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Abstract 

Up to now, the process of adjusting clamping devices in car body manufacturing has been 

driven by expertise; it has been repeated in costly iterations until the necessary quality has 

been achieved. Absent appropriate methods, even the high-performance numerical 

representations of this process have only been able to support this process to a limited extent. 

This paper outlines a method to assist the adjustment activities carried out on machinery 

based on numerically represented model functions, which will subsequently improve the 

usability of FE simulations during the machinery ramp-up.      
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1 Introduction 

The process of car body manufacturing is subdivided into the steps of sheet metal forming, 

assembly, mounting and paint drying. In general, car body production planning relies on a 

wide variety of FE tools that make it possible to predict the response of sheet metal parts and 

assemblies in a numerical manner. Especially in recent years, experts have made advances in 

the process chain in the fields of clamping, joining, seaming and in heat treatment [1] [2] [3] 

[4]. However, it was not possible to guarantee the dimensional accuracy of the stampings in 

every case. The springback response of advanced lightweight design materials, such as 

aluminium and higher strength steels, is complicated to be deal with in process [5], which, in 

turn, results in a number of time-consuming and expensive die adaptations in the ramp-up 

process. One strategy to obtain prototype car bodies in the ramp-up process whose dimensions 

are within the required tolerances consists in trying to compensate for dimensional deviations 

of the individual parts in the subsequent assembly process. In this approach, targeted 

localization and gripping of individual parts makes it possible to affect dimensional accuracy 

in areas that are relevant for quality and thus to maintain the resulting manufacturing 

tolerances by means of the follow-up joining operation. This was demonstrated in projects 
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and studies by Eckert [2], Hu [6], Liao [7] and Matuszyk [8]. However, the ability to achieve 

a high quality representation of the clamping process only indirectly improves the adjustment 

measures, which still have to be executed repeatedly by highly qualified experts and be 

checked for success. For this reason, the goal is to use the potential of the numerical 

prediction later on in order to define optimal adjustment activities in an automated manner, 

without the need for comprehensive expertise and in a limited number of test runs. This 

publication’s content is aimed at investigating the representation of deformations in the 

clamping procedure in a meta-model, as well model optimization following the Functional 

Build approach (FBA) 

2 State of the Art 

2.1 Clamping device design 

The design of clamping devices for car body manufacturing always follows analogous 

principles (see Fig. 1).  

                

Figure 1: clamping device 

 

Design is based on consoles to be mounted to a bottom plate. The consoles give access to 

joining tongs and grippers and allow contour blocks and clamps to be attached. When closed, 

the assembly is fixed between active and passive surfaces. To connect the contour blocks with 

the clamping unit and console, a so-called shim (derived from the verb “shimming“) is 

utilised. The industry standard for the minimal adjustment increment of these shims is 0.1mm. 

  

2.2 Numerical representation of the clamping process 

Eckert [2] shows that it is possible to numerically represent the influence of the clamping 

process’ dimensional accuracy with sufficient precision by modelling the active clamping 

surfaces using the simulation software ESI PAM-STAMP 2G (ESI Group). Based on these 

results, Drossel [1] verified that the clamping process can be represented very well even in 

regions that are highly deformed due to clamping when using the precise geometry of the 

active surfaces. As demonstrated by an industrial application for a cut-out of a passenger car’s 

side panel frame in Landgrebe [9], a numerical forecast of dimensional accuracy for a 

manually defined clamping position has already simplified process planning for car body 
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manufacturing; with the help of this development is was possible to replace costly trials in 

practice.  

 

2.3 Sensitivity and optimization  

Figure 2 provides an overview of how to subdivide numerical parameter optimization into 

three essential subdomains: sensitivity analysis, regression analysis to generate a meta-model 

and parameter optimization. 

Figure 2: Flowchart of numerical parameter optimization 

 

In the first step, sensitivity analysis is employed and the input parameters are deliberately 

varied, thereby creating a point cloud in the parameter space (Fig. 2, left). The goal is to 

determine the impact of the controllable input variables on the defined command variables in 

a minimum number of trials in an optimal manner. In the next step, a meta-model is 

approximated by means of the samples generated (Fig. 2, middle column). Based on the meta-

model, an optimization algorithm is applied to the parameter space and searches for an 

optimal problem solution (Fig. 2, right) [10] [11]. 

 

Following Will [12] random-based sampling strategies based on the Monte Carlo method 

(MCS technique) should first be used to define the data points that are necessary for the 

model function. Since, in particular in the case of small sample sets, the application of the 

Monte Carlo method results in undesirable input correlations among the input parameters, the 

Latin Hypercube Sampling (LHS technique), a refined method [10] [11] enabling better 

distribution of the samples in the test space, could provide a solution. As investigations have 

indicated, the input correlations can be significantly reduced with this method [10] [13]. 

However, the LHS technique according to Siebertz [14] does not guarantee a test space that is 

completely free of correlations when there are only a few data points. For this reason, 

Huntigton [15] introduced the Advanced Latin Hypercube Sampling (ALHS technique). 

Applying this method, the input correlations can be reduced to a minimum after only a few 

data points are removed from the parameter space. Another stochastic paradigm, called the 

Boundary and Best Neighbour Sampling (BBNS technique), is described by Wang [16]. In 

contrast to the other design experiments, the data points are only generated in the region of a 
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potential peak value, so that one can work without factor adjustment and the effort necessary 

for numerical calculations can be diminished.  

 

After sensitivity analysis, the parameters are optimized based on the meta-model generated. 

The optimization algorithm is applied to minimise the objective under predefined secondary 

conditions and to determine the optimal design [12]. Based on an earlier preselection, the 

existing paper is aimed at elucidating the following optimization algorithms:  

 Gradient based algorithms 

 Evolutionary algorithms 

 Adaptive Response Surface Methodology 

 

2.3.1 Gradient based optimization 

The paradigm for parameter optimization by means of gradient information is to achieve 

optimal design from a given poor design through the quickest possible deduction. Will [12] 

shows that the numerical gradient techniques are characterised by high requirements in terms 

of the meta-model quality. According to Will [12], the most critical issue is that the gradients 

are unusable if a problem is not differentiable or in the case of numerical model inaccuracies 

or local extremes. Nevertheless, the category of gradient optimization techniques is the best of 

all the algorithms in terms of convergence. 

2.3.2 Evolutionary algorithm (EA) 

Evolutionary algorithms are stochastic search techniques that follow the nature of biological 

evolution. Their basic idea is to create an artificial group of individuals that approximates the 

optimal design step by step [17]. An advantage of the evolutionary search strategy is that the 

design space is searched in a wide-ranging manner. Thus, potential local extremes are 

bypassed due to the high quantity of individuals created. Another advantage is that the 

evolutionary algorithms are particularly useful to solve problems in which a gradient analysis 

is impossible, such as in the case of discontinuous input variables. In comparison to gradient-

based algorithms, however, the stochastic search techniques are characterised by a 

significantly poorer convergence response in the region of an optimum [12]. 

2.3.3 Adaptive Response Surface Methodology (ARSM) 

When following the Adaptive Response Surface Methodology, the design space is locally 

approximated based on selected data points. To do this in each iteration, a sub-parameter 

space is created in the parameter space by means of a data point pattern. In this process, the 

limits of these locally approximated response surfaces should be shifted or zoomed as long as 

the global optimum is approximately found in the last iteration [18]. One consideration when 

using the ARS methodology is that no sensitivity analysis is feasible since the regression 

models change sequentially [10]. 

3 CAE-based numerical optimization of a clamping process 

Since the clamping process of car body parts has hitherto been based on a series of changes 

driven by expertise, it should be supported by methods for the CAE-based optimization. For 
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this reason, an interface between the PAM-STAMP 2G (ESI Group) CAE software and the 

optiSLang (Dynardo) optimization software was engineered. 

The PAM-STAMP 2G simulation program executes the numerical calculation of the 

clamping process based on a simulation model working with set parameters. Use of the 

optiSLang optimization tool makes it possible to analyse the sensitivities of the clamping 

control variables, and, afterwards, to optimize the corresponding parameters for them. Figure 

2 shows a flowchart elucidating the process integration of the numerical clamping process in 

optiSLang. 

Figure 3: Integration of optiSLang into the numerical clamping process 

3.1 Methods to determine clamping process sensitivity  

Since the quantity of solver calls required is essential to the simulation time, it is first 

necessary to select a suitable experiment design for an efficient determination of sensitivities. 

The pros and the cons of the experiment designs introduced in the State of the Art to 

determine the sensitivity of clamping processes are compared in Figure 3 below. 

 

 

Figure 4: Evaluation of stochastic sampling schemes 
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As can be derived from Fig. 3, when using Advanced Latin Hypercube Sampling, relatively 

few samples are required to generate significant meta-models, on the one hand. On the other 

hand, it is possible to cut the undesired input correlations of the input parameter down to 

minimum. Consequently, the ALHS technique is applied to analyse the sensitivities in the 

determination of the sensitivities.  

3.2 Clamping process optimization methods 

When selecting an appropriate optimization algorithm to search for a suitable clamping 

operation in the meta-model to optimize dimensional accuracy, the highest quality of results is 

achieved by means of the gradient optimizing technique NLPQL. Of all the techniques used, 

this algorithm is characterised by the best convergence response in the region of an extreme. 

If the gradient-based paradigm does not offer a result, then, as an alternative, the evolutionary 

algorithm can also be applied to enhance design, since it is very robust in terms of the noisy 

response surfaces and local minima. In contrast, the Adaptive Response Surface technique is 

not suitable to solve the problem that appears, since there are no meta-models available in the 

design space which could be taken as a basis for ongoing optimization runs due to a 

sequential search for potential extremes. As a result, the samples have to be completely 

recalculated for each optimization using the CAE program. This is far more time-consuming 

than the meta-model optimization.  

4 Validation of the proposed methodology   

4.1 Setup for the optimization 

 The car body assembly and clamping device by Eckert [2] is used in order to test and validate 

the proposed methodology of the meta-model based optimization of clamping processes. It 

combines several characteristics of add-on-body parts, such as surfacing, form elements, 

contact surfaces and flanges. The assembly is similar to a bonnet geometry and consists of an 

inner part (grey) and a reinforcement part (green) (see also Fig. 5).  

Figure 5: used clamping device and car body assembly  

4.2 Input parameters 

As shown in Figure 5, the components of the assembly are mutually localised and clamped by 

means of the blue and red coloured clamping points. The four clamping points marked in red 

are fixed in their position, so that the results of the simulation and the CAD file can be 
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compared. The clamping points marked in blue can be variably adjusted in Z orientation and 

are thus used as input parameters for parameter optimization. Since the minimal adjustment 

increment is 0,1mm for the variable clamping points (blue) due to the shims used (ref. Fig. 1), 

six variable clamping points arise for the existing assembly. They can be adjusted in the 

interval from -2.5 mm to 2.5 mm (50 positioning options per clamping). For the existing case 

of application, a combination of approximately 17.6 billion positioning actions exists. 

 

4.3 Objective definition  

Dimensional accuracy is evaluated via 20 discrete measuring points that output the distance 

between the simulation model (real values) and the CAD file (nominal values) (see Fig. 6). 

These measuring points are defined according to the Functional-Build approach in the quality-

relevant connecting areas of the car body structure. To define the optimal controlling measure, 

afterwards, an objective is specified. In the objective, all approximated representation models 

are summarised to one function. It is aimed at adjusting the variable clamping points within 

their defined limits of +-2.5 mm in a way that the range of tolerance marked green is 

maintained with a tolerance of 0.5 mm for all measuring points due to the intentional mutual 

clamping of the components (demonstrated by the distribution of measuring points in Fig. 7). 

For efficient design of experiments, a meta-model with 100 data points was generated by 

means of ALHS. The NLPQL technique is employed as optimization method to search for an 

optimal clamping adjustment.  

In the practical design of clamping devices, one of the main issues is accessibility for joining 

tongs. Here, a loss of rigidity is inevitable. As a result, the active force when the clamps close 

(320Nm/clamping) causes the device to be deformed by 0.5 mm maximum in the case of 

major adjustments (see Fig. 6). Since the expected methods to integrate structural stiffness 

into assembly simulation are still under development, a force of 700N per clamping point was 

defined as the truncation criterion. Based on this information, optimization algorithms based 

on a Pareto front can be applied to truncation criteria for adjustment activities when exceeding 

a user-defined force.  

Figure 6: used clamping device and car body assembly  
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4.4 Optimization results 

Fig. 7 shows the result of the new meta-model paradigm for the optimization of clamping 

procedures. The green zone defines the tolerance of the shown assembly’s dimensional 

accuracy. It can be seen that the assembly in the original clamping state (CAD-0) – before 

optimizing – clearly exceeds this tolerance value at measuring point No. 10 

Figure 7: used clamping device and car body assembly 

 

A result capable of improving the tolerance compliance of the measuring point was found by 

means of an optimization function based on a generated meta-model. The values illustrated in 

red represent the assembly whose dimensional accuracy has been optimized by means of an 

FE algorithm, whereas the actual measured values are shown in magenta. It can be determined 

that the authors succeeded in bringing the assembly into the tolerance range required thanks to 

the optimization measure. This finding also indicates that the difference between the 

measuring values predicted mathematically and the values achieved in reality amounts to a 

mere 0,2mm. Despite the assumptions mentioned, this result implies that the quality of the 

prediction can be accepted as sufficiently accurate to simplify the structural stiffness 

representation.    

5 Summary 

The investigation indicates that clamping processes can be represented at sufficient accuracy 

by means of mathematical functions. It was demonstrated that optimization runs are feasible 

in terms of special criteria or the objectives sought. Thus, the authors created a basis to 

support adjustment activities in car body manufacturing systems by numerical calculation of 

variants and subsequent comparison of variants.  

The adjustment activities provided by the optimization program were constrained by the 

limits of the clamping element’s force and stiffness, defined manually. In the subsequent 

studies, unexplored issues arose in terms of the process sensitivity, which has not yet been 

researched in terms of the deformation of the clamping structure. Another open issue is the 

conscious deformation of the clamping structure as an optimization option. As a step into this 

direction, force and stiffness should be implemented. 
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