Parameter identification for an hyperelastic material model of an elastomer rubber boot

presented at the 14th Weimar Optimization and Stochastic Days 2017 Source: www.dynardo.de/en/library

IFA Composite | Grunow, Ingo | 06/02/2017

WOST 2017

Motivation Constant velocity (CV) joint

Length compensation:

Flexion:

Motivation Pneumatic experiments

WOST 2017

Damage symptoms

 Unintended "S"-shaped deformation by negative length compensation.

 Breakage caused by damage areas on rubber boot surface.

 Lost contact caused by fluid pressure penetration at housing site.

Hyperelasticity - characteristics of rubber material

large deformation[1]

non-linear stress-strain behaviour

[1] http://www.instron.de/de-de/testing-solutions/by-material/biomedical/tension/bs-en-455-2

• strain energy potential W

 $W = W(I_1, I_2, I_3)$

• invariants of strain tensor

 $I_1 = \lambda_1^2 + \lambda_2^2 + \lambda_3^2$ $I_2 = \lambda_1^2 \lambda_2^2 + \lambda_2^2 \lambda_3^2 + \lambda_3^2 \lambda_1^2$

$$I_3 = \lambda_1^2 \lambda_2^2 \lambda_3^2$$

polynominal approach:
Ogden (6 parameter)

$$W = \sum_{i=1}^{N} \frac{\mu_i}{\alpha_i} (\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3)$$

• measurement data [2]

[2]: DIK – Deutsches Institut für Kautschuktechnologie e. V. 2015

Parameter identification and curve fitting with optiSLang

Project schematic

Sensitivity analysis and direct optimization result

Parameter:

$$W = \sum_{i=1}^{3} \frac{\mu_i}{\alpha_i} (\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3)$$

$$\alpha_i = 10^{\log \alpha_i}$$
$$\mu_i = 10^{\log \mu_i}$$

stress_steps_uT[11	.]			42.6 %		84.0 %	99.7 %
stress_steps_uT[10	1			41.2 %		82.9 %	98.8 %
stress_steps_uT[9	9 			35.4 %	5.6 %	80.5 %	97.7 %
stress_steps_uT[8	ŋ	6.2 %	0.0 %	25.6 %	11.1 %	66.7 %	95.1 %
stress_steps_uT[7	ני	7.8 %	5.9 %	13.1 %	29.0 %	40.4 %	90.8 %
្ធ្នូ stress_steps_uT[6	0.5 %	13.5 %	17.0 %		51.6 %	12.7 %	94.7 %
stress_steps_uT[5	0.0 %	15.0 %	16.6 %		59.4 %	4.4 %	98.4 %
stress_steps_uT[4	2.5 %	17.7 %	17.5 %		58.4 %		98.6 %
stress_steps_uT[3	2.6 %	17.3 %	16.8 %		58.8 %		99.2 %
stress_steps_uT[2	2.4 %	18.4 %	17.3 %		59.6 %		99.3 %
stress_steps_uT[1] 1.9 %	18.8 %	17.0 %		60.9 %		99.3 %
stress_steps_uT[0] 2.3 %	18.0 %	17.1 %		59.3 %		99.3 %
	MU1	A1	MU2	A3 Parameter	logA2	logMU3	Total

CoP-matrices:

stress_steps_sS[11]				40.6 %		81.9 %	99.2 %
stress_steps_sS[10]				32.5 %	6.8 %	78.8 %	97.6 %
stress_steps_sS[9]		6.4 %	0.0 %	22.6 %	16.0 %	59.1 %	94.1 %
stress_steps_sS[8]	0.6 %	9.2 %	14.4 %	3.2 %	43.8 %	22.1 %	90.2 %
stress_steps_sS[7]	0.0 %	13.0 %	17.5 %		55.4 %	8.2 %	96.0 %
န္ stress_steps_sS[6]	0.0 %	15.3 %	16.6 %		59.3 %	2.5 %	99.4 %
Stress_steps_sS[5]	2.9 %	17.1 %	17.8 %		59.9 %		99.0 %
stress_steps_sS[4]	2.4 %	16.7 %	17.9 %		59.6 %		99.3 %
stress_steps_sS[3]	2.1 %	18.6 %	17.2 %		59.1 %		99.3 %
stress_steps_sS[2]	1.9 %	17.1 %	18.1 %		59.6 %		99.3 %
stress_steps_sS[1]	2.2 %	18.0 %	17.1 %		59.3 %		99.3 %
stress_steps_sS[0]	2.3 %	16.6 %	18.0 %		60.8 %		99.3 %
	MU1	A1	MU2	A3 Parameter	logA2	logMU3	Total

i	α_i	μ_i	log α _i	log μ _i
1	2 4.5	0 0.3	1	1
2	1	50 100	-2 1.5	1
3	16.5 20.5	1	1	-64

Parameter identification and curve fitting with optiSLang Sensitivity analysis and direct optimization result

Signal plots:

Optimization result:

IFA Composite | Grunow, Ingo | 06/02/2017

WOST 2017

Length compensation and fluid pressure load

Positive length compensation dy= + 15 mm:

2D – axis symmetric analysis of an elastomer rubber boot

Length compensation and fluid pressure load

- Use optiSLang to fit a 6 parameter Ogden model on experimental data of uniaxial tensile test and simple shear test.
- Determined parameter set correlates well with experimental material data for strain range from 0 to 1.
- Deformation and seal function of rubber boot could have been predicted reliable by 2 dimensional axis symmetric fluid penetration analysis.
- Experiences will be used to develop a 3 dimensional FE model to investigate effects during flexion.

Contact:

Ingo Grunow – Ingo.Grunow@ifa-group.com (M. Eng.) Jean Lefèvre – Jean.Lefevre@ifa-group.com (Dr.-Ing.)