

Competence Center FEM

Simulation ist mehr als Software®

Optimization characteristics of continuous fiber-reinforced plastics

Dipl.-Ing. Markus Kellermeyer, CADFEM GmbH Prof. Dr.-Ing. Sandro Wartzack, Universität Erlangen-Nürnberg

Lehrstuhl für

Konstruktionstechnik Prof. Dr.-Ing. Sandro Wartzack

Overview

- Motivation
- Parametric optimization in optiSLang
- Optimization characteristics of continuous fiber-reinforced plastics
- Strategy for composite optimization
- Summary

Motivation

- Continuous fiber-reinforced plastics
 - Show a more complex material description than conventional metallic materials
- Parametric optimization
 - Can be applied to a simulation that is suited to a manufacturing process

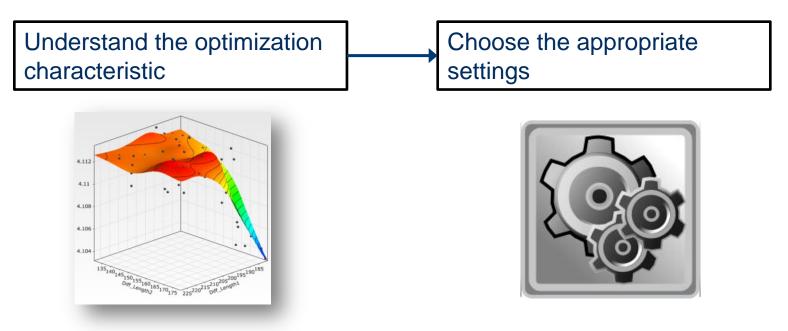
Goal:

Decision support for a composite optimization

• Provide information to facilitate decision-making when choosing the appropriate optimization settings

Motivation

- There's a large amount of parametric optimization methods
- The suitable method depends on the composite task
- This decision is difficult as there are a lot of settings that must be chosen correctly



Parametric optimization in optiSLang

Parametric optimization in optiSLang

- Which algorithm is the most efficient one and which settings should be chosen?
 - Gradient-based optimization algorithm
 - Adaptive response surface method
 - Evolutionary algorithm
 - Particle swarm algorithm
 - Stochastic methods
 - ...

[DDS11]: David Schneider, Daniela Ochsenfahrt, Stephan Blum: Benchmark of Nature - inspired Optimization Algorithms in fields of single and multiobjective scopes

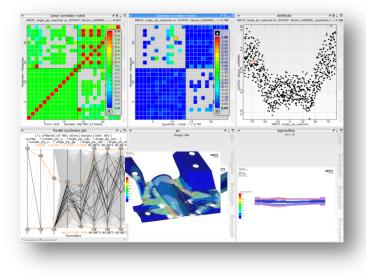
Optimization characteristics of continuous fiber-reinforced plastics

Optimization characteristics of continuous fiber-reinforced plastics

- Can be identified immediately:
 - · Is there just one or are there more objective functions?
 - Are there just continuous (fiber angles, ..) or also discrete parameters (order/number of fabrics/plies)?
 - How large is the range of the fiber orientations?

Optimization characteristics of continuous fiber-reinforced plastics

- Identification using a sensitivity study:
 - How many (important) input parameters exist?
 - Can the objective(s) be achieved with the current preliminary concept?
 - What's the probability of failed designs?
 - · How often will the failure criterias be violated?
 - How much numerical noise?
 - · Are there local jumps with regard to the evaluation areas?
 - Does the failure layer change?
 - Do the failure criterias change?
 - How long / inhomogeneous is the computational time?

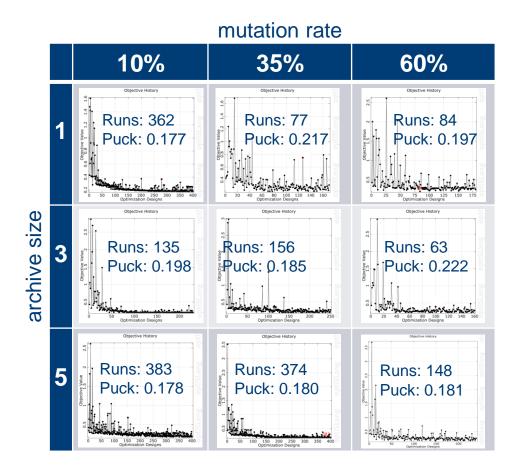


How can good optimization settings be detected for the corresponding characteristic?

Example:

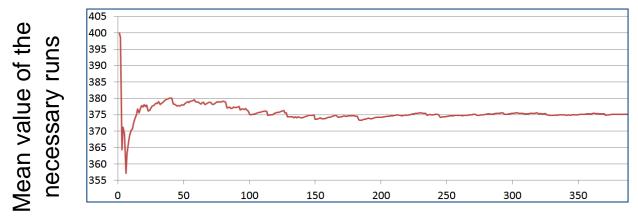
In an evolutionary algorithm

- mutations rate and
- archive size are varied and compared



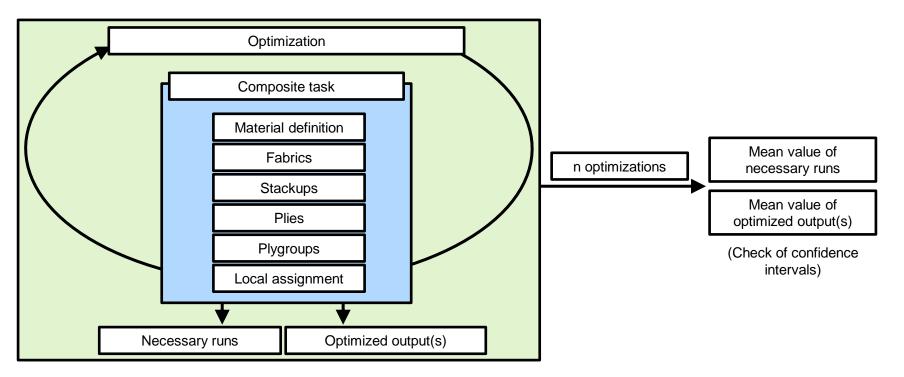
But is this a fair comparision of the optimization settings?

- In a stochastic-based method one must expect a different result in each optimization run
- Evaluation by using the mean value and it's standard deviation (get a quick result to safe time; and preferably always for a good caculability)



Number of optimizations

• Flow chart of the evaluation



Benchmark to detect the appropriate optimization settings

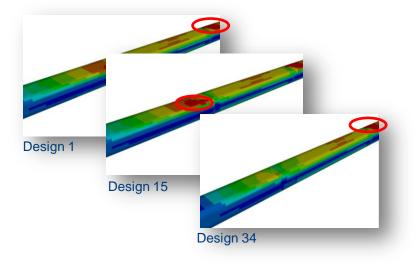
Benchmark to detect the appropriate optimization settings

- The choosen benchmark owns the following characteristics:
 - One or more objectives can be selected
 - Continuous or continuous+discrete parameters
 - Range of the fiber angles can be set
 - Consideration of one or several failure criterias at the same time
 - Frequent / sporadic change of the failure criterias
 - Numerical noise large/small
 - Frequent / sporadic change of the failure location
 - · Frequent / sporadic change of the failure layer
- This benchmark is used to test different situations

- Sensitivity study shows:
 - Almost no failed designs
 - Range of results:
 - Mass: 892g 1560g
 - Inverse reserve factor Cuntze: 0.73 5.20 (<1)
 - Inverse reserve factor Max. Stress: 0.73 5.21 (<1)
 - Inverse reserve factor Puck:
 - Deformation:

0.73 – 5.28 (<1) 3.8cm – 15.2cm (<8cm)

- Sensitivity study shows:
 - Local change of the output parameters can be observed:

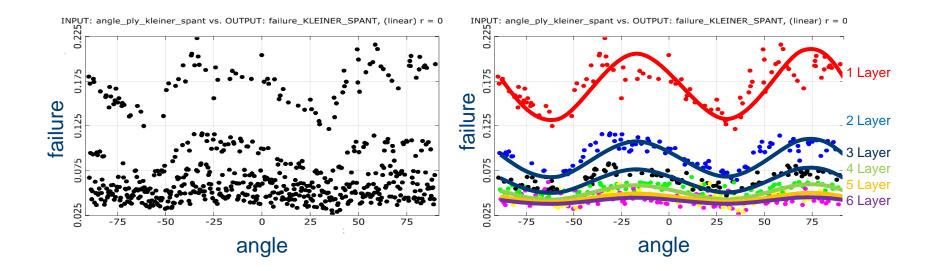


In a global examination of the max. failure a reasonalbe interpretation of the results is not possible anymore. The CoP is small.

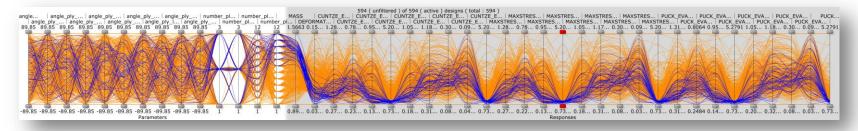
,failure modes' must be evaluated seperately

→ Change of the parametrization increases the CoP for the failure criterias and therefore a goal-oriented optimization

- Sensitivity study shows:
 - Influence of the fiber angle changes if the number of discrete parameters (number of layers) changes. Maybe a response surface based method is not the best choice.

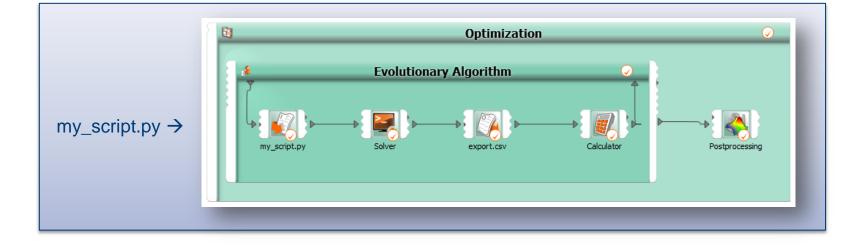


- Sensitivity study shows:
 - Failure criterias are violated very often:
 - ~ 90% of all designs violate max. stress, puck, cuntze or a an acceptable deformation

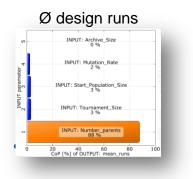


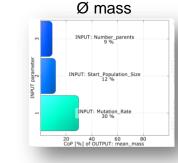
blue: valid designs orange: invalid designs

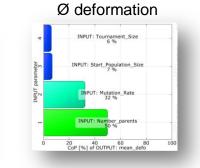
- Now the optimization settings are regarded as input parameters! (number of parents, mutation rate, ...)
- \rightarrow Which settings deliver a good optimum with a minimum number of runs?



• Sensitivity study for the settings of an evolutionary algorithm:

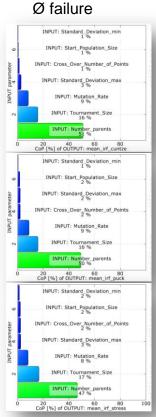




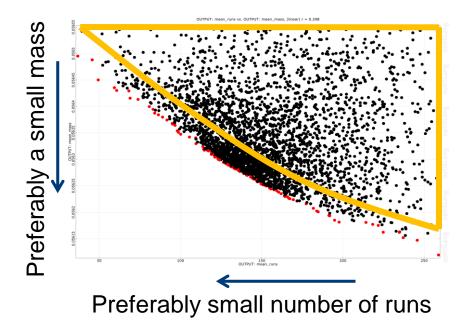


All mean values have a high CoP

- Ø number of runs mainly depends on the number of parents
- Ø mass on mutation rate, start population and number of parents
- Ø deformation on number of parents and mutation rate
- Ø failure criterias show similar sensitivities: number of parents, tournament size and mutation rate
- Other settings like e.g. archive size, samples for cross over, max. / min. standard deviation of the mutation, ... are less important.

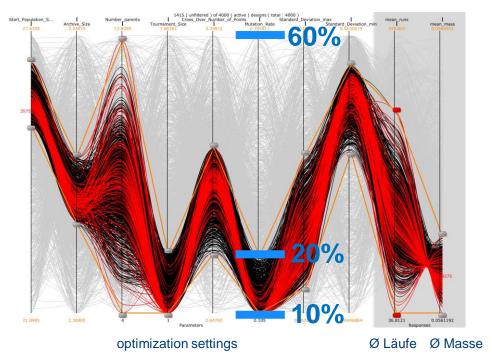


• Which setting should be choosen?



- There's no setting to get the smallest mass with a minimum number of runs
- But there are a lot of (combinations of) settings that should be avoided

• Excluding non-efficient settings



mutation rate

- Red design constellations in this parallelplot show the pareto front
- Example: The mutation rate should not be chosen with a value higher than 20%

Example for decision support

Example for decision support

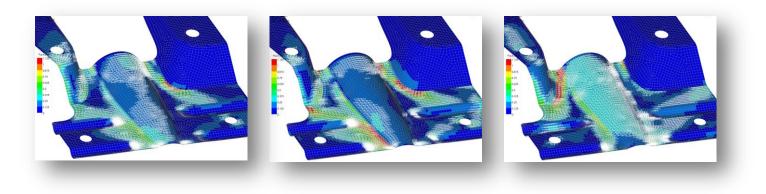
• From these benchmarks the answer for the following question can be derived:

I have ~4 hours, so I can afford about ~250 simulation runs. For this number of runs I would like to find a setting to get a good valid candidate.

- 1. Preliminary thoughts
 - There's just one objective
 - There are continuous and discrete parameters
 - · The variation range of the fiber angles is large
- 2. Sensitivity study shows:
 - Failure criterias change locally (pictures)
 - The failure criterias are violated very often (parallel plot)
 - Numerical noise is acceptable
 - There's a change of the failure layer (pictures)
 - · Failure criterias show same correlations (correlation matrix)
- 3. Correct local change by changing the output parametrization
- 4. The possibility, to get a good candidate with about 250 runs can most likely be achieved with these EA setting proposals:
 Start population:↑ Number of parents:→ Tournament size:↑ Mutation rate:↓

Strategy applied to a model

Strategy applied to a model

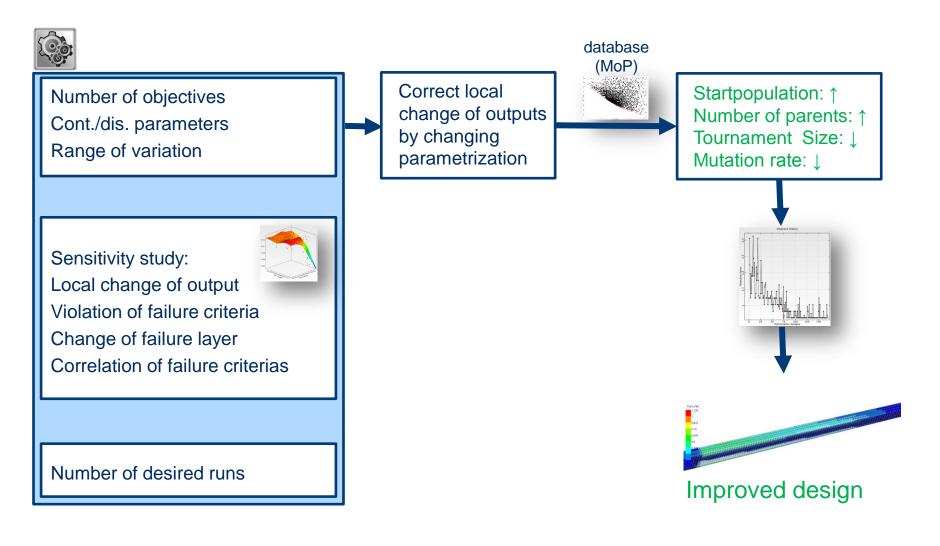


- result*: Mass reduction on average the same (+/-1%)
- effort*: On average 48% less simulation runs necessary

* In comparison to a default optimization setting that is not adjusted to a composite characteristic

Summary

Summary



Thank you for your attention!

Dipl.-Ing. Markus Kellermeyer CADFEM GmbH 08092 / 7005-942 mkellermeyer@cadfem.de