

presented at the 12th Weimar Optimization and Stochastic Days 2015 Source: www.dynardo.de/en/library

Use of Random Fields to Characterize Brake Pad Surface Uncertainties

Dr. Ronaldo F. Nunes, Oliver Stump - Daimler AG Dr. Sebastian Wolff - Dynardo Wien

05. November 2015

Agenda

NVH Customer Requirements: Silent Brakes or Robust System?

Lining Material Surface: Brake Noise Influence

New Workflow Proposal with SoS

Application to a Real Brake System

Summary/Future Development

NVH Customer Requirements: Silent Brakes or Robust System?

...you get ideal curves with constant slopes at low percentage values

Main Task: Silence Brake System to the Whole Life Process

Influence of the production dispersion

Influence of drivers and time

Production dispersion:

Geometry tolerances (Uncertain Parameters, friction coefficient, weight, etc.

Drivers and time:

Pressure, temperature, friction behaviour, fading, etc.

 \rightarrow Focus reliable prognostic of brake squeals relative to the production, time and drive conditions to the whole life process

Alternative 1: Integration of Friction Curve and Surface Change in the Simulation Model

Backing plate

Brake lining

Source: 2012 Heussaff: Influence of the variability of automotive brake lining surfaces on squeal instabilities

 \rightarrow Possibility to integrate the friction curve in the simulation model

Frame

IDS Topography Measurement Station

Topography Measurement

Measurement Station

- Laser Triangulation Sensor with
 0.5 µm repeatability and max. 6 µm
 linearity deviation
- Contactless measurement of distance between specimen and sensor
- No destruction of the surface
- Moving the specimen on two linear stages with a positioning accuracy of 2 μm
- Measuring range of the height up to 10 mm

Detailed Information, see [1]

[1] Ostermeyer, G.-P.; Perzborn, N. and Ren, H., *Contactless Measurement of Brake Pads*. In: EuroBrake 2013 Confe

ctless Wear Conference Proceedings

IDS Topography Measurement Station

Measurement Procedure

- Measuring the topography by combining line profiles
- \square Lateral resolution up to 10 μm
- Usable to determine Contact Surface, Geometric Properties, Roughness, Wear, ...

Mercedes-Benz

4.54

IDS Topography Real Measurement

Measurement Procedure

- Measuring the topography by combining line profiles
- \square Lateral resolution up to 10 μm
- Usable to determine Contact Surface, Geometric Properties, Roughness. Wear. ...

Workflow

Step 1 Import laser scan data into SoS

- □ Laser scan data: 1.2 million measurement points on a 2D grid
- □ 40 real measurements
- □ Import of grids with variations in Z position in terms of a scalar field "Deviation"
- Visualization of the deviation as color plot in SoS
- □ Further: Rotation, Translation and scaling (units!) in SoS

Step 2 Mapping of measured data onto FEM mesh

- □ FEM mesh of break pad: 118558 nodes, 405971 elements,
- □ Abaqus INP file format, target surface defined by node set
- □ Projection along predefined direction (y axis)

Step 3 Mapping of measured data onto FEM mesh

- □ Loss of information due to data mapping!
- Reason: Rough spatial resolution of FEM nodes vs. small distances of laser scan points
- Nearly no differences in statistical mean
- □ But: Averaging effects in standard deviation (i.e. spatially very local effects)

Random field model

Approximate a random design with

mean value +;linear combination of deterministic "scatter shapes" multiplied with random coefficients

Accurately resembles

- □ Statistical moments (mean, standard deviation...)
- □ Spatial correlations (anisotropic, inhomogenious...)

Accuracy:

- □ ~30 random numbers to approximate statistics of measurements with 99% accuracy
- Only 10 random numbers for 90% accuracy

Random field model: Accuracy

Left: Standard deviation in FEM model

Right: Accuracy in %

Random field model: Scatter Shapes

Left: Shape #1 (31.8% Variation)

Right: Shape #2 (19.1% Variation)

Random field model: Scatter Shapes

Left: Shape #3 (7.4% Variation)

Right: Shape #4 (5.4% Variation) – already with many local effects

Random field model

Video shows some possible realizations of the random field

Simulation of new random designs

- □ Use optiSLang to generate 100 new random designs
- □ SoS will be started in Batch mode by optiSLang
- Depending on desired accuracy: Use 5, 10 or 30 random parameters to generate geometric imperfections

Surface changes influence nonlinear contact finding

- U Well-known behavior:
- \rightarrow Instability is strongly influenced by the pad / disc contact
- Presented workflow enables simulation of the measured and mapped brake pad and the generation of new, correlated surfaces
- Mapping is dependent on the refinement of the mesh

Contact opening (pad/disc) example of the simulated brake pad

Challenges with Random Generated Surfaces

- □ Mesh quality must be observed
- □ Especially with edge extrapolation, mesh elements can easily be distorted
- □ Workflow implementation for the refined meshes is still work-in-progress

Example Robustness Analysis Result

- □ Standard Robustness analysis consists of 100 random designs
- New Analysis adds random surfaces to the same random designs

- \rightarrow Higher instabilities occur with a slight change in frequency
- \rightarrow The frequency at ~1 kHz decreases (\rightarrow frequency not observed at bench tests)
- \rightarrow Mode shapes and contact conditions have to be evaluated carefully

Summary/Future Development

- □ Automatic positioning of measurements along the reference grid
- Improvements to random field model being used:
 - Non-Gaussian random fields to capture measured statistics more accurately (Non-Gaussian random field amplitudes and Non-Gaussian field realizations)
 - Enforcement of lower and upper value bounds of field realizations (mostly due do numerical requirements)