

AUTOMATED OPTIMIZATION WITH THE OPX INTERFACE USING THE EXAMPLE OF VEHICLE STABILIZERS

Sergej Schneider, Mubea Fahrwerksfedern GmbH

Weimar, 2nd of June 2017

- 1. THE COMPANY "MUBEA"
- 2. CHASSIS PART STABILIZER BAR
- 3. (OPTIMIZATION) WORKFLOW
- 4. XML-BASED INTERFACES IN OPTISLANG

THE COMPANY "MUBEA"

- Global market leader in development and manufacture of automobile products
- Owner-operated family company since 1916
- Lightweight component design specialist
- Vertical integration from raw material to finished product
- Internal development of products and production processes

Represented worldwide

Mubea © Muhr und Bender KG - Confidential

6

THE COMPANY "MUBEA"

Product portfolio

Body

May 29, 2017

Powertrain

Industry

Products

Chassis

Coil Springs

Stabilizer Bars

Stabilizer Bar add-on parts

GFRP Leaf Springs

Wheels

Mubea © Muhr und Bender KG - Confidential May 29, 2017

CHASSIS PART STABILIZER BAR

CHASSIS PART STABILIZER BAR

Stabilizer function

[Source: Daimler AG]

- Characteristics of stabilizer bar
 - Links right and left suspension
 - Compensates / decreases roll angle during turning manoeuvres wrt. local body frame
 - Loaded under torsion (and bending)
- Increasing spring rate results in higher compensation of roll moment
- Profile designs
 - Solid
 - Tubular
 - Hammered
 - Multiple wall thicknesses at const. outer diameter (MTT)

CHASSIS PART STABILIZER BAR Stabilizer design

- Fixed routing due to limited design space
- Mechanical properties (spring rate) may only be adjusted through stabilizer bar profile
- Profile design is restricted by production-wise feasibility
 - Maximum wall thickness t
 - Minimum / maximum wall thickness ratio D_{out}/t
 - Form of crossing depending on raw material
 - Tailor Drawn Tube
 - Tailor Rolled Tube

CHASSIS PART STABILIZER BAR Stabilizer FEA

Bottom: Parametrized mesh (w/o paddles)

- Stabilizer is described via a polyline with circular cross sections
- Stabilizer profile may be separate input detached from routing
- Geometry and boundary conditions are parametrized in APDL
 - Neglecting paddle geometry
 - Using own meshing algorithm
- Static mechanical analysis using implicit solver in ANSYS
- Using quadratic elements
- Design objective is spring rate with minimum stabilizer mass below limit fatigue life

CHASSIS PART STABILIZER BAR Stabilizer design optimization

- Example of mass minimization for a stabilizer bar with multiple wall thicknesses
 - Displayed stabilizer bars are equal in spring rate (i.e. same function)
 - Utilizing the stress limits (von Mises) mass could be reduced by ca. 400 g to ca. 2.400 g

(OPTIMIZATION) WORKFLOW

- The design process is iterative, where
 - the stabilizer profile is adjusted
 - the FEA is performed
 - the results are compared with target values
- The design process takes a lot of time and experience
- An automatization of this process would relieve the project engineer of this time consuming task and allow him/her to invest his/her time otherwise
- It is expected to find better designs using optimization algorithms

Optimization) WORKFLOW

C Tailor Rolled Tube

optimization results

test setup / details specifications / restrictions

geometric restrictions

Tailor Drawn Tube

Snippet from the optimization order interface

Optimization order is created in a PDM system

C Polynom (konst. Da)

- A reference design has to be attached
- Geometric and FEA restrictions have to be provided with their respective tolerances
- Input parameters may also be set as constant

C Polynom (var. Da)

- A service running on the calculation server checks regularly, if not-processed optimization orders are queued
- The optimization workflow is:
 - Order is loaded and the order's status is updated in the database
 - Calculation is performed based on the reference design in ANSYS
 - Input and output is text-based with a variable number of parameters and (geometric) restrictions
 - XML interface files are created for optiSLang and the optimization is performed
 - Best design is loaded and saved to the database
 - The order's status is updated in the database and the orderer is informed via email

XML-BASED INTERFACES IN OPTISLANG

XML usage in optiSLang

- The optimization process in optiSLang may be controlled via batch and an XML-file
- The XML-based interface in optiSLang 6.x.x is called OPX
- The XML file for problem description has to be recreated specifically for each project due to variable number of parameters
 - A DTD (Document Type Definition) file may be used to describe the XML file's structure
 - DTD files are also used to check XML/HTML files for structural integrity
 - Many computer languages support XML databinding to extract and create object from those DTD files
 - The XML object will contain all elements with their attributes defined in the DTD file
 - Using an XML object elements may be added and edited at run-time as often as needed before the XML (OPX) export is performed

Data Type Definition

</th <th>xml version='1.</th> <th>.0' encoding=</th> <th>='ISO-8859-15' ?></th> <th></th>	xml version='1.	.0' encoding=	='ISO-8859-15' ?>		
</th <th>ELEMENT OFX (NO</th> <th>DDES. EDGES.</th> <th>NODE ATTRIBUTES) ></th> <th></th>	ELEMENT OFX (NO	DDES. EDGES.	NODE ATTRIBUTES) >		
	ELEMENT NODES (NODE) +				
	ELEMENT NODE (NODE) *				
-	ATTLIST NODE</th				
		TA #REQUIRED			
	>				
	ELEMENT EDG</td <td>S (EDGE) +></td> <td></td> <td></td>	S (EDGE) +>			
	ELEMENT </td <td></td> <td></td> <td></td>				
-	ATTLIST H</td <td>EDGE</td> <td></td> <td></td>	EDGE			
	FROM	CDATA #REG	DUIRED		
		CDATA #REG			
		CDATA #REC			
		CDATA #REC	·		
	>				
ELEMENT NODE ATTRIBUTES (ATTRIBUTES) +					
ELEMENT ATTRIBUTES (ID, TYPE, (FILE, SEPARATOR, PARAMETERS, CR</th					
	ELEMENT ID (#PCDATA)				
	ELEMENT TYPE (#PCDATA)				
	ELEMENT FILE (#PCDATA)				
	ELEMENT SEPARATOR (#PCDATA)				
	ELEMENT PARAMETERS (PARAMETER+)				
< : ELEMENT PARAMETER (OPTIMIZATIONATTS) >					
- ATTLIST PARAMETER</td					
	CC	ONSTANT	(true false)	#REQUIRED	
	NZ	AME	CDATA	#REQUIRED	
	T	(PE	(opti mixed robust dependent)	#REQUIRED	
	v	ALUE	CDATA	#REQUIRED	
	v	ALUETYPE	(real integer string bool)	#REQUIRED	
		ORMAT	CDATA	#REQUIRED	
		INEOFFSET	CDATA	#REQUIRED	
		DLUMNOFFSET		#REQUIRED	
		INGTH	CDATA	#REQUIRED	
	EX	(PANDABLE	(true false)	#REQUIRED	
	>				

Snipped from the manually created DTD file for the OPX interface

- A DTD file consists of a root element:
 - (Sub)elements and attributes are defined topdown
 - Element and attribute names have to be unique
 - Frequency indicators may be used to enforce that certain elements are used (multiple times) or restrict an element to a single occurance
 - Atttributes may be either arbitrary strings or enumerations
- For older optiSLang versions 3.2.x DTD files are located in the installation directory
- For the OPX interface a DTD file may be create manually based on the interface description

XML-BASED INTERFACES IN OPTISLANG

OPX example

- The OPX file consists of the following elements
 - NODES (input/output files, solver etc.)
 - EDGES (connections between NODES)
 - NODE_ATTRIBUTES (detailed information for all prior defined NODES)

Example:

- The element EDGES contains a set of the subelement EDGE
- The element EDGE has to appear at least once (frequency indicator +)

Conclusion

- Optimization algorithms are powerful tools in the design process with regards to light weight products
- Given a parametrized structural element a generally vaild optimization workflow can be defined
- Data bases may be used to administrate optimization tasks and results
- Project specific OPX files may be created automatically and optiSLang may be controlled via batch und OPX files
- Automated processes are more performant and less sensitive to errors than manual processing of optimization tasks
- Automated processes may free bound resources and allow focussing on other tasks

Thank you very much for your attention!