general purpose method
to solve smooth nonlinear optimization problems, at least under the following
assumptions:

• The problem is not too large.

• Functions and gradients can be evaluated with sufficiently high precision.

• The problem is smooth and well-scaled.

The code NLPQL of Schittkowski [44] is a Fortran implementation of a
sequential quadratic programming (SQP) algorithm. The design of the numer-
ical algorithm is founded on extensive comparative numerical tests of Schitt-
kowski [37, 41, 39], Schittkowski et al. [57], Hock and Schittkowski [24], and on
further theoretical investigations published in [38, 40, 42, 43]. The algorithm
is extended to solve also nonlinear least squares problems efficiently, see [47] or
[52], and to handle problems with very many constraints, cf. [48]. To conduct
the numerical tests, a random test problem generator is developed for a ma-
jor comparative study, see [37]. Two collections with more than 300 academic
and real-life test problems are published in Hock and Schittkowski [24] and in
Schittkowski [45]. Fortran source codes and a test frame can be downloaded
from the home page of the author,

http://www.klaus-schittkowski.de

The test examples are part of the Cute test problem collection of Bongartz
et al. [7]. About 80 test problems based on a Finite Element formulation are
collected for the comparative evaluation in Schittkowski et al. [57]. A set of
1,170 least squares test problems solved by an extension of the code NLPQL
to retain typical features of a Gauss-Newton algorithm, is described in [52].
Also these problems can be downloaded from the home page of the author
together with an interactive user interface called EASY-FIT, see [53].

Moreover, there exist hundreds of commercial and academic applications
of NLPQL, for example

1. mechanical structural optimization, see Schittkowski, Zillober, Zoteman-
tel [57] and Kneppe, Krammer, Winkler [28],
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2. data fitting and optimal control of transdermal pharmaceutical systems,
see Boderke, Schittkowski, Wolf [3] or Blatt, Schittkowski [6],

3. computation of optimal feed rates for tubular reactors, see Birk, Liepelt,
Schittkowski, and Vogel [5],

4. food drying in a convection oven, see Frias, Oliveira, and Schittkowski [22],

5. optimal design of horn radiators for satellite communication, see Hart-
wanger, Schittkowski, and Wolf [21],

6. receptor-ligand binding studies, see Schittkowski [49],

7. optimal design of surface acoustic wave filters for signal processing, see
Bünner, Schittkowski, and van de Braak [8].

The general availability of parallel computers and in particular of dis-
tributed computing in networks motivates a careful redesign of NLPQL to
allow simultaneous function evaluations. The resulting extensions are imple-
mented and the code is called NLPQLP, see Schittkowski [56]. Another input
parameter l is introduced for the number of parallel machines, that is the num-
ber of function calls to be executed simultaneously. In case of l = 1, NLPQLP
is identical to NLPQL. Otherwise, the line search procedure is modified to
allow parallel function calls, which can also be applied for approximating gra-
dients by difference formulae. The mathematical background is outlined, in
particular the modification of the line search algorithm to retain convergence
under parallel systems. It must be emphasized that the distributed compu-
tation of function values is only simulated throughout the paper. It is up to
the user to adopt the code to a particular parallel environment.

However, SQP methods are quite sensitive subject to round-off or any other
errors in function and especially gradient values. If objective or constraint
functions cannot be computed within machine accuracy or if the accuracy by
which gradients are approximated is above the termination tolerance, the code
could break down typically with the error message IFAIL=4. In this situation,
the line search cannot be terminated within a given number of iterations and
the iterative process is stopped.

The new version 2.0 makes use of non-monotone line search in certain
error situations. The idea is to replace the reference value of the line search
termination check ψrk

(xk, vk) by

max{ψrj (xj , vj) : j = k − p, . . . , k} ,

where ψr(x, v) is a merit function and p a given tolerance. The general idea is
not new and for example described in Dai [11], where a general convergence
proof for the unconstrained case is presented. The general idea goes back
to Grippo, Lampariello, and Lucidi [16], and was extended to constrained
optimization and trust region methods in a series of subsequent papers, see
Bonnans et al. [4], Deng et al. [12], Grippo et al. [17, 18], Ke and Han [26], Ke
et al. [27], Lucidi et al. [29], Panier and Tits [31], Raydan [36], and Toit [60, 61].
However, there is a basic difference in the methodology: Our goal is to allow
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monotone line searches as long as they terminate successfully, and to apply a
non-monotone one only in an error situation.

In Section 2 we outline the general mathematical structure of an SQP al-
gorithm, the non-monotone line search, and the modifications to run the code
under distributed systems. Section 3 contains some numerical results obtained
for a set of 306 standard test problems of the collections published in Hock and
Schittkowski [24] and in Schittkowski [45]. They show the sensitivity of the
new version with respect to the number of parallel machines and the influence
of different gradient approximations under uncertainty. Moreover, we test
the non-monotone line search versus the monotone one, and generate noisy
test problems by adding random errors to function values and by inaccurate
gradient approximations. This situation appears frequently in practical en-
vironments, where complex simulation codes prevent accurate responses and
where gradients can only be computed by a difference formula.

2 Sequential Quadratic Programming

Sequential quadratic programming or SQP methods belong to the most power-
ful nonlinear programming algorithms we know today for solving differentiable
nonlinear programming problems of the form (1). The theoretical background
is described e.g. in Stoer [59] in form of a review, or in Spellucci [58] in form of
an extensive text book. From the more practical point of view, SQP methods
are also introduced in the books of Papalambros, Wilde [32] and Edgar, Him-
melblau [13]. Their excellent numerical performance was tested and compared
with other methods in Schittkowski [37], and since many years they belong to
the most frequently used algorithms to solve practical optimization problems.

To facilitate the subsequent notation in this section, we assume that upper
and lower bounds xu and xl are not handled separately, i.e., we consider the
somewhat simpler formulation

x ∈ IRn :
min f(x)
gj(x) = 0 , j = 1, . . . ,me

gj(x) ≥ 0 , j = me + 1, . . . ,m
(2)

It is assumed that all problem functions f(x) and gj(x), j = 1, . . ., m, are
continuously differentiable on the whole IRn. But besides of this we do not
suppose any further mathematical structure of the model functions.

The basic idea is to formulate and solve a quadratic programming sub-
problem in each iteration which is obtained by linearizing the constraints and
approximating the Lagrangian function

L(x, u) := f(x)−
m∑

j=1

ujgj(x) (3)

quadratically, where x ∈ IRn is the primal variable and u = (u1, . . . , um)T ∈
IRm the multiplier vector.
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To formulate the quadratic programming subproblem, we proceed from
given iterates xk ∈ IRn, an approximation of the solution, vk ∈ IRm an ap-
proximation of the multipliers, and Bk ∈ IRn×n, an approximation of the
Hessian of the Lagrangian function. Then one has to solve the quadratic
programming problem

d ∈ IRn :
min 1

2d
TBkd+∇f(xk)Td

∇gj(xk)Td+ gj(xk) = 0 , j = 1, . . . ,me ,

∇gj(xk)Td+ gj(xk) ≥ 0 , j = me + 1, . . . ,m .

(4)

Let dk be the optimal solution and uk the corresponding multiplier of this
subproblem. A new iterate is obtained by(

xk+1

vk+1

)
:=

(
xk

vk

)
+ αk

(
dk

uk − vk

)
, (5)

where αk ∈ (0, 1] is a suitable steplength parameter.
Although we are able to guarantee that the matrix Bk is positive definite,

it is possible that (4) is not solvable due to inconsistent constraints. One
possible remedy is to introduce an additional variable δ ∈ IR, leading to a
modified quadratic programming problem, see Schittkowski [44] for details.

The steplength parameter αk is required in (5) to enforce global conver-
gence of the SQP method, i.e., the approximation of a point satisfying the
necessary Karush-Kuhn-Tucker optimality conditions when starting from ar-
bitrary initial values, typically a user-provided x0 ∈ IRn and v0 = 0, B0 = I.
αk should satisfy at least a sufficient decrease condition of a merit function
φr(α) given by

φr(α) := ψr

((
x
v

)
+ α

(
d

u− v

))
(6)

with a suitable penalty function ψr(x, v). Implemented is the augmented
Lagrangian function

ψr(x, v) := f(x)−
∑
j∈J

(vjgj(x)− 1
2
rjgj(x)2)− 1

2

∑
j∈K

v2
j /rj , (7)

with J := {1, . . . ,me} ∪ {j : me < j ≤ m, gj(x) ≤ vj/rj} and K :=
{1, . . . ,m} \ J , cf. Schittkowski [42]. The objective function is penalized
as soon as an iterate leaves the feasible domain. The corresponding penalty
parameters rj , j = 1, . . ., m that control the degree of constraint violation,
must be chosen in a suitable way to guarantee a descent direction of the merit
function, see Schittkowski [42] or Wolfe [62] in a more general setting.

φ′
rk
(0) = �ψrk

(xk, vk)T
(

dk

uk − vk

)
< 0 . (8)

Finally one has to approximate the Hessian matrix of the Lagrangian func-
tion in a suitable way. To avoid calculation of second derivatives and to obtain
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a final superlinear convergence rate, the standard approach is to update Bk

by the BFGS quasi-Newton formula, cf. Powell [34] or Stoer [59].
The implementation of a line search algorithm is a critical issue when

implementing a nonlinear programming algorithm, and has significant effect
on the overall efficiency of the resulting code. On the one hand we need a
line search to stabilize the algorithm, on the other hand it is not advisable to
waste too many function calls. Moreover, the behavior of the merit function
becomes irregular in case on constrained optimization, because of very steep
slopes at the border caused by the penalty terms. Even the implementation
is more complex than shown above, if linear constraints and bounds of the
variables are to be satisfied during the line search.

The steplength parameter αk is chosen to satisfy the Armijo [1] condition

φr(σβi) ≤ φr(0) + σβiµφ′
r(0) , (9)

see for example Ortega and Rheinboldt [30]. The constants are from the
ranges 0 < µ < 0.5, 0 < β < 1, and 0 < σ ≤ 1. We start with i = 0 and
increase i, until (9) is satisfied for the first time, say at ik. Then the desired
steplength is αk = σβik .

Fortunately, SQP methods are quite robust and accept the steplength
one in the neighborhood of a solution. Typically the test parameter µ for
the Armijo-type sufficient descent property (9) is very small, for example
µ = 0.0001 in the present implementation of NLPQL. Nevertheless the choice
of the reduction parameter β must be adopted to the actual slope of the merit
function. If β is too small, the line search terminates very fast, but on the
other hand the resulting stepsizes are usually small leading to a higher number
of outer iterations. On the other hand, a larger value close to one requires
too many function calls during the line search. Thus, we need some kind of
compromise, which is obtained by applying first a polynomial interpolation,
typically a quadratic one, and use (9) only as a stopping criterion. Since φr(0),
φ′

r(0), and φr(αi) are given, αi the actual iterate of the line search procedure,
we get easily the minimizer of the quadratic interpolation. We accept then the
maximum of this value or the Armijo parameter as a new iterate, as shown
by the subsequent code fragment implemented in NLPQL.

Algorithm 2.1 Let β, µ with 0 < β < 1, 0 < µ < 0.5 be given.

Start: α0 := 1

For i = 0, 1, 2, . . . do:
1) If φr(αi) < φr(0) + µ αi φ′

r(0), then stop.

2) Compute ᾱi :=
0.5 α2

i φ′
r(0)

αiφ′
r(0)− φr(αi) + φr(0)

.

3) Let αi+1 := max(β αi, ᾱi).

Corresponding convergence results are found in Schittkowski[42]. ᾱi is the
minimizer of the quadratic interpolation and we use the Armijo descent prop-
erty for checking termination. Step 3) is required to avoid irregular values,
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since the minimizer of the quadratic interpolation could be outside of the fea-
sible domain (0, 1]. The search algorithm is implemented in NLPQL together
with additional safeguards, for example to prevent violation of bounds. Algo-
rithm 4.1 assumes that φr(1) is known before calling the procedure, i.e., the
corresponding function call is made in the calling program. We have to stop
the algorithm, if sufficient descent is not observed after a certain number of
iterations, say 10. If the tested stepsizes fall below machine precision or the
accuracy by which model function values are computed, the merit function
cannot decrease further.

To outline the new approach, let us assume that functions can be computed
simultaneously on l different machines. Then l test values αi = βi−1 with
β = ε1/(l−1) are selected, i = 1, . . ., l, where ε is a guess for the machine
precision. Next we require l parallel function calls to get the corresponding
model function values. The first αi satisfying a sufficient descent property (9),
say for i = ik, is accepted as the new steplength for getting the subsequent
iterate with αk := αik . One has to be sure that existing convergence results
of the SQP algorithm are not violated. For an alternative approach based on
pattern search, see Hough, Kolda, and Torczon [25].

The proposed parallel line search will work efficiently, if the number of
parallel machines l is sufficiently large, and works as follows, where we omit
the iteration index k.

Algorithm 2.2 Let β, µ with 0 < β < 1, 0 < µ < 0.5 be given.

Start: For αi = βi compute φr(αi) for i = 0, . . ., l − 1.

For i = 0, 1, 2, . . . do:
If φr(αi) < φr(0) + µ αi φ′

r(0), then stop.

To precalculate l candidates in parallel at log-distributed points between
a small tolerance α = τ and α = 1, 0 < τ << 1, we propose β = τ1/(l−1).

The paradigm of parallelism is SPMD, i.e., Single Program Multiple Data.
In a typical situation we suppose that there is a complex application code
providing simulation data, for example by an expensive Finite Element cal-
culation in mechanical structural optimization. It is supposed that various
instances of the simulation code providing function values, are executable on
a series of different machines, so-called slaves, controlled by a master program
that executes NLPQLP. By a message passing system, for example PVM, see
Geist et al. [14], only very few data need to be transferred from the master
to the slaves. Typically only a set of design parameters of length n must to
be passed. On return, the master accepts new model responses for objective
function and constraints, at most m+1 double precision numbers. All massive
numerical calculations and model data, for example the stiffness matrix of a
Finite Element model in a mechanical engineering application, remain on the
slave processors of the distributed system.

In both situations, i.e., the serial or parallel version, it is still possible that
Algorithm 2.1 or Algorithm 2.2 breaks down because to too many iterations.
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In this case, we proceed from a descent direction of the merit function, but
φ′

r(0) is extremely small. To avoid interruption of the whole iteration process,
the idea is to repeat the line search with another stopping criterion. Instead
of testing (9), we accept a stepsize αk as soon as the inequality

φrk
(αk) ≤ max

k−p(k)≤j≤k
φrj (0) + αkµφ

′
rk
(0) (10)

is satisfied, where p(k) is a predetermined parameter with p(k) = min{k, p},
p given tolerance. Thus, we allow an increase of the reference value φrjk

(0)
in a certain error situation, i.e. an increase of the merit function value. To
implement the non-monotone line search, we need a queue consisting of merit
function values at previous iterates. In case of k = 0, the reference value is
adapted by a factor greater than 1, i.e., φrjk

(0) is replace by tφrjk
(0), t > 1.

The basic idea to store reference function values and to replace the sufficient
descent property by a sufficient ’ascent’ property in max-form, is not new
and for example described in Dai [11], where a general convergence proof for
the unconstrained case is presented. The general idea goes back to Grippo,
Lampariello, and Lucidi [16], and was extended to constrained optimization
and trust region methods in a series of subsequent papers, see Bonnans et
al. [4], Deng et al. [12], Grippo et al. [17, 18], Ke and Han [26], Ke et al. [27],
Lucidi et al. [29], Panier and Tits [31], Raydan [36], and Toit [60, 61]. However,
there is a difference in the methodology: Our goal is to allow monotone line
searches as long as they terminate successfully, and to apply a non-monotone
one only in an error situation.

3 Numerical Test Results

3.1 Test Environment and Test Examples

Our numerical tests use the 306 academic and real-life test problems published
in Hock and Schittkowski [24] and in Schittkowski [45]. Part of them are also
available in the CUTE library, see Bongartz et. al [7], and their usage is
described in Schittkowski [51]. The distribution of the dimension parameter
n, the number of variables, is shown in Figure 1. We see, for example, that
about 270 of 306 test problems have not more than 10 variables. In a similar
way, the distribution of the number of constraints is shown in Figure 2.

Since analytical derivatives are not available for all problems, we approxi-
mate them numerically. The test examples are provided with exact solutions,
either known from analytical solutions or from the best numerical data found
so far. The Fortran codes are compiled by the Intel Visual Fortran Compiler,
Version 8.0, under Windows XP, and executed on a Pentium IV processor
with 2.8 GHz.

First we need a criterion to decide, whether the result of a test run is
considered as a successful return or not. Let ε > 0 be a tolerance for defining
the relative accuracy, xk the final iterate of a test run, and x� the supposed
exact solution known from the two test problem collections. Then we call the
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output a successful return, if the relative error in the objective function is less
than ε and if the maximum constraint violation is less than ε2, i.e. if

f(xk)− f(x�) < ε|f(x�)| , if f(x�) <> 0

or
f(xk) < ε , if f(x�) = 0

and
r(xk) = max(‖h(xk)‖∞, ‖g(xk)+‖∞) < ε2 ,

where ‖ . . . ‖∞ denotes the maximum norm and gj(xk)+ = max(0, gj(xk)).
We take into account that a code returns a solution with a better func-

tion value than the known one, subject to the error tolerance of the allowed
constraint violation. However, there is still the possibility that an algorithm
terminates at a local solution different from the one. Thus, we call a test run
a successful one, if the internal termination conditions are satisfied subject
to a reasonably small tolerance (IFAIL=0), and if in addition to the above
decision,

f(xk)− f(x�) ≥ ε|f(x�)| , if f(x�) <> 0

or
f(xk) ≥ ε , if f(x�) = 0

and
r(xk) < ε2 .

For our numerical tests, we use ε = 0.01, i.e., we require a final accuracy
of one per cent. Gradients are approximated by the following three difference
formulae:

1. Forward differences:

∂

∂xi
f(x) ≈ 1

ηi

(
f(x+ ηiei)− f(x)

)
(11)

2. Two-sided differences:

∂

∂xi
f(x) ≈ 1

2ηi

(
f(x+ ηiei)− f(x− ηiei

)
(12)

3. Fourth-order formula:

∂

∂xi
f(x) ≈ 1

4!ηi

(
2f(x−2ηiei)−16f(x−ηiei)+16f(x+ηiei)−2f(x+2ηiei)

)
(13)
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Here ηi = ηmax(10−5, |xi|) and ei is the i-th unit vector, i = 1, . . . , n. The
tolerance η depends on the difference formula and is set to η = ηm

1/2 for
forward differences, η = ηm

1/3 for two-sided differences, and η = (ηm/72)1/4

for fourth-order formulae. ηm is a guess for the accuracy by which function
values are computed, i.e., either machine accuracy in case of analytical for-
mulae or an estimate of the noise level in function computations. In a similar
way, derivatives of constraints are computed.

The Fortran implementation of the SQP method introduced in the pre-
vious section, is called NLPQLP, see Schittkowski [56]. The code represents
the most recent version of NLPQL which is frequently used in academic and
commercial institutions. NLPQLP is prepared to run also under distributed
systems, but behaves in exactly the same way as the previous version, if the
number of simulated processors is set to one. Functions and gradients must
be provided by reverse communication and the quadratic programming sub-
problems are solved by the primal-dual method of Goldfarb and Idnani [15]
based on numerically stable orthogonal decompositions. NLPQLP is executed
with termination accuracy ACC=10−8 and a maximum number of iterations
MAXIT=500.

In the subsequent tables, we use the notation

number of successful test runs : nsucc

number of false terminations (IFAIL>0) : nerr

average number of function calls : nfunc

average number of gradient calls : ngrad

average number of total function calls : nequ

total execution time for all test runs in seconds : time
To get nfunc, we count each single function call, also in the case of several

simulated processors, l > 1. However, function evaluations needed for gradient
approximations, are not counted. Their average number is nfunc for forward
differences, 2× nfunc for two-sided differences, and 4× nfunc for fourth-order
formulae. One gradient computation corresponds to one iteration of the SQP
method.

3.2 Testing Distributed Function Calls

First we investigate the question, how parallel line searches influence the over-
all performance. Table 1 shows the number of successful test runs, the average
number of function calls, and the average number of iterations or gradient eval-
uations, for an increasing number of simulated parallel calls of model functions
denoted by l. The fourth-order formula (13) is used for gradient approxima-
tions and non-monotone line search is applied with a queue size of p = 30.
The calculation time is about 4 sec for a series of 306 test runs.

l = 1 corresponds to the sequential case, when Algorithm 2.1 is applied
for the line search, consisting of a quadratic interpolation combined with an
Armijo-type bisection strategy. Since we need at least one function evaluation
for the subsequent iterate, we observe that the average number of additional
function evaluations needed for the line search, is about two.
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l nsucc nfunc ngrad

1 306 40 22
3 242 416 130
4 276 423 104
5 293 330 66
6 302 244 39
7 303 241 33
8 299 272 32
9 302 242 26
10 303 277 26
15 302 329 22
20 302 463 23
50 303 1,054 21

Table 1: Performance Results for Parallel Line Search

In all other cases, l > 1 simultaneous function evaluations are made ac-
cording to Algorithm 2.2. Thus, the total number of function calls nfunc is
quite big in Table 1. If, however, the number of parallel machines is suffi-
ciently large in a practical situation, we need only one simultaneous function
evaluation in each step of the SQP algorithm. To get a reliable and robust line
search, we need at least 5 parallel processors. No significant improvements
are observed, if we have more than 10 parallel function evaluations.

The most promising possibility to exploit a parallel system architecture
occurs, when gradients cannot be calculated analytically, but have to be ap-
proximated numerically, for example by forward differences, two-sided differ-
ences, or even higher order methods. Then we need at least n additional
function calls, where n is the number of optimization variables, or a suitable
multiple of n.

3.3 Testing Gradient Approximations by Difference
Formulae under Random Noise

For our numerical tests, we use the three different difference formulae men-
tioned before, see (11), (12), and (13). To test the stability of these formulae,
we add some randomly generated noise to each function value. Non-monotone
line search is applied with a queue size of p = 30, and the serial line search
calculation by Algorithm 2.1 is required.

Tables 2 to 4 show the corresponding results for the different procedures
under consideration, and for increasing random perturbations (εerr). We re-
port the number of successful runs (nsucc) only, since the average number of
iterations is more or less the same in all cases. The tolerance for approximat-
ing gradients, ηm, is set to the machine accuracy in case of εerr = 0, and to
the random noise level otherwise.
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εerr nsucc nfunc ngrad nequ

0 306 37 22 363
10−12 302 56 25 392
10−10 305 67 26 438
10−8 301 86 26 471
10−6 297 142 36 870
10−4 287 147 29 469
10−2 255 191 27 432

Table 2: Test Results for Forward Differences

εerr nsucc nfunc ngrad nequ

0 306 40 22 674
10−12 301 40 21 640
10−10 301 101 23 715
10−8 300 60 24 771
10−6 301 73 23 726
10−4 287 102 24 721
10−2 251 170 26 716

Table 3: Test Results for Two-sided Differences

εerr nsucc nfunc ngrad nequ

0 306 40 22 1,306
10−12 305 32 20 1,171
10−10 301 42 23 1,264
10−8 301 50 22 1,343
10−6 301 74 25 1,439
10−4 287 101 26 1,642
10−2 255 137 25 1,274

Table 4: Test Results for Fourth-order Formula
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εerr nsucc nfunc ngrad nequ

0 304 35 22 363
10−12 304 39 22 363
10−10 299 50 25 410
10−8 283 64 25 441
10−6 260 82 28 555
10−4 202 104 29 545
10−2 117 157 29 374

Table 5: Test Results for Forward Differences (Monotone Line Search)

εerr nsucc nfunc ngrad nequ

0 306 37 22 670
10−12 300 35 23 632
10−10 300 36 22 646
10−8 295 41 21 649
10−6 280 55 22 658
10−4 242 72 23 681
10−2 136 134 29 751

Table 6: Test Results for Two-sided Differences (Monotone Line Search)

The results are quite surprising and depend heavily on the new non-
monotone line search strategy. There are no significant differences in the
number of test problems solved between the three different formulae despite
of the increasing theoretical approximation orders. Moreover, we are able to
solve about 80 % of the test examples in case of extremely noisy function
values with at most two correct digits. If we take the number of equivalent
function calls into account, we conclude that forward differences are more
efficient than higher order formulae.

3.4 Testing Non-Monotone Line Search under Noise

First of all,, we repeat the same set of test runs made in the previous section,
but now with the standard monotone line search. The results are summarized
in Tables 5 to 7. In this case, we get a slight improvement of the number of
successful test runs with increased order of the difference formula. However,
the we can solve at most 50 % of all problems successfully in case of the
fourth-order formula compared to 80 % in case of forward differences and
non-monotone line search.

To investigate the situation in more detail, we proceed from the fourth-
order formula and list now the number of successful returns, nsucc, and the
number of test runs where NLPQLP terminated because of an error message
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εerr nsucc nfunc ngrad nequ

0 306 37 22 1,308
10−12 300 31 20 1,169
10−10 298 34 21 1,206
10−8 299 40 21 1,226
10−6 283 50 22 1,316
10−4 246 68 24 1,469
10−2 156 115 28 1,295

Table 7: Test Results for Fourth-order Formula (Monotone Line Search)

monotone non-monotone
εerr nsucc nerr nsucc nerr

0 306 10 308 5
10−12 300 17 305 8
10−10 298 33 301 12
10−8 299 53 301 11
10−6 283 99 299 19
10−4 246 157 285 34
10−2 156 315 251 65

Table 8: Successful and Non-Successful Returns

IFAIL>0, nerr. The results are listed in Table 8. They clearly indicate the
advantage of non-monotone line searches over the monotone ones. Robustness
and stability of the SQP method are significantly increased especially in case
of large noise in the function evaluations.

A further series of test runs concerns the situation that a user fixes the
tolerance η for gradient approximations, e.g., to η = 10−7. This is a unlikely
worst-case scenario and should only happen in a a situation, where a black-
box derivative calculation is used and where a user is not aware of the accuracy
by which derivatives are approximated. Whereas nearly all test runs break
down with error messages for the monotone line search and large random
perturbations, the non-monotone line search is still able to find to terminate
in at least 30 % NLPQLP calls, see Table 9.

4 Conclusions

We present a modification of an SQP algorithm designed for execution under
a parallel computing environment (SPMD) and where a non-monotone line
search is applied in error situations. Numerical results indicate stability and
robustness for a set of 306 standard test problems. It is shown that not more
than 6 parallel function evaluation per iterations are required for conducting
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monotone non-monotone
εerr nsucc nerr nsucc nerr

0 306 7 307 6
10−12 304 28 303 10
10−10 292 66 302 11
10−8 210 134 286 28
10−6 71 248 188 124
10−4 23 295 119 196
10−2 23 295 116 198

Table 9: Successful and Non-Successful Returns, η = 10−7

the line search. Significant performance improvement is achieved by the non-
monotone line search especially in case of noisy function values and numerical
differentiation. There are no differences in the number of test problems solved
between forward differences, two-sided differences, and fourth-order formula,
even not in case of severe random perturbations. With the new non-monotone
line search, we are able to solve about 80 % of the test examples in case of
extremely noisy function values with at most two correct digits and forward
differences for derivative calculations.
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