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Statistics on Structures

Applications of field meta modelling
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Workflow in variance based robustness analysis

1) Define the robustness space using scatterrange, 2) Sampling: Scan the robustness space by

distribution and correlation producing and evaluating n designs
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5) Identify the mostimportant
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Why random fields ?
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Robustness example
Deep drawing

e Simulation of production process

e Analysis of random variations of
production parameters

e Robustness goals: max. pstrain and
max. thinning exceed critical thresholds
by max. probability p

e Solution using scalar parameters:
Analyse statistics of maximum values

e Problem: Varying position of
maximum plastic strain and
maximum thinning

e optiSLang + LS-Dyna, 100 designs
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Robustness example
Effect of varying location

e Statistical analysis of
maximum plastic strain  vs. plastic strain at hot spots
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e Sensitivity analysis: Meta model of Optimal Prognosis in optiSLang
CoP(Total)=86% CoP(Total)=98%
e Improved accuracy at hot spot instead of maximum value!
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Random fields in space
Karhunen-Loeve expansion for discrete fields

Karhunen-Loeve expansion: Modal analysis of the covariance matrix

Spectral representation

H:(I)Z—FILLH

Phi: Eigen vectors of covariance matrix ("mode shapes”, “scatter shapes”)
z: vector of reduced set of uncorrelated random numbers (“amplitudes”)

//\?
perturbed N 7 N ol o3
geometry mean value - shape #3
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Random fields
Overview on applications

1D: signal variations (e.g. time, frequency, load-displacement curves)

3D: spatial variations

Use random fields as INPUTS or RESPONSES

Random fields:

- Automatically find optimal parametric to describe field variations

- Generate random designs (e.g. random signals — random distribution of
temperature profiles in time, or uncertain load-displacement curves)

- Predict field responses (meta models for signals and 3D fields)
— Sensitivity analysis of distributed quantities (signals and 3D fields)
— Statistical smoothening

— Data reconstruction
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Analysis of distributed effects
Example: Nonlinear buckling shapes

e Stringer in a car body subject to crash simulation

e Hardware experiment: observation of plastic buckling
e Deterministic simulation: plastic effects not reproducible
e Stochastic simulation: DoE and robustness evaluation with optiSLang

standard deviation of plastic strain after crash
Source: Bayer, Random fields in Statistics on Structures (SoS), WOST 2009
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Analysis of distributed effects
Example: Nonlinear buckling shapes

e How to analyse failure sources ?
Buckling shape is distributed!

e Decomposition of plastic strain random
field into uncorrelated scatter shapes

STRUCTURE: structure_name

e Right: 1st three scatter shapes

e Only 3 parameters explain 98% of total
variation (compared with original 4826
parameters, one for each element)

e 1st shape (96% of total scatter)
explains most of the effects observed
in standard deviation

e This strategy is always interesting
since typically input parameters affect

several locations at same time
Source: Bayer, Random fields in Statistics on Structures (SoS), WOST 2009
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Analysis of distributed effects
Example: Nonlinear buckling shapes

e Solution: 13 of 55 input variables with significant effect on 1st amplitude;
These are the initial plastic strains due to manufacturing (forming), the
barrier angle and the yield stress

Coefficients of Prognosis (usin? MoP)
full model: CoP = 86 % -
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Source: Bayer, Random fields in Statistics on Structures (SoS), WOST 2009
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Parameterization of geometric variations
Statistical shape model of human mandible

With courtesy of UK Aachen (Source: S. Raith, WOST 2015)
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Generation of random
designs
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Generation of random designs
Definition of uncertainties

e Translate know-how about uncertainties into proper scatter definition

JTPUT: Zugfestigkeit vs. OUTPUT: Streckgrenze, r = 0.759
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Distribution functions Correlation is an important
define variable scatter characteristic of stochastic variables

Spatial Correlation Signal Correlation random
random fields fields (in time, freq., etc.)
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Generation of random designs
Definition of random fields (1D and 3D)

e Depending on available data:

1. No/single measurement:
assumptions
(synthetic random field model)

2. Few measurements:
empirical mean+stddev
assumed correlation
(synthetic random field model)

3. Many measurements:
Empirical random field model
Anisotropic, inhomogeneous,
Non-Gaussian
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Generation of random designs
Example: Synthetic random fields

e Synthetic random fields: Based on a single or only few measurements
e Spatial correlation defined by numerical model

e Example: Analysis of influence of geometric variations of a knuckle onto
frequency of brake squeal noise

MLS approximation of Max_damping_5500_6300Hz
Coefficient of Prognosis = = 73 %

ing_5500_6300Hz
-8.03_-0.06_ -0.04 -0.02 O
T T T T

difference between measured and
modeled geometry of a knuckle

Max_dampi
-0.14 -0.12 -0.1

Se

L L . L L
1500 2000 2500 3000 3500
Pad_G33

\. | J Predict change of Eigen
frequencies due to uncertain

geometric perturbations
With courtesy of DAIMLER (Sources:

. . . . Nunes e al, WOST 2009; Wolff, RDO-
simulation of imperfect geometries DAIMLER.
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Generation of random designs
Example: Based on measurements

Measurements
(TU Braunschweig)

Mapping to FE-Mesh
(SoS)

/ !

Robustness Analysis
(optiSlang + SoS )
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Nonlinear Contact
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T
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S

Evaluation with
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r—

Evaluation with a post processing Script (HyperView)

With courtesy of DAIMLER (Sources: Nunes, WOST 2015; Wolff, RDO-Journal I/2016)
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Generation of random designs
Example: Based on measurements (cont.)

O New Analysis adds random surfaces to the same random designs
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—> Higher instabilities occur with a slight change in frequency
- The frequency at ~1 kHz decreases (= frequency not observed at bench tests)
- Mode shapes and contact conditions have to be evaluated carefully

Mercedes-Benz

DAIMLER
With courtesy of DAIMLER (Sources: Nunes, WOST 2015; Wolff, RDO-Journal I/2016)
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Parameterization of geometries
Shape optimization
e Use synthetic random field model to generate geometric variations on

arbitrarily complex geometries
e Example: Shape optimization with ANSYS WB 17 with 6 shapes

Change in geometry by shape optimization

Applied variation field
(stddev of random field)

B

Shapes #1 ... #6
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Sensitivity analysis and
approximation
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Field meta model
Calibrate model parameters to match geometry

e Task:

- Calibrate model parameters of a joining process (after deep drawing) to
minimize the error between the resulting geometry and the desired CADO

geometry
- Identify important joining parameters
- Estimate maximum geometric deviations

DAIMLER
With courtesy of DAIMLER (Sources: Konrad, WOST 2015; Wolff, RDO-Journal 1I/2016)
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Field meta model
Sensitivity analysis of joining parameters

e Validate field meta model:
Accuracy of model
F-CoP(Total)

¢ Validate sensitivities of individual parameters:

7

F-CoP of
center-top clamp

F-CoP of

left-bottom clamp
p—y——— Aroree
DAIMLER

With courtesy of DAIMLER (Sources: Konrad, WOST 2015; Wolff, RDO-Journal 1I/2016)

P——p—— Arorce
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Field meta model of fibre angles (composites)
Calibrate draping process parameters

e Given: Measurement of spatial distribution of fibre angles after draping

process
e Task: Model calibration of numerical ANSYS model to match fibre angles

CADFEM #<&®4 TECHNOLOGIES

With courtesy of CADFEM and KTM Technologies (Sources: Kellermeyer, WOST 2015; Wolff, RDO-Journal I/2016)
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Field meta model of fibre angles (composites)
Calibrate draping process parameters

e Average difference in fibre direction between measurement and numerical
models:
- With pre-defined parameters: 7.3°

- With optimized parameters: 5.2°

CADFEM #<&®4 TECHNOLOGIES

With courtesy of CADFEM and KTM Technologies (Sources: Kellermeyer, WOST 2015; Wolff, RDO-Journal I/2016)
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Field meta models for
signals
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Random fields for signal data
One-dimensional variation patterns

e Signals:
- dynamic processes (time, frequency),
- load-displacement curves, FLD diagrams, Wdhler curves,

- dynamic loading conditions (e.g. temperature in time)

Karhunen-Loeve expansion: Modal analysis of the covariance matrix

Spectral representation

H = Pz + un

Phi: Eigen vectors of covariance matrix ("mode shapes”, “scatter shapes”)
z: vector of reduced set of uncorrelated random numbers (“amplitudes”)

Y] ) " 4
~ - 214 29+ 23+ 2y +...
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Adynardo
Parameterization of a dynamic process
Analysis of a DoE of a time series

e Generate random signals as solver inputs

e Perform sensitivity analysis and pre-optimization
parameters)

channel signal_chan_0 of signal signal
T

o Left: Signal responses of Design of Experiments; Right: Scatter shapes (5
i ,

i\
i G
WO
XY l

G
Source: Wolff, RDO-Journal I/2016
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Synthetic random fields
Fourier series like approximation of signals

e Example: homogeneous mean (=0) and standard deviation (=1)
05 T T T T T r

04 |
03
02 }
01 }

0t
-0.1
02
03
04 |

-05

0 0.0002 00004 0.0006 0.0008 0.001 0.0012 0.0014

e Synthetic random field models:

- Define correlation length parameters

- Define (in)homogeneous distribution of mean and standard deviation
Source: Wolff, RDO-Journal I/2016
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Sensitivity analysis of a signal
Return loss of an antenna in frequency domain

e MOP: Gives only single numbers for pre-defined hot spots or for extremal
values

e F-MOP: More insight due to location of low or large sensitivities
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CADFEM With courtesy of CADFEM (Sources: Vidal/Rémelsberger, WOST 2015; Wolff, RDO-Journal I/2016)
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Pre-optimization on field meta model
Model calibration of dynamic process

e Without F-MOP: Find MOP for Euklidian norm or minimize error for values at
pre-selected hot spots

e With F-MOP: Find F-MOP for signal and then minimize Euklidian error norm;
Consider also shape of signal between discrete support points

E b ~— fmop_solution
km ~— signal_ref
~ true_solution.

Best Design #1396

Reference —— 3
Injtial values

| Ekin
v 2 Z
=) E
1 5
a
- s
b1
£
3 z
x A - - ’ & 20: A0 60 .80 10D
2 4 6 8 10 0 2 4 6 8 10 Relative Size to Bounds [%)]

Time t [s]

Source: Wolff, RDO-Journal I/2016
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Summary
Field meta models and Random fields

e Recommended application if
— Critical locations in space or time are varying and important
— Distributed effects are considered (geometries, dynamics)

e Spatial variations (3D) or Signal variations (1D)

e Simple and straight forward methodology to parameterize arbitrarily complex
field variations

e Allow better model understanding
e Transfer statistics from measurements into virtual product development
e Can be used to test if expensive measurements need to be obtained
e Can be used to improve
- Robustness analysis (Generation of random designs)
— Sensitivity analysis (Add the “location” to CoP values: F-CoP)

- Pre-optimization (Predictive field meta models: F-MOP solver)
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