Sensitivity Analysis and Non-Linear Optimisation of Shot-Noise Limited Magnetic Field Resolution of an Optically Pumped Magnetometer

Leibniz Institute of Photonic Technologies WOST 2016 Presentation by Bastian Schillig LEIBNIZ-INSTITUT für PHOTONISCHE TECHNOLOGIEN

Magnetic Field Strength Examples

2/14

Optically Pumped Magnetometer Principle

$$f_{\text{Larmor}} = \gamma \cdot B_0$$

Gyromagnetic ratio γ is an atom constant \rightarrow determine f_{Larmor} at resonance frequency \rightarrow know B_0 3/14

Measurement Regime

- Pumping in two equal cells
- Counter-oriented circular polarisation → peak shift
- Signal difference plot reveals Larmor frequency at zero crossing

4/14 bht Jena

Four input parameters → Complex interplay → Optimisation

Initial Situation

- Magnetometer characterisation setup at IPHT Jena
- Parameter range:

Input parameter	Range	Settling time
Laser frequency detuning voltage	±ıV	Instant
B_1 source voltage	0.1-4V	Instant
Pump laser power	0.5 – 4.5 mW	Quick (closed loop control)
Caesium cell temperature	80–140°C	Slow (closed loop control)
Caesium Cell pressure	110/210 mbar	Extreme (exchange alkali cell in setup)

 Time-consuming single input parameter sweeps + manual evaluation of measured data (months to characterise one cell!)

6/14

Problem Approach

- Hardware \rightarrow remote control by GPIB
- LabView → measuring and automated signal curve evaluation
- Integrate optiSLang → data exchange interface (batch script)
- Sensitivity analysis and optimisation on the real technical system
- Obtain system behaviour approximation model and optimal input parameter combination

Realisation Sensitivity Analysis

- All measurements with B_0 at 50 μ T (~earth magnetic field)
- Possibility of many failed designs → 10*LHS of 60 steps
 = 600 measurements
- Ordered by ascending temperature with optiSLang Excel plugin

8/14

• Measure time single data point: ~1 min

 \rightarrow about ten hours measure time

• Comparison: full factorial \rightarrow 60⁴ measurements \rightarrow over 24 years

Results Sensitivity Analysis

Signal steepness vs. pump power and B₁ RF field amplitude, sweep over temperature 8o-140°C, laser wavelength constant

9/14 pht Jena

Results Sensitivity Analysis

B_{sn} vs. detuning voltage and B₁ RF field amplitude, sweep over temperature 80– 140°C, pump power constant

10/14

Π

pht

() Ipht

Realisation Optimisation

Objective function is shot–noise limited magnetic field resolution

12/14

pht je

 $B_{\rm sn} \rightarrow \min$

- Constraints: positive signal steepness, plausible Larmor frequency ±500 Hz around expected value for $B_0 = 50 \,\mu\text{T}$
- Best parameter combination from sensitivity analysis as start design
- Optimisation runs by measuring on the real technical system instead of optimising on the MOP allows instant validation of results
- Pre-optimisation by ARSM with start range 0.5
- Local optimisation by Simplex with start range 0.1

Results Optimisation

Cell p = 110 mbar	Pre-Optimisation	Local Optimisation
Algorithm	ARSM	Simplex
Designs measured	220	180
Duration	ca.7h	ca. 4 h
B _{sn}	$8.6 \frac{\text{fT}}{\sqrt{\text{Hz}}}$	$8.6 \frac{\text{fT}}{\sqrt{\text{Hz}}}$
Temperature	129.8 °C	129.8 °C
Pump Power	3.3 mW	3.3 mW
B ₁ Amplitude	945 mV	945 mV
Detuning Voltage	-90 mV	-90 mV

Summary and Outlook

- Automated measurement and result data evaluation
- Interaction between optiSLang, LabView process control and hardware
- Sensitivity analysis enormously saves on time when characterising cells
- Previously unknown effects discovered, subject to further investigation
- Optimal value for B_{sn} determined at 8.6 fT/sqrt(Hz)
- Easily repeat procedure with new cells
- Compatibility for further extension of functionality, even new hardware
- Sufficiently high CoP approximation models allow further optimisation runs (Pareto, EA, particle swarm...) without demand for additional measure time

Acknowledgements

My sincere thanks to all employees of the IPHT Jena for support and consideration, especially to:

Theo Scholtes, Volkmar Schultze, Rob IJsselsteijn and Stefan Woetzel.

Furthermore, I greatly appreciated Dynardo's responsiveness, patronage and encouragement in pursueing such an interesting project.

Last but not least, I extend my thanks to my academic supervisor, Prof. Dr. Heinz Dathe for his thoroughness and thoughtful advice.

Questions, Comments, Observations

Contact: bastian.schillig@yahoo.de