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Statistics on Structures
Applications of field meta modelling
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Robust design optimization

7 

 
Robust Design Optimization with optiSLang 
Part 1: Graphical User Interface & Process Integration 

2nd 
Multidisciplinary 

Optimization 
Adaptive Response 

Surface, Evolutionary 
Algorithm, Pareto 

Optimization 

 

© Dynardo GmbH 
 

Robust Design Optimization with optiSLang 



3

© DYNARDO • dynamic software & engineering

1) Define the robustness space using scatter range, 
distribution and correlation

2) Sampling: Scan the robustness space by 
producing and evaluating n designs

5) Identify the most important 
scattering variables

Workflow in variance based robustness analysis

3) Identify hot spots4) Check the variation

Software SoS • Applications of field meta modelling • WOST 2016
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Why random fields ?
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• Simulation of production process
• Analysis of random variations of

production parameters

• Robustness goals: max. pstrain and
max. thinning exceed critical thresholds
by max. probability p

• Solution using scalar parameters: 
Analyse statistics of maximum values

• Problem: Varying position of
maximum plastic strain and
maximum thinning

• optiSLang + LS-Dyna, 100 designs

Robustness example
Deep drawing
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• Statistical analysis of
maximum plastic strain vs.   plastic strain at hot spots

• Sensitivity analysis: Meta model of Optimal Prognosis in optiSLang
CoP(Total)=86% CoP(Total)=98%

• Improved accuracy at hot spot instead of maximum value!

Robustness example
Effect of varying location
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• Karhunen-Loeve expansion: Modal analysis of the covariance matrix 
• Spectral representation

• Phi: Eigen vectors of covariance matrix (“mode shapes”, “scatter shapes”)
• z: vector of reduced set of uncorrelated random numbers (“amplitudes”)

Random fields in space
Karhunen-Loeve expansion for discrete fields

H = �z+ µH
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• 1D: signal variations (e.g. time, frequency, load-displacement curves)
• 3D: spatial variations
• Use random fields as INPUTS or RESPONSES
• Random fields:

– Automatically find optimal parametric to describe field variations

– Generate random designs (e.g. random signals – random distribution of 
temperature profiles in time, or uncertain load-displacement curves)

– Predict field responses (meta models for signals and 3D fields)

– Sensitivity analysis of distributed quantities (signals and 3D fields)

– Statistical smoothening

– Data reconstruction

Random fields
Overview on applications
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• Stringer in a car body subject to crash simulation

• Hardware experiment: observation of plastic buckling 
• Deterministic simulation: plastic effects not reproducible
• Stochastic simulation: DoE and robustness evaluation with optiSLang

Analysis of distributed effects
Example: Nonlinear buckling shapes

standard deviation of plastic strain after crash
Source: Bayer, Random fields in Statistics on Structures (SoS), WOST 2009
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• How to analyse failure sources ? 
Buckling shape is distributed!

• Decomposition of plastic strain random 
field into uncorrelated scatter shapes

• Right: 1st three scatter shapes
• Only 3 parameters explain 98% of total 

variation (compared with original 4826 
parameters, one for each element)

• 1st shape (96% of total scatter) 
explains most of the effects observed 
in standard deviation

• This strategy is always interesting 
since typically input parameters affect 
several locations at same time 

Analysis of distributed effects
Example: Nonlinear buckling shapes

Source: Bayer, Random fields in Statistics on Structures (SoS), WOST 2009
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• Solution: 13 of 55 input variables with significant effect on 1st amplitude; 
These are the initial plastic strains due to manufacturing (forming), the 
barrier angle and the yield stress 

CoP for 1st amplitude Scatter plot of plastic strain 
(vert.) over barrier angle (horiz.)

Analysis of distributed effects
Example: Nonlinear buckling shapes

Software SoS • Applications of field meta modelling • WOST 2016

Source: Bayer, Random fields in Statistics on Structures (SoS), WOST 2009
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Parameterization of geometric variations
Statistical shape model of human mandible

With courtesy of UK Aachen (Source: S. Raith, WOST 2015)
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Generation of random
designs
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• Translate know-how about uncertainties into proper scatter definition

Generation of random designs
Definition of uncertainties

Correlation is an important 
characteristic of stochastic variables

Distribution functions
define variable scatter

Spatial Correlation
random fields

Signal Correlation random 
fields (in time, freq., etc.)
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Generation of random designs
Definition of random fields (1D and 3D)

• Depending on available data:

1. No/single measurement: 
assumptions
(synthetic random field model)

2. Few measurements: 
empirical mean+stddev
assumed correlation
(synthetic random field model)

3. Many measurements:
Empirical random field model
Anisotropic, inhomogeneous,
Non-Gaussian
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difference between measured and 
modeled geometry of a knuckle

simulation of imperfect geometries

Software SoS • Applications of field meta modelling • WOST 2016

• Synthetic random fields: Based on a single or only few measurements
• Spatial correlation defined by numerical model
• Example: Analysis of influence of geometric variations of a knuckle onto 

frequency of brake squeal noise 

Generation of random designs
Example: Synthetic random fields

Predict change of Eigen 
frequencies due to uncertain

geometric perturbations
With courtesy of DAIMLER (Sources: 
Nunes e al, WOST 2009; Wolff, RDO-
Journal I/2016)
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was verified by a reference solution of the original numeri-
cal model, obtaining an average error of 5% between field 
meta model and CAE process.

Summary
This article presented some applications of random fields 
and field meta models in time and space. The main proper-
ties and applications of such models are

 Field statistics can be used to identify hot spots (locations 
of large variation, of large failure probability, etc.).

 Random fields automatically find a parameterization for 
parameter-free variations in time or space.

 Field meta models can be used to perform a sensitivity anal-
ysis of distributed data, i.e. if the hot spot is not yet known, 
if the hot spot is varying its location, if the quantity is of dis-
tributed nature, if the scalar MOP has a low CoP or if the user 
wants to increase understanding of the numerical model

 Random fields can be used to generate random designs. 
Empirical random fields are based on the evaluation of 
measurements (or virtual experiments) and can repre-
sent the field statistics very accurate (distribution type, 
statistical moments, anisotropy, inhomogeneity). If no 
measurements are available, one can create a synthetic 
random field model based on assumptions of the mean 
standard deviation and correlation in time or space. If a 
few measurements are available, one can estimate mean 
and standard deviation and assume only the correlation. 

 Field meta models can further approximate the whole 
field response of a CAE/FEM model. This is particularly 
useful in pre-optimization whenever distributed or loca-
tion-varying quantities are considered, e.g. in model cali-
bration.

 Further applications are robustness and tolerance analy-
sis or shape optimization. 
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Fig. 17: A composite structure

Fig. 18: Fiber directions of a composite structure after draping, comparing 
the result of a draping simulation and a measured direction field
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Generation of random designs
Example: Based on measurements

Application example: Analysis of Influence of break pad surfaces onto break 
squeal noise

Analyse virtually created random geometries in Abaqus

With courtesy of DAIMLER (Sources: Nunes, WOST 2015; Wolff, RDO-Journal I/2016)
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Generation of random designs
Example: Based on measurements (cont.)

With courtesy of DAIMLER (Sources: Nunes, WOST 2015; Wolff, RDO-Journal I/2016)
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! Standard Robustness analysis consists of 100 random designs

! New Analysis adds random surfaces to the same random designs 

Example Robustness Analysis Result

Observed squeal 
ranges at the 

bench 

" Higher instabilities occur with a slight change in frequency
" The frequency at ∼1 kHz decreases (" frequency not observed at bench tests)
" Mode shapes and contact conditions have to be evaluated carefully 
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• Use synthetic random field model to generate geometric variations on 
arbitrarily complex geometries

• Example: Shape optimization with ANSYS WB 17 with 6 shapes

Parameterization of geometries
Shape optimization

Applied variation field
(stddev of random field)

Shapes #1 … #6

Change in geometry by shape optimization

Max: 
23 MPa

Max: 
19 MPa
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Sensitivity analysis and
approximation
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• Task:

– Calibrate model parameters of a joining process (after deep drawing) to 
minimize the error between the resulting geometry and the desired CAD0 
geometry

– Identify important joining parameters

– Estimate maximum geometric deviations

Field meta model
Calibrate model parameters to match geometry

With courtesy of DAIMLER (Sources: Konrad, WOST 2015; Wolff, RDO-Journal I/2016)
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• Validate field meta model:

• Validate sensitivities of individual parameters:

Field meta model
Sensitivity analysis of joining parameters

stddev

Accuracy of model
F-CoP(Total)

F-CoP of 
left-bottom clamp

F-CoP of 
center-top clamp

With courtesy of DAIMLER (Sources: Konrad, WOST 2015; Wolff, RDO-Journal I/2016)
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• Given: Measurement of spatial distribution of fibre angles after draping 
process

• Task: Model calibration of numerical ANSYS model to match fibre angles

Field meta model of fibre angles (composites)
Calibrate draping process parameters

With courtesy of CADFEM and KTM Technologies (Sources: Kellermeyer, WOST 2015; Wolff, RDO-Journal I/2016)
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• Average difference in fibre direction between measurement and numerical 
models:

– With pre-defined parameters: 7.3°

– With optimized parameters: 5.2°

Field meta model of fibre angles (composites)
Calibrate draping process parameters
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was verified by a reference solution of the original numeri-
cal model, obtaining an average error of 5% between field 
meta model and CAE process.

Summary
This article presented some applications of random fields 
and field meta models in time and space. The main proper-
ties and applications of such models are

 Field statistics can be used to identify hot spots (locations 
of large variation, of large failure probability, etc.).

 Random fields automatically find a parameterization for 
parameter-free variations in time or space.

 Field meta models can be used to perform a sensitivity anal-
ysis of distributed data, i.e. if the hot spot is not yet known, 
if the hot spot is varying its location, if the quantity is of dis-
tributed nature, if the scalar MOP has a low CoP or if the user 
wants to increase understanding of the numerical model

 Random fields can be used to generate random designs. 
Empirical random fields are based on the evaluation of 
measurements (or virtual experiments) and can repre-
sent the field statistics very accurate (distribution type, 
statistical moments, anisotropy, inhomogeneity). If no 
measurements are available, one can create a synthetic 
random field model based on assumptions of the mean 
standard deviation and correlation in time or space. If a 
few measurements are available, one can estimate mean 
and standard deviation and assume only the correlation. 

 Field meta models can further approximate the whole 
field response of a CAE/FEM model. This is particularly 
useful in pre-optimization whenever distributed or loca-
tion-varying quantities are considered, e.g. in model cali-
bration.

 Further applications are robustness and tolerance analy-
sis or shape optimization. 
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Field meta models for
signals
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• Signals: 

– dynamic processes (time, frequency), 

– load-displacement curves, FLD diagrams, Wöhler curves, 

– dynamic loading conditions (e.g. temperature in time)

• Karhunen-Loeve expansion: Modal analysis of the covariance matrix 
• Spectral representation

• Phi: Eigen vectors of covariance matrix (“mode shapes”, “scatter shapes”)
• z: vector of reduced set of uncorrelated random numbers (“amplitudes”)

Random fields for signal data
One-dimensional variation patterns

H = �z+ µH
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• Generate random signals as solver inputs
• Perform sensitivity analysis and pre-optimization
• Left: Signal responses of Design of Experiments; Right: Scatter shapes (5 

parameters)

Parameterization of a dynamic process
Analysis of a DoE of a time series
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• Example: homogeneous mean (=0) and standard deviation (=1)

• Synthetic random field models:

– Define correlation length parameters

– Define (in)homogeneous distribution of mean and standard deviation

Synthetic random fields
Fourier series like approximation of signals
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observed signal variations. Typically, however, no or only a 
few measurements are existing during the design process. 

In this case, signal variations were modeled by a “synthetic 
random field”. Therein, the correlation is assumed using 
some autocorrelation model between the individual points 
in time. The distribution of mean and standard deviation 
can be either estimated from a few measurements or as-
sumed as well. The results are typically sinus-like functions 
in 1D similar to the Fourier series, as being illustrated in 
Figure 5. Therein, a synthetic random field model is created 
with zero mean and constant unit standard deviation.

Case 3: Sensitivity analysis of a signal
The field meta models can be used to perform an extended 
sensitivity analysis based on signal data. They allow to iden-
tify which input parameter is responsible for the response 
variation for each individual point in time. It is recommend-
ed to perform a sensitivity analysis based on field meta 
models (in favor of the scalar MOP) if

 The location of hot spots is not yet known
 The location of hot spots is varying
 Hot spots do not exist since one is interested in a distributed 

effect (for example the shape of the signal in an interval)
 The accuracy of a scalar MOP is too small, but the reason 

is unknown.

The result of a F-MOP is the visualization of the Field-CoP 
describing the distribution of the CoP along the time axis. 
By that one can identify at which locations of the signal the 
meta model is able to predict the variations well (or not), 
and at which locations of the signal input parameters are of 
large or small influence onto the signal variation.

The following example is presented by Römelsberger et 
al [1]. Therein an optimization on a meta model was at-
tempted in order to optimize the design of a dual band WiFi 

antenna. The response of interest were the minima of the 
“return loss” in frequency domain. A scalar MOP obtained 
an accuracy of CoP=71% only. Using a field meta model for 
the return loss spectrum, however, one can identify the in-
tervals in frequency domain, which are responsible for the 
low accuracy of the meta model. The signal responses of a 
design of experiments are illustrated in Figure 6. The cor-
responding F-CoP values are shown in Figure 7. The upper 
curve is the F-CoP of the whole model defining the model 
accuracy for the respective frequency value. For the right 
minimum the accuracy is sufficiently large, but the meta 
model cannot well predict the variations in the center and 
for the left minimum. The center is, however, not relevant 
for the optimization. The left minimum is, however, the rea-
son why the scalar MOP cannot approximate the minimum 
value well: The position of the minimum is varying and, 
further, it is a true singularity being dominated by round-
off errors in the CAE process. The other curves in Figure 7 
denote the sensitivity of the individual input parameters 
which is varying in the frequency domain. 

The advantage of a Field-MOP is that it captures automati-
cally all support points of a signal. Alternatively, one needs 
to manually define few hot spots for which a MOP is evalu-
ated, but still misses the shape of the signal in the interval 
between the selected locations.

Case 4: Pre-Optimization on a signal meta model
A sensitivity analysis is an important part of the design pro-
cess, typically being implemented before the actual optimiza-

tion takes place. If the meta model is accurate enough, it can 
be used to “pre-optimize” the design without extra CAE solver 
run. The identified optimum of the meta model can later be 
used as a start point of the direct optimization. 

Field meta models are recommended if the shape of the signal 
is of interest. This is the case in many applications of model 
calibration, e.g. the identification of material parameters 
based on measured load-displacement curves. The basic idea 
is that one approximates the whole load-displacement curve 
by a field meta model and then minimizes the error norm be-
tween the approximated signal and the reference curve. 

As an example, assume that the dynamic process of ex-
ample 1 is the result of a numerical oscillator model as 
illustrated in Figure 8. The task is to identify the material 
parameters of a given measured reference signal as shown 
in Figure 9. In terms of scalar parameters one would need to 
identify the locations of the local minima and maxima and 
then minimize the position error with respect to the same 
extrema in the reference signal. The identification of these 
hot spots, however, needs manual programming and, thus, 
is prone to errors. Using a field meta model for the whole 
signal, one only needs to minimize the error norm between 
both signals. The result is shown in Figure 10 being very 
close to the true optimum. 

Correlation analysis in space
The methodology and work flows for modeling of signal 
variations can also be applied to spatial variations in 3D. 
Typical quantities are geometric variations (e.g. random 
imperfections due to manufacturing) like boundary coordi-
nates or shell thickness, state variables (e.g. stresses, dis-
placements) used to evaluate structural performance, dam-
age (e.g. distribution of plastic strains), material properties 
(e.g. surface friction properties, fiber angles) etc. 

Case 1: Parameterization of geometric imperfections based 
on measurements
Nowadays, detailed laser scans of manufactured products 
are often done in order to ensure the dimensional accuracy 
at critical locations. The same information can be reused, 
for example, to create a realistic statistical model of the 
geometric imperfections in order to virtually create random 
geometries, e.g. for a robustness analysis. 

The following example is presented by Nunes et al [2]. There-
in, the robustness of an automotive brake system regarding 
brake squeal noise was analyzed. The squeal noise frequen-
cies predicted by the numerical model did not match the ob-
served frequencies in the hardware experiments. Engineers 
suspected the geometric imperfections of the brake pad sur-
faces. To model these variations, laser scans of brake pad sur-
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Fig 5: Scatter shapes of a synthetic random field model for mean=0 and std-
dev=1 at all points

Fig. 6: Response signals of the “return loss” in frequency domain of a design 
of experiments

Fig 8: SDOF oscillator

Fig 10: Solution of a pre-optimization of a model calibration

Fig 9: Response of a SDOF oscillator model (blue) and reference signal (red)

Fig. 7: F-CoP of the “return loss” in frequency domain

Source: Wolff, RDO-Journal I/2016
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• MOP: Gives only single numbers for pre-defined hot spots or for extremal 
values

• F-MOP: More insight due to location of low or large sensitivities

Sensitivity analysis of a signal
Return loss of an antenna in frequency domain

With courtesy of CADFEM (Sources: Vidal/Römelsberger, WOST 2015; Wolff, RDO-Journal I/2016)
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was verified by a reference solution of the original numeri-
cal model, obtaining an average error of 5% between field 
meta model and CAE process.

Summary
This article presented some applications of random fields 
and field meta models in time and space. The main proper-
ties and applications of such models are

 Field statistics can be used to identify hot spots (locations 
of large variation, of large failure probability, etc.).

 Random fields automatically find a parameterization for 
parameter-free variations in time or space.

 Field meta models can be used to perform a sensitivity anal-
ysis of distributed data, i.e. if the hot spot is not yet known, 
if the hot spot is varying its location, if the quantity is of dis-
tributed nature, if the scalar MOP has a low CoP or if the user 
wants to increase understanding of the numerical model

 Random fields can be used to generate random designs. 
Empirical random fields are based on the evaluation of 
measurements (or virtual experiments) and can repre-
sent the field statistics very accurate (distribution type, 
statistical moments, anisotropy, inhomogeneity). If no 
measurements are available, one can create a synthetic 
random field model based on assumptions of the mean 
standard deviation and correlation in time or space. If a 
few measurements are available, one can estimate mean 
and standard deviation and assume only the correlation. 

 Field meta models can further approximate the whole 
field response of a CAE/FEM model. This is particularly 
useful in pre-optimization whenever distributed or loca-
tion-varying quantities are considered, e.g. in model cali-
bration.

 Further applications are robustness and tolerance analy-
sis or shape optimization. 
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• Without F-MOP: Find MOP for Euklidian norm or minimize error for values at 
pre-selected hot spots

• With F-MOP: Find F–MOP for signal and then minimize Euklidian error norm; 
Consider also shape of signal between discrete support points

Pre-optimization on field meta model
Model calibration of dynamic process

RDO-JOURNAL // ISSUE 1/2016 54

observed signal variations. Typically, however, no or only a 
few measurements are existing during the design process. 

In this case, signal variations were modeled by a “synthetic 
random field”. Therein, the correlation is assumed using 
some autocorrelation model between the individual points 
in time. The distribution of mean and standard deviation 
can be either estimated from a few measurements or as-
sumed as well. The results are typically sinus-like functions 
in 1D similar to the Fourier series, as being illustrated in 
Figure 5. Therein, a synthetic random field model is created 
with zero mean and constant unit standard deviation.

Case 3: Sensitivity analysis of a signal
The field meta models can be used to perform an extended 
sensitivity analysis based on signal data. They allow to iden-
tify which input parameter is responsible for the response 
variation for each individual point in time. It is recommend-
ed to perform a sensitivity analysis based on field meta 
models (in favor of the scalar MOP) if

 The location of hot spots is not yet known
 The location of hot spots is varying
 Hot spots do not exist since one is interested in a distributed 

effect (for example the shape of the signal in an interval)
 The accuracy of a scalar MOP is too small, but the reason 

is unknown.

The result of a F-MOP is the visualization of the Field-CoP 
describing the distribution of the CoP along the time axis. 
By that one can identify at which locations of the signal the 
meta model is able to predict the variations well (or not), 
and at which locations of the signal input parameters are of 
large or small influence onto the signal variation.

The following example is presented by Römelsberger et 
al [1]. Therein an optimization on a meta model was at-
tempted in order to optimize the design of a dual band WiFi 

antenna. The response of interest were the minima of the 
“return loss” in frequency domain. A scalar MOP obtained 
an accuracy of CoP=71% only. Using a field meta model for 
the return loss spectrum, however, one can identify the in-
tervals in frequency domain, which are responsible for the 
low accuracy of the meta model. The signal responses of a 
design of experiments are illustrated in Figure 6. The cor-
responding F-CoP values are shown in Figure 7. The upper 
curve is the F-CoP of the whole model defining the model 
accuracy for the respective frequency value. For the right 
minimum the accuracy is sufficiently large, but the meta 
model cannot well predict the variations in the center and 
for the left minimum. The center is, however, not relevant 
for the optimization. The left minimum is, however, the rea-
son why the scalar MOP cannot approximate the minimum 
value well: The position of the minimum is varying and, 
further, it is a true singularity being dominated by round-
off errors in the CAE process. The other curves in Figure 7 
denote the sensitivity of the individual input parameters 
which is varying in the frequency domain. 

The advantage of a Field-MOP is that it captures automati-
cally all support points of a signal. Alternatively, one needs 
to manually define few hot spots for which a MOP is evalu-
ated, but still misses the shape of the signal in the interval 
between the selected locations.

Case 4: Pre-Optimization on a signal meta model
A sensitivity analysis is an important part of the design pro-
cess, typically being implemented before the actual optimiza-

tion takes place. If the meta model is accurate enough, it can 
be used to “pre-optimize” the design without extra CAE solver 
run. The identified optimum of the meta model can later be 
used as a start point of the direct optimization. 

Field meta models are recommended if the shape of the signal 
is of interest. This is the case in many applications of model 
calibration, e.g. the identification of material parameters 
based on measured load-displacement curves. The basic idea 
is that one approximates the whole load-displacement curve 
by a field meta model and then minimizes the error norm be-
tween the approximated signal and the reference curve. 

As an example, assume that the dynamic process of ex-
ample 1 is the result of a numerical oscillator model as 
illustrated in Figure 8. The task is to identify the material 
parameters of a given measured reference signal as shown 
in Figure 9. In terms of scalar parameters one would need to 
identify the locations of the local minima and maxima and 
then minimize the position error with respect to the same 
extrema in the reference signal. The identification of these 
hot spots, however, needs manual programming and, thus, 
is prone to errors. Using a field meta model for the whole 
signal, one only needs to minimize the error norm between 
both signals. The result is shown in Figure 10 being very 
close to the true optimum. 

Correlation analysis in space
The methodology and work flows for modeling of signal 
variations can also be applied to spatial variations in 3D. 
Typical quantities are geometric variations (e.g. random 
imperfections due to manufacturing) like boundary coordi-
nates or shell thickness, state variables (e.g. stresses, dis-
placements) used to evaluate structural performance, dam-
age (e.g. distribution of plastic strains), material properties 
(e.g. surface friction properties, fiber angles) etc. 

Case 1: Parameterization of geometric imperfections based 
on measurements
Nowadays, detailed laser scans of manufactured products 
are often done in order to ensure the dimensional accuracy 
at critical locations. The same information can be reused, 
for example, to create a realistic statistical model of the 
geometric imperfections in order to virtually create random 
geometries, e.g. for a robustness analysis. 

The following example is presented by Nunes et al [2]. There-
in, the robustness of an automotive brake system regarding 
brake squeal noise was analyzed. The squeal noise frequen-
cies predicted by the numerical model did not match the ob-
served frequencies in the hardware experiments. Engineers 
suspected the geometric imperfections of the brake pad sur-
faces. To model these variations, laser scans of brake pad sur-
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Fig 5: Scatter shapes of a synthetic random field model for mean=0 and std-
dev=1 at all points

Fig. 6: Response signals of the “return loss” in frequency domain of a design 
of experiments

Fig 8: SDOF oscillator

Fig 10: Solution of a pre-optimization of a model calibration

Fig 9: Response of a SDOF oscillator model (blue) and reference signal (red)

Fig. 7: F-CoP of the “return loss” in frequency domain
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observed signal variations. Typically, however, no or only a 
few measurements are existing during the design process. 

In this case, signal variations were modeled by a “synthetic 
random field”. Therein, the correlation is assumed using 
some autocorrelation model between the individual points 
in time. The distribution of mean and standard deviation 
can be either estimated from a few measurements or as-
sumed as well. The results are typically sinus-like functions 
in 1D similar to the Fourier series, as being illustrated in 
Figure 5. Therein, a synthetic random field model is created 
with zero mean and constant unit standard deviation.

Case 3: Sensitivity analysis of a signal
The field meta models can be used to perform an extended 
sensitivity analysis based on signal data. They allow to iden-
tify which input parameter is responsible for the response 
variation for each individual point in time. It is recommend-
ed to perform a sensitivity analysis based on field meta 
models (in favor of the scalar MOP) if

 The location of hot spots is not yet known
 The location of hot spots is varying
 Hot spots do not exist since one is interested in a distributed 

effect (for example the shape of the signal in an interval)
 The accuracy of a scalar MOP is too small, but the reason 

is unknown.

The result of a F-MOP is the visualization of the Field-CoP 
describing the distribution of the CoP along the time axis. 
By that one can identify at which locations of the signal the 
meta model is able to predict the variations well (or not), 
and at which locations of the signal input parameters are of 
large or small influence onto the signal variation.

The following example is presented by Römelsberger et 
al [1]. Therein an optimization on a meta model was at-
tempted in order to optimize the design of a dual band WiFi 

antenna. The response of interest were the minima of the 
“return loss” in frequency domain. A scalar MOP obtained 
an accuracy of CoP=71% only. Using a field meta model for 
the return loss spectrum, however, one can identify the in-
tervals in frequency domain, which are responsible for the 
low accuracy of the meta model. The signal responses of a 
design of experiments are illustrated in Figure 6. The cor-
responding F-CoP values are shown in Figure 7. The upper 
curve is the F-CoP of the whole model defining the model 
accuracy for the respective frequency value. For the right 
minimum the accuracy is sufficiently large, but the meta 
model cannot well predict the variations in the center and 
for the left minimum. The center is, however, not relevant 
for the optimization. The left minimum is, however, the rea-
son why the scalar MOP cannot approximate the minimum 
value well: The position of the minimum is varying and, 
further, it is a true singularity being dominated by round-
off errors in the CAE process. The other curves in Figure 7 
denote the sensitivity of the individual input parameters 
which is varying in the frequency domain. 

The advantage of a Field-MOP is that it captures automati-
cally all support points of a signal. Alternatively, one needs 
to manually define few hot spots for which a MOP is evalu-
ated, but still misses the shape of the signal in the interval 
between the selected locations.

Case 4: Pre-Optimization on a signal meta model
A sensitivity analysis is an important part of the design pro-
cess, typically being implemented before the actual optimiza-

tion takes place. If the meta model is accurate enough, it can 
be used to “pre-optimize” the design without extra CAE solver 
run. The identified optimum of the meta model can later be 
used as a start point of the direct optimization. 

Field meta models are recommended if the shape of the signal 
is of interest. This is the case in many applications of model 
calibration, e.g. the identification of material parameters 
based on measured load-displacement curves. The basic idea 
is that one approximates the whole load-displacement curve 
by a field meta model and then minimizes the error norm be-
tween the approximated signal and the reference curve. 

As an example, assume that the dynamic process of ex-
ample 1 is the result of a numerical oscillator model as 
illustrated in Figure 8. The task is to identify the material 
parameters of a given measured reference signal as shown 
in Figure 9. In terms of scalar parameters one would need to 
identify the locations of the local minima and maxima and 
then minimize the position error with respect to the same 
extrema in the reference signal. The identification of these 
hot spots, however, needs manual programming and, thus, 
is prone to errors. Using a field meta model for the whole 
signal, one only needs to minimize the error norm between 
both signals. The result is shown in Figure 10 being very 
close to the true optimum. 

Correlation analysis in space
The methodology and work flows for modeling of signal 
variations can also be applied to spatial variations in 3D. 
Typical quantities are geometric variations (e.g. random 
imperfections due to manufacturing) like boundary coordi-
nates or shell thickness, state variables (e.g. stresses, dis-
placements) used to evaluate structural performance, dam-
age (e.g. distribution of plastic strains), material properties 
(e.g. surface friction properties, fiber angles) etc. 

Case 1: Parameterization of geometric imperfections based 
on measurements
Nowadays, detailed laser scans of manufactured products 
are often done in order to ensure the dimensional accuracy 
at critical locations. The same information can be reused, 
for example, to create a realistic statistical model of the 
geometric imperfections in order to virtually create random 
geometries, e.g. for a robustness analysis. 

The following example is presented by Nunes et al [2]. There-
in, the robustness of an automotive brake system regarding 
brake squeal noise was analyzed. The squeal noise frequen-
cies predicted by the numerical model did not match the ob-
served frequencies in the hardware experiments. Engineers 
suspected the geometric imperfections of the brake pad sur-
faces. To model these variations, laser scans of brake pad sur-
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observed signal variations. Typically, however, no or only a 
few measurements are existing during the design process. 

In this case, signal variations were modeled by a “synthetic 
random field”. Therein, the correlation is assumed using 
some autocorrelation model between the individual points 
in time. The distribution of mean and standard deviation 
can be either estimated from a few measurements or as-
sumed as well. The results are typically sinus-like functions 
in 1D similar to the Fourier series, as being illustrated in 
Figure 5. Therein, a synthetic random field model is created 
with zero mean and constant unit standard deviation.

Case 3: Sensitivity analysis of a signal
The field meta models can be used to perform an extended 
sensitivity analysis based on signal data. They allow to iden-
tify which input parameter is responsible for the response 
variation for each individual point in time. It is recommend-
ed to perform a sensitivity analysis based on field meta 
models (in favor of the scalar MOP) if

 The location of hot spots is not yet known
 The location of hot spots is varying
 Hot spots do not exist since one is interested in a distributed 

effect (for example the shape of the signal in an interval)
 The accuracy of a scalar MOP is too small, but the reason 

is unknown.

The result of a F-MOP is the visualization of the Field-CoP 
describing the distribution of the CoP along the time axis. 
By that one can identify at which locations of the signal the 
meta model is able to predict the variations well (or not), 
and at which locations of the signal input parameters are of 
large or small influence onto the signal variation.

The following example is presented by Römelsberger et 
al [1]. Therein an optimization on a meta model was at-
tempted in order to optimize the design of a dual band WiFi 

antenna. The response of interest were the minima of the 
“return loss” in frequency domain. A scalar MOP obtained 
an accuracy of CoP=71% only. Using a field meta model for 
the return loss spectrum, however, one can identify the in-
tervals in frequency domain, which are responsible for the 
low accuracy of the meta model. The signal responses of a 
design of experiments are illustrated in Figure 6. The cor-
responding F-CoP values are shown in Figure 7. The upper 
curve is the F-CoP of the whole model defining the model 
accuracy for the respective frequency value. For the right 
minimum the accuracy is sufficiently large, but the meta 
model cannot well predict the variations in the center and 
for the left minimum. The center is, however, not relevant 
for the optimization. The left minimum is, however, the rea-
son why the scalar MOP cannot approximate the minimum 
value well: The position of the minimum is varying and, 
further, it is a true singularity being dominated by round-
off errors in the CAE process. The other curves in Figure 7 
denote the sensitivity of the individual input parameters 
which is varying in the frequency domain. 

The advantage of a Field-MOP is that it captures automati-
cally all support points of a signal. Alternatively, one needs 
to manually define few hot spots for which a MOP is evalu-
ated, but still misses the shape of the signal in the interval 
between the selected locations.

Case 4: Pre-Optimization on a signal meta model
A sensitivity analysis is an important part of the design pro-
cess, typically being implemented before the actual optimiza-

tion takes place. If the meta model is accurate enough, it can 
be used to “pre-optimize” the design without extra CAE solver 
run. The identified optimum of the meta model can later be 
used as a start point of the direct optimization. 

Field meta models are recommended if the shape of the signal 
is of interest. This is the case in many applications of model 
calibration, e.g. the identification of material parameters 
based on measured load-displacement curves. The basic idea 
is that one approximates the whole load-displacement curve 
by a field meta model and then minimizes the error norm be-
tween the approximated signal and the reference curve. 

As an example, assume that the dynamic process of ex-
ample 1 is the result of a numerical oscillator model as 
illustrated in Figure 8. The task is to identify the material 
parameters of a given measured reference signal as shown 
in Figure 9. In terms of scalar parameters one would need to 
identify the locations of the local minima and maxima and 
then minimize the position error with respect to the same 
extrema in the reference signal. The identification of these 
hot spots, however, needs manual programming and, thus, 
is prone to errors. Using a field meta model for the whole 
signal, one only needs to minimize the error norm between 
both signals. The result is shown in Figure 10 being very 
close to the true optimum. 

Correlation analysis in space
The methodology and work flows for modeling of signal 
variations can also be applied to spatial variations in 3D. 
Typical quantities are geometric variations (e.g. random 
imperfections due to manufacturing) like boundary coordi-
nates or shell thickness, state variables (e.g. stresses, dis-
placements) used to evaluate structural performance, dam-
age (e.g. distribution of plastic strains), material properties 
(e.g. surface friction properties, fiber angles) etc. 

Case 1: Parameterization of geometric imperfections based 
on measurements
Nowadays, detailed laser scans of manufactured products 
are often done in order to ensure the dimensional accuracy 
at critical locations. The same information can be reused, 
for example, to create a realistic statistical model of the 
geometric imperfections in order to virtually create random 
geometries, e.g. for a robustness analysis. 

The following example is presented by Nunes et al [2]. There-
in, the robustness of an automotive brake system regarding 
brake squeal noise was analyzed. The squeal noise frequen-
cies predicted by the numerical model did not match the ob-
served frequencies in the hardware experiments. Engineers 
suspected the geometric imperfections of the brake pad sur-
faces. To model these variations, laser scans of brake pad sur-
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observed signal variations. Typically, however, no or only a 
few measurements are existing during the design process. 

In this case, signal variations were modeled by a “synthetic 
random field”. Therein, the correlation is assumed using 
some autocorrelation model between the individual points 
in time. The distribution of mean and standard deviation 
can be either estimated from a few measurements or as-
sumed as well. The results are typically sinus-like functions 
in 1D similar to the Fourier series, as being illustrated in 
Figure 5. Therein, a synthetic random field model is created 
with zero mean and constant unit standard deviation.

Case 3: Sensitivity analysis of a signal
The field meta models can be used to perform an extended 
sensitivity analysis based on signal data. They allow to iden-
tify which input parameter is responsible for the response 
variation for each individual point in time. It is recommend-
ed to perform a sensitivity analysis based on field meta 
models (in favor of the scalar MOP) if

 The location of hot spots is not yet known
 The location of hot spots is varying
 Hot spots do not exist since one is interested in a distributed 

effect (for example the shape of the signal in an interval)
 The accuracy of a scalar MOP is too small, but the reason 

is unknown.

The result of a F-MOP is the visualization of the Field-CoP 
describing the distribution of the CoP along the time axis. 
By that one can identify at which locations of the signal the 
meta model is able to predict the variations well (or not), 
and at which locations of the signal input parameters are of 
large or small influence onto the signal variation.

The following example is presented by Römelsberger et 
al [1]. Therein an optimization on a meta model was at-
tempted in order to optimize the design of a dual band WiFi 

antenna. The response of interest were the minima of the 
“return loss” in frequency domain. A scalar MOP obtained 
an accuracy of CoP=71% only. Using a field meta model for 
the return loss spectrum, however, one can identify the in-
tervals in frequency domain, which are responsible for the 
low accuracy of the meta model. The signal responses of a 
design of experiments are illustrated in Figure 6. The cor-
responding F-CoP values are shown in Figure 7. The upper 
curve is the F-CoP of the whole model defining the model 
accuracy for the respective frequency value. For the right 
minimum the accuracy is sufficiently large, but the meta 
model cannot well predict the variations in the center and 
for the left minimum. The center is, however, not relevant 
for the optimization. The left minimum is, however, the rea-
son why the scalar MOP cannot approximate the minimum 
value well: The position of the minimum is varying and, 
further, it is a true singularity being dominated by round-
off errors in the CAE process. The other curves in Figure 7 
denote the sensitivity of the individual input parameters 
which is varying in the frequency domain. 

The advantage of a Field-MOP is that it captures automati-
cally all support points of a signal. Alternatively, one needs 
to manually define few hot spots for which a MOP is evalu-
ated, but still misses the shape of the signal in the interval 
between the selected locations.

Case 4: Pre-Optimization on a signal meta model
A sensitivity analysis is an important part of the design pro-
cess, typically being implemented before the actual optimiza-

tion takes place. If the meta model is accurate enough, it can 
be used to “pre-optimize” the design without extra CAE solver 
run. The identified optimum of the meta model can later be 
used as a start point of the direct optimization. 

Field meta models are recommended if the shape of the signal 
is of interest. This is the case in many applications of model 
calibration, e.g. the identification of material parameters 
based on measured load-displacement curves. The basic idea 
is that one approximates the whole load-displacement curve 
by a field meta model and then minimizes the error norm be-
tween the approximated signal and the reference curve. 

As an example, assume that the dynamic process of ex-
ample 1 is the result of a numerical oscillator model as 
illustrated in Figure 8. The task is to identify the material 
parameters of a given measured reference signal as shown 
in Figure 9. In terms of scalar parameters one would need to 
identify the locations of the local minima and maxima and 
then minimize the position error with respect to the same 
extrema in the reference signal. The identification of these 
hot spots, however, needs manual programming and, thus, 
is prone to errors. Using a field meta model for the whole 
signal, one only needs to minimize the error norm between 
both signals. The result is shown in Figure 10 being very 
close to the true optimum. 

Correlation analysis in space
The methodology and work flows for modeling of signal 
variations can also be applied to spatial variations in 3D. 
Typical quantities are geometric variations (e.g. random 
imperfections due to manufacturing) like boundary coordi-
nates or shell thickness, state variables (e.g. stresses, dis-
placements) used to evaluate structural performance, dam-
age (e.g. distribution of plastic strains), material properties 
(e.g. surface friction properties, fiber angles) etc. 

Case 1: Parameterization of geometric imperfections based 
on measurements
Nowadays, detailed laser scans of manufactured products 
are often done in order to ensure the dimensional accuracy 
at critical locations. The same information can be reused, 
for example, to create a realistic statistical model of the 
geometric imperfections in order to virtually create random 
geometries, e.g. for a robustness analysis. 

The following example is presented by Nunes et al [2]. There-
in, the robustness of an automotive brake system regarding 
brake squeal noise was analyzed. The squeal noise frequen-
cies predicted by the numerical model did not match the ob-
served frequencies in the hardware experiments. Engineers 
suspected the geometric imperfections of the brake pad sur-
faces. To model these variations, laser scans of brake pad sur-
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• Recommended application if

– Critical locations in space or time are varying and important

– Distributed effects are considered (geometries, dynamics)
• Spatial variations (3D) or Signal variations (1D)
• Simple and straight forward methodology to parameterize arbitrarily complex 

field variations
• Allow better model understanding
• Transfer statistics from measurements into virtual product development
• Can be used to test if expensive measurements need to be obtained
• Can be used to improve

– Robustness analysis (Generation of random designs)

– Sensitivity analysis (Add the “location” to CoP values: F-CoP)

– Pre-optimization (Predictive field meta models: F-MOP solver)

Summary
Field meta models and Random fields
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