

Competence Center FEM

Simulation ist mehr als Software®

Evaluation of the scatter of continuous fiber-reinforced plastics with Statistics on Structures (SoS)

Markus Kellermeyer, CADFEM GmbH Martin Perterer, KTM Technologies Sebastian Wolff, Dynardo Sandro Wartzack, Universität Erlangen-Nürnberg

© CADFEM 2015

In cooperation with

1

Agenda

- Introduction
- Calibration of the draping simulation
 - Experimental results
 - Simulation
 - Calibration
- Calibration of the mechanical values
 - Experimental results
 - Simulation
 - Calibration
- Robustness Evaluation

KTM Technologies

Introduction

- The first task is to calibrate the simulation of a contiuous fiber-reinforced demonstrator with experimental data
- Subsequently robustness evaluations can be carried out

KTM Technologies

• Focus: Scatter due to draping

University College London (http://www.cs.ucl.ac.uk/research/vr/Projects/3DCentre/staticres.htm)

Calibration of the draping simulation

© CADFEM 2015

Calibration of the draping simulation - experiments

• Insight in the production:

draw grid

startpoint/-direction

finished cross

perpendicular draping

finished draping

cutting of the edges

Calibration of the draping simulation - experiments

• Capture of the fiber orientation

Calibration of the draping simulation - experiments

• Next manufacturing steps:

Packaging in bag

Fleece

Vacuum

Curing in oven

Calibration of the draping simulation - experiments

 Import of the fiber-directions from the experiments by using Look-Up Tables in ANSYS Composite Prepost

Name:	LookUpTable3D.1				
ID:	LookUpTable3D.1				
Values	Interpolation				
i	Location.x	Location.y	Location.z	Column.1	
0	0.000000	0.000000	0.000000	0.00000	1,95
1	-0.156400	0.069700	-0.029400	-24.000000	Ξ
2	-0.140400	0.087200	-0.025100	-47.000000	
3	-0.112600	0.096800	-0.025100	-10.000000	
4	-0.087200	0.099500	-0.029400	3.000000	
5	-0.051700	0.096100	-0.025000	5.000000	
6	-0.021400	0.094700	-0.025000	-1.000000	
7	0.008800	0.094300	-0.024900	-3.000000	
8	0.044000	0.097500	-0.029400	-9.00000	
9	0.074300	0.098400	-0.029400	-15.000000	
10	0.099100	0.096400	-0.025600	5.000000	
11	0.124200	0.092600	-0.029400	5.000000	
12	0.139300	0.079600	-0.029400	30.00000	
13	0.146500	0.050400	-0.029400	-10.000000	
14	0.149800	0.020200	-0.029400	-7.000000	
15	0.150500	-0.010000	-0.029400	-17.000000	
16	0.147400	-0.040100	-0.029400	-19.000000	
17	0.143400	-0.070200	-0.029400	-45.000000	
18	0.124300	-0.092500	-0.029400	-73.000000	
19	0.104700	-0.097400	-0.029400	-27.000000	-
			Apply	Cancel	_

Fiber orientation without draping Fiber orientation with draping (experiment)

Calibration of the draping simulation - simluation

- Draping simulation: Change of the fiber orientation due to the ACP draping algorithm
- Defined by startpoint/-direction and numerical parameters

Calibration of the draping simulation - calibration

- Calibration of the resulting fields of the fiber-directions with SoS
- Input parameters:
 - Orientation of the layer
 - Startpoint of the draping (x,y)
 - Draping direction
 - Numerical parameters of the draping algorithm
- Output:
 - Angle deviations as a field

Creation of samples with optiSLang

Building the F-MOP with SoS and optiSLang

Calibration of the draping simulation - calibration

- Calibration of the fiber orientation with SoS:
 - Decomposition of the angle difference field
 - With the first 16 shapes 99% of the variation of the angle difference field can be explained

Calibration of the draping simulation - calibration

• Mean values and standard deviations of the angle differences:

- The numerical draping process is very sensitive at the end of the curved structure
- Further finding: with the defined bounds of the input parameters the results of the experiments are within the variation intervall of the simulation (found out with the min.-fields)

Calibration of the draping simulation - calibration

- Result after the calibration (e.g. layer 4) :
 - Without draping algorithm:
 - With draping algorithm :
 - With calibrated draping algorithm (calibrated using the random field):
 - With calibrated draping algorithm (recalculated):

- ø 8.1° deviation
- ø 7.3° deviation
- ø 5.2° deviation

Objective History

ø 5.1% deviation

Calibration of the mechanical values

© CADFEM 2015

Calibration of the mechanical values - experiments

• Load case 1-4

Calibration of the mechanical values - experiments

• Experimental setup to measure the stiffness

Chair of Engineering Design Prof. Dr.-Ing. Sandro Wartzack

• Same experimental conditions for the 4 bending tests

© CADFEM 2015

KAA TECHNOLOGIES

17

Calibration of the mechanical values - experiments

- Measurement of the curves of the 4 load cases
- Parametric model setup to adapt the simulation to the boundary conditions and measurement points in the experiments

Calibration of the mechanical values - simulations

• Approximation of the supports with deformable external displacements

Calibration of the mechanical values - calibration

- Transferring the measured fiber orientations
- Load case definition
- Calculation
- Evaluation of the displacement curves
- Comparison with the measured values from the experiment

Calibration of the mechanical values - calibration

- Consideration of 4 load cases at the same time
- Sensitivity Study
- Calibration with about 160 calculations

Interim conclusion

- Mechanical values are calibrated
- Accuracy of the draping algorithm can be estimated at each location (what can I expect from the results)

Robustness Evaluation

© CADFEM 2015

Robustness Evaluation – Definition of the input scatters

- New Model:
- Definition of 6 layers with different orientations
- Definition the scatters occuring in the manufacturing process (24 parameters, scatter estimated from experience, conservative)
- 1 load scenario
- Evaluation of one failure criteria (max. stress)
- à creation of samples with optiSLang (120 designs)
- à Importing the fields in SoS
- à Automatic hot spot detection with quantil plots
- à Export of the hot spots to optiSLang
- à Robustness Evaluation of the hot spots

Robustness Evaluation – Conclusions

 Robustness Evaluation with SoS, detection of the hot spots, evaluation of the sensitivities, conclusions

24

Competence Center FEM

Simulation ist mehr als Software®

Simulation macht vieles möglich

Gemeinsam holen wir das Beste heraus

