### dynardo

### Workshop "Robust Design Optimization with optiSLang"

Thomas Most Dynardo GmbH

12<sup>th</sup> Weimar Optimization and Stochastic Days 05-06<sup>th</sup> November 2015 0

-

.

### Outline

- Robustness Analysis
- Reliability Analysis
- Robust Design Optimization
- Illustrative Example: Robust Design Optimization of a Steel Hook



## **Robustness Analysis**



### How to Define the Robustness of a Design?

- **Intuitively**: The performance of a robust design is largely unaffected by random perturbations
- Variance indicator: The coefficient of variation (CV) of the objective function and/or constraint values is not greater than the CV of the input variables
- Sigma level:

The interval mean+/- sigma level does not reach an undesired performance (e.g. design for six-sigma)

 Probability indicator: The probability of reaching undesired performance is smaller than an acceptable value







### **Definition of Uncertainties**

Translate know-how about uncertainties into proper scatter definition



### **Definition of Input Scatter in optiSLang**

- The random variable properties are defined in the Parameter table.
- Defaults: mean values are the reference values, 10% CoV, NORMAL distribution type
- Probability density functions for all random variables are plotted corresponding to the defined variable properties
- Standard deviation, Coefficient of Variation (CoV), Distribution parameters can be specified
- A nominal design (mean values) can be imported from arbitrary flows or result files

|   | Name | Parameter type | Reference value | PDF      | Туре   | Mean | Std. Dev. | CoV  | Distribution parameter |
|---|------|----------------|-----------------|----------|--------|------|-----------|------|------------------------|
| 1 | m    | Opt.+Stoch.    | 1               | $\wedge$ | NORMAL | 1    | 0.02      | 2 %  | 1; 0.02                |
| 2 | k    | Opt.+Stoch.    | 20              | $\wedge$ | NORMAL | 20   | 1         | 5 %  | 20; 1                  |
| 3 | D    | Stochastic     | 0.02            | $\wedge$ | NORMAL | 0.02 | 0.002     | 10 % | 0.02; 0.002            |
| 4 | Ekin | Stochastic     | 10              | $\wedge$ | NORMAL | 10   | 1         | 10 % | 10; 1                  |

### **Definition of Input Correlations in optiSLang**

- The definition of linear input correlations is possible
- Pairwise selection or definition of complete correlation matrix

|   | Name | Parameter type | Reference value | PDF       | Туре   | Mean                   | Std. Dev. | CoV  | Distribution parameter |
|---|------|----------------|-----------------|-----------|--------|------------------------|-----------|------|------------------------|
| 1 | m    | Opt.+Stoch.    | 1               | $ \land $ | NORMAL | 1                      | 0.02      | 2 %  | 1; 0.02                |
| 2 | k    | Opt.+Stoch.    | 20              | $ \land $ | NORMAL | 20                     | 1         | 5 %  | 20; 1                  |
| 3 | D    | Stochastic     | 0.02            | $ \land $ | NORMAL | 0.02                   | 0.002     | 10 % | 0.02; 0.002            |
| 4 | Ekin | Stochastic     | 10              | $\wedge$  | NORMAL | 10                     | 1         | 10 % | 10; 1                  |
|   |      |                | ·               |           | m<br>k | k r<br>0.67 1<br>1 0.4 | n<br>67   |      |                        |

**Restore Defaults** 

OK

Cancel

• Positive definiteness is checked automatically

Apply

### **Variance based Robustness Analysis**



dynardo

### **Robustness Measures**



### **Exceedance Probability**

• Probability of reaching values above a limit, for Normal distribution:



 $P_{\xi} = P[X \ge \xi]$ 

| ξ         | $\mu$               | $\mu + \sigma$      | $\mu + 2\sigma$     | $\mu + 3\sigma$     | $\mu + 4\sigma$     | $\mu + 5\sigma$     |
|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| $P_{\xi}$ | $5.0 \cdot 10^{-1}$ | $1.6 \cdot 10^{-1}$ | $2.3 \cdot 10^{-2}$ | $1.3 \cdot 10^{-3}$ | $3.2 \cdot 10^{-5}$ | $2.9 \cdot 10^{-7}$ |

P fit: 1

Level:

Sigma- 7.83397

### **Variance based Robustness Analysis**

- Sufficient estimates of **mean** and variance with 50 to 100 samples
- Distribution fit and extrapolation of small event probabilities may be very inaccurate
- More shou prob

| Mo     | re precise <b>r</b> | eliabilit  | y methods   |           | 2 4<br>OUTPUT: | 6<br>deflection | 8     |
|--------|---------------------|------------|-------------|-----------|----------------|-----------------|-------|
| Sh     | Suid be appi        | ied to v   | erity small |           | Statist        | ic data         |       |
| pro    | babilities          |            |             | Min:      | 0.4254         | Max:            | 7.704 |
|        |                     |            |             | Mean:     | 2.67           | Sigma:          | 0.935 |
|        |                     |            |             | CV:       | 0.3505         |                 |       |
|        |                     |            |             | Skewness: | 1.017          | Kurtosis:       | 6.465 |
|        | Fitted PD           | F: Normal  |             |           | Fitted PDF:    | Log-Norma       | al    |
| Mean:  | 2.67                | Sigma:     | 0.9357      | Mean:     | 2.67           | Sigma:          | 0.935 |
|        | Limit               | x = 10     |             |           | Limit          | x = 10          |       |
| P rel: | 1                   | 1 - P rel: | 0           | P rel:    | 1              | 1 - P rel:      | 0     |

P fit: 0.999974

Sigma- 7.83397

Level:

1 - P fit: 2.33147e-015



Sigma: 0.9357

Sigma: 0.9357

1 - P fit: 2.56303e-005



# **Reliability Analysis**



### **Definition of Limit State Functions in optiSLang**

| Parameter           | Start designs Nomi                   | nal desi   | gn    | FORM         | Criteria Other    | Result  | designs    |          |
|---------------------|--------------------------------------|------------|-------|--------------|-------------------|---------|------------|----------|
| Variables           |                                      |            | Paran | neter        |                   |         | Responses  |          |
| Name                | Expression V                         | alue       | N     | ame          | Value             |         | Name       | Value    |
| new                 |                                      |            | D     |              | 0.02              |         | x_max      | 0.623417 |
|                     |                                      |            | Ekin  |              | 10                |         | omega_da   | 4.47124  |
|                     |                                      |            | k     |              | 20                |         |            |          |
|                     |                                      |            | m     |              | 1                 |         |            |          |
| •                   | III                                  | •          |       |              |                   |         |            |          |
| Limit states        |                                      |            |       |              |                   |         |            |          |
|                     |                                      |            |       |              |                   |         |            |          |
| Name                | Left side expression                 | Crite      | erion | Right        | t side expression |         | ١          | /alue    |
| Name<br>Limit_state | Left side expression<br>omega_damped | Crite<br>≤ | erion | Right<br>8.5 | t side expression | 4.47124 | \<br>≤ 8.5 | /alue    |

- The "positive", i.e. non-failed case is expressed
- Several criteria are automatically interpreted as series system (failure is assumed, if at least one LSF is violated)

### **Monte Carlo Simulation**



| Sigma<br>level | Number of required samples ( $\sigma / P_F = 20$ %) |
|----------------|-----------------------------------------------------|
| $\pm 2\sigma$  | 1.100                                               |
| $\pm 3\sigma$  | 18.500                                              |
| ±4.5 <i>o</i>  | 7.300.000                                           |

$$\hat{P}_F = \frac{1}{N} \sum_{i=1}^N I\left(g(\mathbf{x}_i)\right),\,$$

- Robust for arbitrary limit state functions
- Independent of number of random variables
- Huge effort for small failure probabilities
- Should be applied only for benchmarking

### **Advanced Methods for Reliability Analysis**

#### **Directional Sampling**



Adaptive Response Surface Method



#### Adaptive Importance Sampling



#### **First Order Reliability Method**



### Performance



• Approximation methods are much more efficient

# **Robustness-Reliability Wizard**



### **Robustness/Reliability Wizzard**

|         |                                   | Robustness / Reliability method                  |
|---------|-----------------------------------|--------------------------------------------------|
| Not set | •                                 | Varianced based                                  |
| Not set | •                                 | Robustness sampling                              |
| Not set | •                                 |                                                  |
| 2ơ 3ơ   | 4,5ơ 60                           | Probability based                                |
| 0       |                                   | O Adaptive Response Surface Method (ARSM-DS)     |
| ngs     |                                   | O Adaptive Sampling (AS)                         |
|         |                                   | O Directional Sampling (DS)                      |
|         |                                   | O First Order Reliability Method (FORM)          |
|         |                                   | O Importance Sampling using Design Point (ISPUD) |
|         |                                   | O Monte Carlo Simulation (MCS)                   |
|         |                                   |                                                  |
|         | Not set<br>Not set<br>20 30<br>gs | Not set<br>Not set<br>2σ 3σ 4,5σ 6σ gs           |

- If **no limit state** is defined or
- If the uncertainty knowledge is **not qualified**
- Robustness sampling is recommended
- However, an extrapolation for more than 3 sigma is difficult

### **Robustness/Reliability Wizzard**

|                         |               |  | Robustness / Reliability method                                |
|-------------------------|---------------|--|----------------------------------------------------------------|
| Uncertainty knowledge:  | Qualified     |  | Varianced based                                                |
| Failed designs:         | Seldom        |  | Robustness sampling                                            |
| Solver noise:           | Some          |  |                                                                |
| Desired sigma level:    | 20 30 4,50 60 |  | Probability based                                              |
| 5                       |               |  | <ul> <li>Adaptive Response Surface Method (ARSM-DS)</li> </ul> |
| Show additional setting | ngs           |  | O O Adaptive Sampling (AS)                                     |
|                         |               |  | O Directional Sampling (DS)                                    |
|                         |               |  | O First Order Reliability Method (FORM)                        |
|                         |               |  | O Importance Sampling using Design Point (ISPUD)               |
|                         |               |  | Monte Carlo Simulation (MCS)                                   |
|                         |               |  |                                                                |

- Seldom failed designs and some solver noise can be handled by all reliability methods
- For up to 15 variables, the ARSM-DS is the best compromise between accuracy and efficiency

### **Robustness/Reliability Wizzard**

|                         |            |      | Robustness / Reliability method                |  |  |  |  |
|-------------------------|------------|------|------------------------------------------------|--|--|--|--|
| Uncertainty knowledge:  | Qualified  | •    | Varianced based                                |  |  |  |  |
| Failed designs:         | Frequently | •    | Robustness sampling                            |  |  |  |  |
| Solver noise:           | Strong     | •    |                                                |  |  |  |  |
| Desired sigma level:    | 2σ 3σ 4,5  | a 60 | Probability based                              |  |  |  |  |
| 5                       |            |      | Adaptive Response Surface Method (ARSM-DS)     |  |  |  |  |
| Show additional setting | ngs        |      | Adaptive Sampling (AS)                         |  |  |  |  |
|                         |            |      | Directional Sampling (DS)                      |  |  |  |  |
|                         |            |      | First Order Reliability Method (FORM)          |  |  |  |  |
|                         |            |      | Importance Sampling using Design Point (ISPUD) |  |  |  |  |
|                         |            |      | Monte Carlo Simulation (MCS)                   |  |  |  |  |
|                         |            |      |                                                |  |  |  |  |
|                         |            |      |                                                |  |  |  |  |

- In case of **frequently failed designs** and **strong solver noise** ARSM-DS, FORM and directional sampling may be not robust enough
- Adaptive sampling is the best compromise between accuracy and efficiency up to 15 variables

# **Robust Design Optimization**



### **Robust Design Optimization**

- Robust Design Optimization (RDO) optimizes the design performance while taking into account scatter of design (optimization) variables <u>and</u> other tolerances or uncertainties
- As a consequence of input scatter the location of the optima as well as the contour lines of constraints may vary



• To proof Robust Designs, safety distances are quantified with variance or probability measures using stochastic analysis

### Methods for Robust Design Optimization

#### Variance-based RDO

 Safety margins of all critical responses are larger than a specified sigma level (e.g. Design for Six Sigma)

$$y_{limit} - y_{mean} \le a \cdot \sigma_y$$

### **Reliability-based RDO**

• Failure probability with respect to given limit states is smaller as required value

 $p_F \le p_F^{target}$ 

### Taguchi-based RDO

- Taguchi loss functions
- Modified objective function





### **Coupled Robust Design Optimization**

- Fully coupled optimization and robustness/reliability analysis
- For each design during the optimization procedure (nominal design), the robustness/reliability analysis is performed
- Applicable to variance-, reliability- and Taguchi-based RDO
- Our efficient implementation uses small sample variance-based robustness measures during the optimization and a final (more accurate) reliability proof
- > But still the procedure is often not applicable to complex CAE models



### **RDO on Global Response Surface**

- Approximation of model responses in mixed optimization/stochastic space
- Simultaneous RDO is performed on a global response surface
- Applicable to variance-, reliabilityand Taguchi-based RDO
- Approximation quality significantly influences RDO results
- Final robustness/reliability proof is required
- Pure stochastic variables have small influence compared to design variables
- Important local effects in the stochastic space may be not represented





### **Iterative Robust Design Optimization**



- Decoupled optimization and robustness/reliability analysis
- For each optimization run the safety margins are adjusted for the critical model responses
- Applicable to variance- and reliability-based RDO
  - In our implementation variancebased robustness analysis is used inside the iteration and a final reliability proof is performed for the final design

**Optimal and** 

robust

design

### **Coupled RDO in optiSLang**

- Nested loop enables the fully coupled RDO
- Optimizer has to handle statistical errors of inner robustness analysis
- Sigma level as constraint



|     | I                                                                      | D                                            | Туре                   | :                              | Value                | Ex                     | pression               |
|-----|------------------------------------------------------------------------|----------------------------------------------|------------------------|--------------------------------|----------------------|------------------------|------------------------|
| 1   | mean_om                                                                | nega                                         | UNINITIA               | LIZED                          |                      | mean(omeg              | a_damped)              |
| 2   | std_omeg                                                               | ja                                           | UNINITIA               | LIZED                          |                      | stddev(ome             | ga_damped)             |
| 3   | mean_xmax<br>std_xmax                                                  |                                              | nean_xmax UNINITIALIZE |                                |                      | mean(x_max             | )                      |
| 4   |                                                                        |                                              |                        |                                |                      | stddev(x_max)          |                        |
| 5   | sigma_lev                                                              | el_omega                                     | UNINITIAI              | LIZED                          |                      | (8.5-mean_o            | mega)/std_omega        |
|     |                                                                        |                                              |                        |                                |                      |                        |                        |
|     |                                                                        |                                              |                        |                                |                      |                        |                        |
| Ob  | ojectives                                                              |                                              |                        |                                |                      |                        |                        |
| Ob  | ojectives<br>Name                                                      | Criterio                                     | n Expre                | ssion                          |                      | Valu                   | Je                     |
| Ob  | ojectives<br>Name<br>bjective                                          | Criterio                                     | n Expres<br>mean_xm    | ssion<br>nax                   | 0                    | Valu                   | Je                     |
| Ob  | ojectives<br>Name<br>bjective<br>ew                                    | Criterio                                     | n Expres<br>mean_xm    | ssion<br>nax                   | 0                    | Valu                   | Je                     |
| Oto | ojectives<br>Name<br>bjective<br>ew                                    | Criterio                                     | n Expres<br>mean_xm    | ssion<br>nax                   | 0                    | Valı                   | Je                     |
|     | ojectives<br>Name<br>bjective<br>ew<br>onstraints<br>Name              | Criterio<br>MIN<br>Left side o               | n Expression           | ssion<br>nax<br>Criterion      | 0<br>Right si        | Valu<br>ide expression | Je<br>Value            |
|     | ojectives<br>Name<br>bjective<br>ew<br>onstraints<br>Name<br>onstraint | Criterio<br>MIN<br>Left side o<br>sigma_levo | n Expres<br>mean_xm    | ssion<br>nax<br>Criterion<br>≥ | 0<br>Right si<br>4.5 | Valu<br>ide expression | ue<br>Value<br>0 ≥ 4.5 |

dynardo

# **Iterative Robust Design Optimization of a Steel Hook**



### **Summary**

- Highly optimized structures tend to loose robustness
- Variance-based robustness analysis can estimate small sigma levels
- Reliability analysis is necessary to proof small failure probabilities
- Fully coupled optimization and reliability analysis is often not applicable to real world problems
- Iterative optimization/variance-based analysis with final reliability proof is applicable to industrial tasks

### **Further Information**

- For hook RDO example contact <u>support@dynardo.com</u>
- One day special seminar "Robust Design & Reliability" Weimar, 3<sup>rd</sup> December 2015
- RDO booklet in Your conference material
- Discuss with us at the WOST conference!



# **Appendix**



#### **Robustness in terms** of constraints



• Safety margin (sigma level) of one or more responses *y*:

$$y_{limit} - y_{mean} \le a \cdot \sigma_y$$

• Reliability (failure probability) with respect to given limit state:

$$p_F \le p_F^{target}$$

# Robustness in terms of the objective



- Performance (objective) of robust optimum is less sensitive to input uncertainties
- Minimization of statistical evaluation of objective function f (e.g. minimize mean and/or standard deviation):

$$\bar{f} \to min \text{ or } \bar{f} + \sigma_f \to min$$

### **Simulation of Input Correlations**

#### **The Nataf Model**

• Samples are generated according to a multi-dimensional standard normal distribution

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^k |\mathbf{C}_{\mathbf{X}\mathbf{X}}|}} \exp\left[-\frac{1}{2}(\mathbf{x} - \bar{\mathbf{X}})^T \mathbf{C}_{\mathbf{X}\mathbf{X}}^{-1}(\mathbf{x} - \bar{\mathbf{X}})\right]$$

- For each random variable the original marginal distribution is obtained by using the inverse distribution function
- Required linear correlation coefficients in standard normal space are iteratively obtained from correlations in original space





### First Order Second Moment Concept (FOSM)



- Linearization of limit state function at mean value vector  $g(\mathbf{x}) \approx g(\mathbf{x}_0) + \nabla g(\mathbf{x})^T (\mathbf{x} \mathbf{x}_0), \quad \mathbf{x}_0 = \bar{\mathbf{X}}$
- Approximation of safety margin with normal distribution yields  $\bar{Z} = g(\bar{\mathbf{X}}), \quad \sigma_Z^2 = \nabla g(\mathbf{x})^T \mathbf{C}_{\mathbf{X}\mathbf{X}} \nabla g(\mathbf{x}), \quad P_F = \Phi(-\frac{\bar{Z}}{\sigma_z})$
- Equivalent to sigma level approach
- Not available in optiSLang!

### First Order Reliability Method (FORM)



- Search for failure point with maximum probability (MPP)
- Limit state function is linearized around design point
- Default algorithm is gradient-based minimization of distance to mean (in standard normal space)
- Requires continuously differentiable limit state function
- Multiple design points (local minima) are not supported
- Independent search for each limit state may be more robust

dynardo

### **Importance Sampling**



$$\hat{P}_F = \frac{1}{N} \sum_{i=1}^{N} \frac{f_{\mathbf{X}}(\mathbf{x}_i)}{h_{\mathbf{Y}}(\mathbf{x}_i)} I\left(g(\mathbf{x}_i)\right)$$

- Sampling around design point to capture nonlinear LSF
- Indicator function is weighted by relation between original and modified sampling density
- Different strategies exist to estimate an "optimal" sampling density
- Applicable for noisy limit state functions with significant global trends
- Applicable for smooth and even discontinuous limit state functions

- Based on FORM
- Sampling density is centered at the design point
- Requires continuously differentiable limit state function
- Multiple design points (local minima) are not supported
- May be able to mitigate error due to linearization in FORM (oscillating limit state surface)
- Moderate number of random variables


## **Adaptive Importance Sampling**



- Importance sampling approach
- Search for dominant failure region by 2-3 sampling iterations
- No design point required
- Applicable for smooth and even discontinuous limit state functions
- Limited for small number of random variables

### **Directional Sampling**



- Radial search for multiple failure regions
- Applicable for smooth and even discontinuous limit state functions
- Limited to small number of random variables

# **Adaptive Response Surface Method**

- The limit state function is approximated by an Adaptive Response Surface Method using a Moving Least Squares model
- Directional Sampling is performed on the Response Surface
- Additional supports are added near the limit state surface in regions of high probability density
- Applicable to a wide range of limit state functions
- Efficient for a moderately high number of random variables







$$f(y) = \frac{k}{N} \sum y_i^2 = k(\bar{y}^2 + \sigma_y^2)$$

- Maximum is optimal (requires positive objective)

$$f(y) = \frac{\kappa}{N} \sum (y_i - y_{target})^2$$

k -

**Taguchi-based RDO** 

Target value is optimal



# dynardo

0

.

# Robust Design Optimization of a Steel Hook using ANSYS Mechanical and optiSLang

# **The Robust Design Optimization Task**

### **Deterministic Optimization**

- Minimize the **mass**
- The **maximum stress** should not exceed 300 MPa
- **10 geometry parameters** are varied for the design variation

#### **Robustness requirement**

- Proof for the optimal design that the failure stress limit is not exceeded with a 4.5 sigma safety margin
- **15 scattering parameters** are considered (geometry and material properties and the load components)



### **The Geometry Parameters**



| А | Outer_Diameter     | 28-35 mm  |
|---|--------------------|-----------|
| В | Connection_Length  | 20-50 mm  |
| С | Opening_Angle      | 10-30 °   |
| D | Upper_Blend_Radius | 18-22 mm  |
| Е | Lower_Blend_Radius | 18-22 mm  |
| F | Connection_Angle   | 120-150 ° |
| G | Lower_Radius       | 45-55 mm  |
| Н | Fillet_Radius      | 2-4 mm    |
| Ι | Thickness          | 15-25 mm  |
|   | Depth              | 15-25 mm  |
|   |                    |           |

3

### **Boundary Conditions**

- Load F=6000 N
- Cylindrical support, tangential direction is free
- Small elements in region with maximum stresses



### **Responses and Criteria**

- Total **mass** of the hook should be minimized
- Maximum equivalent stress value should not exceed 300 MPa within a 4.5 sigma safety margin
- Slipping height of the deformed hook should be larger than 5 mm within a 4.5 sigma safety margin
- Opening width (undeformed) of the lower half circle should be minimum 50 mm in the nominal design



Initial nominal values

- Mass 1100 g
- Maximum stress
- Slipping height 28 mm
- Opening width 64 mm

270 MPa

### **Solver: ANSYS Mechanical**

- Open the ready to use Workbench project hook\_rdo.wbpz
- In ANSYS Workbench ANSYS Mechanical is used as solver

| \Lambda hook - Workbench                                                                        |                   |                          |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|-------------------|--------------------------|--|--|--|--|--|--|
| File View Tools Units optiSLang Extensions Help                                                 |                   |                          |  |  |  |  |  |  |
| 🞦 📴 🔜 🔣 📑 Project                                                                               |                   |                          |  |  |  |  |  |  |
| 👔 Import 🗟 Reconnect 😰 Refresh Project 🍠 Update Project 🗚 Update All Design Points 🛛 📿 optiPlug |                   |                          |  |  |  |  |  |  |
| Toolbox 👻 🕂 X                                                                                   | Project Schematic |                          |  |  |  |  |  |  |
|                                                                                                 | Analysis Systems  |                          |  |  |  |  |  |  |
| Component Systems                                                                               | Δ                 | ▼ B                      |  |  |  |  |  |  |
| Custom Systems                                                                                  | 1 🥪 Geometry      | 1 w Static Structural    |  |  |  |  |  |  |
| Design Exploration     Systems                                                                  | 2 🕼 Geometry 🗸    | 2 🛷 Engineering Data 🗸 🖌 |  |  |  |  |  |  |
| OptiSLang                                                                                       | → 3 🛱 Parameters  | 3 🕦 Geometry 🗸 🖌         |  |  |  |  |  |  |
| S ETK                                                                                           | Geometry          | 4 🎯 Model 🗸 🖌            |  |  |  |  |  |  |
| U Optimization                                                                                  |                   | 5 🍓 Setup 🗸 🖌            |  |  |  |  |  |  |
| Robustness Sensitivity                                                                          |                   | 6 🕼 Solution 🗸 🖌         |  |  |  |  |  |  |
| Sensitivity                                                                                     | _                 | 7 🥪 Results 🗸 🖌          |  |  |  |  |  |  |
|                                                                                                 |                   | 8 Parameters             |  |  |  |  |  |  |
|                                                                                                 |                   | Static Structural        |  |  |  |  |  |  |
|                                                                                                 |                   |                          |  |  |  |  |  |  |
|                                                                                                 |                   |                          |  |  |  |  |  |  |
|                                                                                                 | Parameter Set     |                          |  |  |  |  |  |  |
|                                                                                                 | -                 |                          |  |  |  |  |  |  |

dynardo

7

# **Robustness Evaluation** of the Initial Design



Robust Design Optimization of a Steel Hook using ANSYS Mechanical & optiSLang

### **Robustness Analysis**

• Create a new robustness system



8

### **Robustness Analysis**

- A variance-based robustness evaluation is performed
- Limit state functions are not necessary
- Keep wizard settings and continue with robustness sampling

| Uncertainty knowledge: Not set              |    |    |                   | Robustness / Reliability method     Varianced based     O O Robustness sampling |                                            |  |
|---------------------------------------------|----|----|-------------------|---------------------------------------------------------------------------------|--------------------------------------------|--|
| ralied designs:                             |    |    |                   |                                                                                 |                                            |  |
| Solver noise: Not set                       |    | •  | Probability based |                                                                                 |                                            |  |
| Desired sigma level:                        | 2ơ | 3ơ | 4,5ơ              | 6ơ                                                                              | Adaptive Response Surface Method (ARSM-DS) |  |
|                                             |    |    |                   |                                                                                 | Adaptive Sampling (AS)                     |  |
| <ul> <li>Hide additional setting</li> </ul> |    |    |                   | Directional Sampling (DS)                                                       |                                            |  |
| Number of deterministic parameters: 10      |    |    |                   | ×                                                                               | First Order Reliability Method (FORM)      |  |
| Number of stochastic par                    | 16 |    | ×                 | Importance Sampling using Design Point (ISPUD)                                  |                                            |  |
| Number of objectives:                       | 0  |    | A.<br>V           |                                                                                 |                                            |  |
| Number of constraints:                      |    | 0  |                   | ×                                                                               | Monte Carlo Simulation (MCS)               |  |
| Number of limit states:                     | 0  |    |                   |                                                                                 |                                            |  |

### **Robustness Evaluation**

• Evaluation of 100 Latin Hypercube samples

#### • Statistical Evaluation of the Mass

- Range of 990g 1250g within 90 % quantile
- Scatter of the mass is not relevant for the safety assessment



# dynardo

# **Robustness Evaluation**

### Statistical Evaluation of the Maximum Stress:

- Failure stress of 300MPa is exceeded with a probability of about 23%
- Far away from 4.5 sigma
- Further reliability analysis to verify this result is not necessary



### **Robustness Evaluation**

- Force in main direction and thickness are the most important input parameters for the maximum stress
- Attention: Scatter of force uncertainty is difficult to be reduced
- Therefore, the design has to be changed to reduce the mean value of maximum stress and to fulfill the robustness requirement



**Robust Design Optimization of a Steel Hook using ANSYS Mechanical & optiSLang** 12

## **Robustness Evaluation**

# Statistical Evaluation of the Slipping height:

- High safety margin between minimum value of 5 mm and the observed variation
- Robustness criteria for slipping is fulfilled



# **Robustness Evaluation – Summary Initial Design**

- Varianced-based robustness evaluation has observed:
  - Probability of exceeding the stress limit is much to large
  - Significant reduction of the input scatter seems not possible
  - Safety margin of slipping height seems sufficient
- **Design improvement** is done in next step:
  - Iterative Robust Design Optimization
  - We modify the design be reducing the mean of the maximum stress using deterministic optimization
  - We check the robustness again
- Deterministic constraints for first optimization step
  - Mean stress + 4.5 \* mean stress \*  $CV \le 300$
  - > Mean stress  $\leq$  180
  - Mean slipping height  $\leq 10$

dynardo

# First Robust Design Optimization Step



Robust Design Optimization of a Steel Hook using ANSYS Mechanical & optiSLang 15

# **Sensitivity Analysis**

- A sensitivity analysis is performed to quantify the importance of the optimization parameters
- The parameter properties are imported from the robustness system





### **Definition of the Objective and Constraints**

- Minimize the mass
- Maximum stress < 180 Mpa
- Slipping height > 10 mm
- Opening width > 50 mm

| Name                                                                   | Criterion               | Expression                                     | Value       |                       |                                               |  |
|------------------------------------------------------------------------|-------------------------|------------------------------------------------|-------------|-----------------------|-----------------------------------------------|--|
| Objective_mass MIN                                                     |                         | Geometry_Mass                                  | 1.09976     |                       |                                               |  |
| new                                                                    |                         |                                                |             |                       |                                               |  |
| Constraints                                                            |                         |                                                |             |                       |                                               |  |
|                                                                        |                         | eft side expression                            | Criterion   | Right side expression | Value                                         |  |
| Name                                                                   |                         | cert side expression                           | Citterion   | Right side expression | value                                         |  |
| Name<br>Constraint_stress                                              | Equiv                   | alent_Stress_Maximum                           | ≤ ≤         | 180                   | 270.434 ≤ 180                                 |  |
| Name<br>Constraint_stress<br>Constraint_slipping                       | Equiv.<br>Slippi        | alent_Stress_Maximum<br>ng_Height              | ≤<br>≥      | 180<br>10             | 270.434 ≤ 180<br>28.5589 ≥ 10                 |  |
| Name<br>Constraint_stress<br>Constraint_slipping<br>Constraint_opening | Equiv<br>Slippi<br>Open | alent_Stress_Maximum<br>ng_Height<br>ing_Width | ≤<br>≥<br>≥ | 180<br>10<br>50       | 270.434 ≤ 180<br>28.5589 ≥ 10<br>64.3124 ≥ 50 |  |

## **Design of Experiments**

- 100 designs are evaluated with the ANSYS workbench model
- **84 designs** violate the stress constraint
- Further **10 designs** violate only the opening width constraint
- All designs fulfill the slipping constraint
- Only small subdomain of the parameter space is **feasible**



# **Sensitivity Analysis using MOP**

- All responses can be explained very well with the MOP
- Connection length and outer diameter are only important for the mass
- Lower and upper blend radii as well as fillet radius are not important for any response and can be neglected in the optimization



# **Sensitivity Analysis using MOP**

- Connection length and outer diameter are only important for the mass
- Their minimum values lead to minimum mass
- They can be set to minimum values without interference to stress
- Following optimization has to consider only 5 parameters
- Due to the excellent CoP values an optimization on the MOP is applied to get a good start solution



### **Optimization using the MOP**

- The NLPQL optimizer converges within a few iterations
- The responses and objective/constraints of the best design are verified
- Due to the global approximation the constraints of the best design are slightly violated in the verification
- The best design is used as start design for a local optimization with direct solver call



Robust Design Optimization of a Steel Hook using ANSYS Mechanical & optiSLang 21



 Optimizer obtains an optimal design within 10 iterations fulfilling all constraint conditions



Robust Design Optimization of a Steel Hook using ANSYS Mechanical & optiSLang 22

# **Initial vs. Optimal Design**

#### **Initial Design**



### **Optimal Design**



Mass854 gMaximum stress180 MPaSlipping height16 mmOpening width50 mm

- Robustness evaluation is performed again for new optimal design:
- Import parameters from initial robustness analysis and use best design of optimization as nominal design
- Run the default robustness sampling with 100 samples



### **Statistical Evaluation of the Maximum Stress:**

- Safety margin to failure limit of 300MPa is estimated with a sigma level of 4.75, which corresponds to a failure probability of 10<sup>-6</sup>, if the response would be perfectly normally distributed
- Attention: Since the real distribution is not known and 100 LHS samples are far too less to proof such a small probability, a reliability analysis is necessary to proof this safety level!



#### Statistical Evaluation of the Slipping height:

- A safety margin of 8 sigma is estimated
- Robustness criteria for slipping seems to be fulfilled
- > Again a reliability analysis is required to proof the small probability



• Only 5 parameters are important for the slipping height and maximum stress which are considered in the following reliability analysis



# **Reliability Analysis of First Optimization Step**

> The Adaptive Response Surface Method is suggested

| Limit states   |                           |           |                       |               |
|----------------|---------------------------|-----------|-----------------------|---------------|
| Name           | Left side expression      | Criterion | Right side expression | Value         |
| Limit_stress   | Equivalent_Stress_Maximum | ≤         | 300                   | 270.434 ≤ 300 |
| Limit_slipping | Slipping_Height           | 2         | 5                     | 28.5589 ≥ 5   |

| Uncertainty knowledge:   | Qualified |                             |      | T                          | Robustness / Reliability method<br>Varianced based |  |
|--------------------------|-----------|-----------------------------|------|----------------------------|----------------------------------------------------|--|
| Failed designs:          | Not set   |                             |      | •                          | Robustness sampling                                |  |
| Solver noise:            | Not set   |                             |      | •                          | Probability based                                  |  |
| Desired sigma level:     | 2ơ        | 3ơ                          | 4,5ơ | 6ơ                         | Adaptive Response Surface Method (ARSM-DS)         |  |
|                          |           |                             |      | O O Adaptive Sampling (AS) |                                                    |  |
| Show additional settings |           | O Directional Sampling (DS) |      |                            |                                                    |  |
|                          |           |                             |      |                            | O First Order Reliability Method (FORM)            |  |
|                          |           |                             |      |                            | O Importance Sampling using Design Point (ISPUD)   |  |
|                          |           |                             |      |                            | Monte Carlo Simulation (MCS)                       |  |
|                          |           |                             |      |                            |                                                    |  |

# **Reliability Analysis of First Optimization Step**

- Failure region at small thickness and depth and large force component
- Failure probability is much larger as allowed
- Corresponding reliability index is 3.8 instead of 4.5



### **Robustness Evaluation – Summary First Step**

- Varianced-based robustness evaluation has observed:
  - Safety margin of stress limit seems sufficient (4.7 sigma)
  - Safety margin of slipping height seems sufficient (8 sigma)
  - Reliability analysis has estimated a failure probability of 10<sup>-4</sup> which corresponds to a reliability index of 3.8
  - > A further design modification is necessary
- **Deterministic constraints** for second optimization step
  - Initial design has a sigma level of 0.6 at 270 MPa mean stress
  - Optimized design has a reliability index of 3.77 at 180 MPa
  - Linear extrapolation for 4.5 sigma:
  - ≻ Mean stress ≤ 160
  - Mean slipping height  $\leq 10$

dynardo

# Second Robust Design Optimization Step



**Robust Design Optimization of a Steel Hook using ANSYS Mechanical & optiSLang** 31

### **Second Robust Design Optimization Step**

- Optimization is performed again with new constraints
- Start design, which fulfills constraints, is selected from sensitivity designs
- ARSM optimizers is applied as suggested in the decision tree
- Robustness sampling is performed again at new optimal design (parameters from second robustness analysis are imported and mean values are taken from the best design of optimization)
- Reliability analysis is performed again to verify sampling estimates


## **Second Robust Design Optimization Step**

- ARSM optimizer obtains an optimal design within 6 iterations which fulfills the constraint conditions
- Mass is 10% larger as in the first optimization step
- Slipping height and opening width are almost the same



## **Second Robust Design Optimization Step**

#### **Statistical Evaluation of the Maximum Stress:**

- 100 Latin Hypercube samples are computed
- Safety margin to failure limit of 300MPa is estimated with a sigma level of 6.4 assuming a normal distribution
- Significant increase w.r.t. first RDO step
- Again reliability analysis is required to proof this result



# **Second Robust Design Optimization Step**

#### **Statistical Evaluation of the Slipping height**:

- The safety margin is slightly smaller as is the first RDO step
- Robustness criteria for slipping seems to be fulfilled



| Statistic data     |                  |              |  |            |       |
|--------------------|------------------|--------------|--|------------|-------|
|                    | Min:             | Min: 12.78   |  | Max:       | 20.3  |
|                    | Mean:            | 16.56        |  | Sigma:     | 1.463 |
|                    | CV: 0.08837      |              |  |            |       |
| Sk                 | ewness:          | 0.1695       |  | Kurtosis:  | 3.024 |
| Fitted PDF: Normal |                  |              |  |            |       |
|                    | Mean: 16.56      |              |  | Sigma:     | 1.463 |
| Limit x = 5        |                  |              |  |            |       |
| P_rel:             |                  | 0            |  | 1 - P_rel: | 1     |
| P_fit:             |                  | 1.44329e-015 |  | 1 - P_fit: | 1     |
|                    | Sigma-<br>Level: | 7.89865      |  |            |       |

## **Final Reliability Proof**

- Reliability analysis is performed again with default ARSM
- Failure probability is smaller than 10<sup>-6</sup>
- Corresponding reliability index is about 4.8 which fulfills the robustness requirements





dynando

### **Final Reliability Proof**

- ARSM generates new support points only in the region of the stress limit
- Limit of slipping height is much less important
- After the 3rd iteration the stress limit is represented quite accurately



# dynando

### **Overview Robust Design Optimization**



Robust Design Optimization of a Steel Hook using ANSYS Mechanical & optiSLang 38