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Uncertainties in optimization

Design variables (e.g. manufacturing tolerances)
Objective function (e.g. tolerances, external factors)
Constraints (e.g. tolerances, external factors)

Design Variable 1

Contour lines of objective function
Design Variable 2

3/64 WOST14, 2017 c© Christian Bucher 2010–2017



Uncertainties in optimization

Design variables (e.g. manufacturing tolerances)
Objective function (e.g. tolerances, external factors)
Constraints (e.g. tolerances, external factors)

Design Variable 1

Contour lines of objective function
Design Variable 2

Infeasible Domain

3/64 WOST14, 2017 c© Christian Bucher 2010–2017



Uncertainties in optimization
Design variables (e.g. manufacturing tolerances)

Objective function (e.g. tolerances, external factors)
Constraints (e.g. tolerances, external factors)

Design Variable 1

Contour lines of objective function
Design Variable 2

Infeasible Domain

3/64 WOST14, 2017 c© Christian Bucher 2010–2017



Uncertainties in optimization
Design variables (e.g. manufacturing tolerances)
Objective function (e.g. tolerances, external factors)

Constraints (e.g. tolerances, external factors)

Design Variable 1

Contour lines of objective function
Design Variable 2

Infeasible Domain

3/64 WOST14, 2017 c© Christian Bucher 2010–2017



Uncertainties in optimization
Design variables (e.g. manufacturing tolerances)
Objective function (e.g. tolerances, external factors)
Constraints (e.g. tolerances, external factors)

Design Variable 1

Contour lines of objective function
Design Variable 2

Infeasible Domain

3/64 WOST14, 2017 c© Christian Bucher 2010–2017



Traditional design approach
Introduce ”safety factors” into the constraints
Leads to results satisfying safety requirement, but not necessarilyoptimal designs

Design Variable 1

Design Variable 2

Safe
ty m

argin

Infeasible Domain
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Tools for optimal robust design

Robust Design Optimization

Stochastic Design Optimization

Variance-Based Analysis Probability-Based Analysis

Fuzzy Logic etc.

• Sensitivity
• Reduction
• . . .

• Safety
• Failure cost
• . . .
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Motivating Example 1
Deterministic problem

L

B

H

F

Minimize cross section area of a
cantilever A = B · H
Constraint 1: limited vertical
deflection w

w = 4FL3EBH3 ≤ w0
Constraint 2: Sufficient stability in
lateral torsional buckling

Fcr = 0.4741EB3HL2 ≥ λF
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Motivating Example 2
Numerical solution for
L = 1 m, E = 210 MPa, F = 500 N, λ = 2, w0 = 0.1 m:Solution: B = 0.0425 m, H = 0.1309 m, A = 0.00556 m2
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Motivating Example 3
Stochastic problem

F is a random variables with mean value F̄ and standard deviation σF(assumed normally distributed)
Satisfy constraint conditions with certain probability Pi ≈ 1

P[C1 ≤ 0] = P
[ 4FL3
EBH3 – w0 ≤ 0

]
= P

[
F ≤ EBH3w04L3

]
≥ P1

P[C2 ≤ 0] = P
[
λF – 0.4741EB3HL2 ≤ 0

]
= P

[
F ≤ 0.4741EB3H

λL2
]
≥ P2

B, H, L may be random, too
Objective function

A = BH→ Min.!
Constraint conditions

P[C1 ≥ 0] ≤ 1 – P1 = PF1
P[C2 ≥ 0] ≤ 1 – P2 = PF2
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Motivating Example 4
Numerical solution for F̄ = 500 N, σF = 100 N, PF1 = 10–3,PF2 = 10–4B = 0.0493 m, H = 0.1462 m, A = 0.00721 m2 (30% more)
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Probability
Events

Ω

A

B

C

Axioms(Kolmogorov)
I : 0 ≤ P[A] ≤ 1
II : P[Ω] = 1
III : P[A ∪ B] = P[A] + P[B]

P[A ∪ C] = P[A] + P[C] – P[A ∩ C]
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Complementary Event

Ω

A

Ā

An event can either happen or not happen
P[A] + P[Ā] = P[Ω] = 1

An event cannot happen and not happen at the same time
P[A ∩ Ā] = P[∅] = 0
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Conditional Probability

Ω

A

BΩ

A

B

A ∩ B

Definition
P[A`B] = P[A ∩ B]P[B]

Independence
P[A`B] = P[A]

→ P[A ∩ B] = P[A]P[B]
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Decomposition of event space

Ω

A1

B

A2 An

Total probability
P[B] = P[B`A1] P[A1] + . . . + P[B`An]P[An]

Bayes’ theorem
P[Ai`B] = P[B`Ai]P[Ai]

P[B`A1]P[A1] + . . . + P[B`An]P[An]
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Random Variables
Distribution function

FX(x) = P[X < x]; limx→–∞ FX(x) = 0; limx→+–∞ FX(x) = 1
Probability density function

fX(x) = ddxFX(x)
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Expected values
Definition

E[g(X)] =
∫ ∞
–∞ g(x)fX(x)dx

Mean value
X̄ = E[X] =

∫ ∞
–∞ xfX(x)dx

Variance (square of standard deviation)
σ2X = E[(X – X̄)2] =

∫ ∞
–∞ (x – X̄)

2fX(x)dx
Coefficient of variation (dimensionless)

VX = σXX̄ ; X̄ , 0
Expectation is a linear operator

E[g + h] = E[g] + E[h]; E[λg] = λE[g]
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Estimation

Estimator Γ for an unknown parameter γ (e.g. mean value) fromindependent observations Xk; k = 1 . . . n
Consistency

Γ : Γn = Γ(X1, . . . Xn)
[ε > 0 : limn→∞ P[`Γn – γ` < ε] = 1

Unbiasedness
E[Γn] = γ

Asymptotic unbiasedness
limn→∞ E[Γn] = γ

Any estimate based on finite sample size contains some uncertaintywhich should be made sufficiently small (usually by adjusting thesample size)

16/64 WOST14, 2017 c© Christian Bucher 2010–2017



Estimation error

Limited number of samples leads to random deviation of theestimate from the true expected value
Example: estimator for the mean value

mX = 1n
n∑
i=1
Xi

Variance of the estimated value
σ2m = E[(m – X̄)2]

Estimator for the variance of the mean value estimator
S2m = 1

n(n – 1)
n∑
i=1
(m – Xi)2 = 1nS2X
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Confidence interval
Statistical error (standard deviation) of the estimator

Sm = SX√n
Assume normally distributed error→ Compute confidence intervalfor estimated value

m̄
m

f(m)

mL mU

P[mL ≤ m ≤ mU] = 1 – α
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Two distribution functions

Normal (Gaussian) distribution
fX(x) = 1

√2πσX exp

– (x – X̄)22σ2X


; –∞ < x < ∞

FX(x) = Φ
(x – X̄
σX

)
; Φ(z) = 1

√2π
∫ z
–∞ exp

(
–u22

)
du

Log-normal distribution

fX(x) = 1
x√2πs exp


– (log

x
µ )2)

2s2

; 0 ≤ x < ∞

FX(x) = Φ *
,

log xµ
s +

-
; µ = X̄ exp

(
–s22

)
; s =

√√
ln *

,

σ2X
X̄2 + 1+

-
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Normal and log-normal density functions
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Random Vectors

Collect all random variables into a random vector
X = [X1, X2, . . . Xn]T

Mean value by applying expectation operator to all components
X̄ = E[X] = [X̄1, X̄2, . . . X̄n]T

Covariance matrix
CXX = E[(X – X̄)(X – X̄)T]

Coefficient of correlation
ρik = E[(Xi – X̄i)(Xk – X̄k)]σXiσXk
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Joint probability density function
Multi-dimensional normal distribution

fX(x) = 1
(2π) n2√detCXX exp

[–12 (x – X̄)TC–1XX(x – X̄)
] ; x ∈ Òn

Two-dimensional case
x1

x2 x1

x2
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Nataf model

Transformation of correlated non-Gaussian random variables (ρik) tocorrelated standard Gaussian variables (ρ′ik)
{Xi; fXi (xi)}↔ {Vi; ϕ(vi)}

Mapping Vi = Φ–1[FXi (Xi)]
Properties

E[Vi] = 0; E[V2i ] = 1; E[ViVk] = ρ′ik
Assumption of a multi-dimensional Gaussian distribution

fV(v) = 1
(2π) n2√detRVV exp

(–12vTR–1VVv
)
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Joint probability density function

Example: two correlatedrandom variables
X1 . . . Lognormallydistributed
X2 . . . Normallydistributes
Both variables havemean values 1, standarddeviations 0.5,correlation ρ12 = 0.5
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Simulation of samples

Example: two correlatedrandom variables asbefore
Correlation ρ12 = 0.5
1000 samples
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Plain Monte Carlo vs. Latin Hypercube
Special considerations required for small sample size
10 samples of uniformly distributed independent random variables
Quasi-random sampling provides better coverage of space

X1

X2

X1

X2

PMC LHS
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Estimation of correlations
Repeated simulations lead to different results→ estimator for ρ israndomly distributed (but not normal)

Iρ
ρ

f(ρ)

95%

Iρ = [tanh(zij – zc
√N – 3 ), tanh(zij +

zc
√N – 3 )]

zij = 12 log
1 + ρij
1 – ρij ; zc = Φ–1(1 – α ′/2)
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Example
Repeated simulation of two correlated Gaussian variables
Estimate coefficient of correlation from samples
Perform statistics on the estimators
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Reliability analysis
Mechanical system

Mpl

F

Me

L

Failure condition
F = {(F, L,Mpl) : FL ≥ Mpl} = {(F, L,Mpl) : 1 – FLMpl ≤ 0}

Failure probability
P(F ) = P[{X : g(X) ≤ 0}

P(F ) =
∫ ∞
–∞ . . .

∫ ∞
–∞ Ig(x)fX1 ...Xndx1 . . . dxn

Ig(x1 . . . xn) = 1 if g(x1 . . . xn) ≤ 0 and Ig(.) = 0 else
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Computational Challenge
Integrand is non-zero only in a small region
Difficult to find appropriate integration points
Example in standard Gaussian space

g(x1, x2) = 3 – x1 – x2

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5
-4
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-1
0
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Variable X1

Varia
ble X

2

g(x) < 0g(x) > 0
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First order reliability method (FORM)
Transformation to standard Gaussian space (here: Rosenblatttransform for Nataf-model)

Yi = Φ–1[FXi (Xi)]; i = 1. . . n
U = L–1Y; CYY = LLT

Inverse transformation

Xi = F–1Xi

Φ *.

,

n∑
k=1
LikUk+/

-



Computation of ”design point”
u∗ : uTu→ Min.; subject to : g[x(u)] = 0

Linearize the limit state function at the design point in standardGaussian space
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FORM Procedure

u1

u2

β

s1
g(u) = 0

ḡ(u) = 0
u∗

s2

ḡ : –
n∑
i=1
uisi + 1 = 0;

n∑
i=1

1
s2i
= 1
β2

P(F ) = Φ(–β)
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Monte Carlo estimation
Write failure probability as expectation

P(F ) = pf =
∫ ∞
–∞

∫ ∞
–∞ . . .

∫ ∞
–∞ Ig(x)fX1 ...Xndx1 . . . dxn

Indicator function
Ig(x1 . . . xn) = 



1 for g(x1 . . . xn) ≤ 0
0 else

Consistent and unbiased estimator (arithmetic mean)
p̄f = 1m

m∑
k=1

Ig(x(k))

Variance of estimator
σ2̄pf =

pfm – p
2fm ≈

pfm → σp̄f =
√pfm
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Importance sampling
Simulation density

x1

x2
pdf

hY(x)fX(x)

Estimator of failure probability
P̄(F ) = 1m

m∑
k=1

fX(x)hY(x) Ig(x) = E
[ fX(x)hY(x) Ig(x)

]

Variance of estimator
σ2̄P(F ) = 1mE

[ fX(x)2
hY(x)2 Ig(x)

]
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Importance sampling at the design point

Determine design point u∗ in standard Gaussian space (e.g. usingFORM)
Construct a multi-dimensional standard Gaussian sampling densitycentered at the design point with unit covariance matrix (identical tothat of the actual random variables in standard Gaussian space)

hY(u) = 1
(2π) n2 exp

[–12 (u – u∗)T(u – u∗)
]

Carry out random sampling and estimation of the failure probability
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Example
Two standard Gaussian random variables

g(X1, X2) = 3 – X1 – X2; x∗ = [1.5, 1.5]T
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Monte Carlo Importance sampling
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Directional sampling

Transformation into standard Gaussian space
Generate random unit direction vector
Compute the distance from the origin to the failure domain in thisdirection (typically using bisection)
Compute conditional failure probability for this direction (Chi-Squaredistribution)
Statistical analysis (estimation of mean and variance)
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Procedure

Conditional failure probabilityP(F `a) for one direction a
u1

u2

a

g(u) = 0R∗

1

P(F `a)

P(F `a) =
∫ ∞
R∗(a) fR`A(r`a)dr =

= Snrn–1 1
π
n2
exp

(
– r22

)
dr = 1 – χ2n[R∗(a)2]
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Robust Optimization Procedure
Outer optimization loop controls the structural design
Probability of constraint violation computed by FORM
Inner optimization driven by random variables
Both loops need gradients . . .

Compute probability of
constraint violation
Pk = P[fk(xj) > 0]

Compute objective f0(xj)

Start optimization loop

Create one design xj

Check convergence

FORM optimization loop

FE analysis

Re
pe
at
fo
rg

ra
di
en
ts
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The need for speed ...

Complex system (many parameters, computationally expensive,slow, ...)
Needed: Fast and reasonably accurate response prediction (e.g. forreal-time applications such as control systems)
Possible choices:

Reduce model complexity based on essential physical features
(“reduced order model”)
Replace model based on mathematical simplicity (“metamodel”)

Stochastic analysis needs to be very efficient
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Reduced order model

Need to understand and represent physics
May be applicable for many different load cases
Very suitable for time dependent phenomena (structural dynamics,convection-diffusion processes)
Can be difficult in the presence of strong nonlinearity
Typical examples

Modal analysis
Proper orthogonal decomposition (POD)
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Metamodel

Mathematically formulated black box
Suitable for arbitrarily nonlinear input-output relations
Requires extensive training data
Very difficult to extrapolate
Time-dependent problems may be tricky
Typical example: Linear or quadratic response surface model
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Response surface method

Reduce computational effort by replacing expensive FE analyses
Establish meta-models in terms of simple mathematical functions
Fit model parameters to FE solution using regression analysis

x1

x2
η
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Regression models 1

Mathematical formulation for response surfaces is closely related tolinear regression and interpolation modeling
Response surface model is based on linear regression if itsfunctional form if linear in the unknown parameters pk, i.e.

η(x) =
n∑
k=1
pkfk(x)

Sequence of input values xi, i = 1 . . .m and corresponding modeloutput values yi, i = 1 . . .m
Determine parameters pk can be determined by solving the leastsquares problem

S2 =
m∑
i=1

[yi – η(xi)]2 → Min.!
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Regression models 2
Together with the linear regression model this results in

S2 =
m∑
i=1


yi –

n∑
k=1
pkfk(xi)



2
→ Min.!

If the number of parameters n is equal to the number of data pairsm, then the regression model becomes an interpolation model.
Global functions are functions not localizing in certain areas (such aspolynomials)
Linear polynomial function

ηl(x) = p0 +
n∑
k=1
pkxk

Quadratic model
ηq(x) = p0 +

n∑
k=1
pkxk +

n∑
k=1

n∑
j=1
pkjxkxj
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Regression models 3
Localized models such as radial basis functions

ηr(x) =
n∑
k=1
pkφk(x, xk)

in which φk(y) = φk(``y``) = φk(r) are functions depending only on themagnitude of the vector argument and xk are the localization pointsof the RBF functions. If the localization points coincide with the datapoints, then this model is interpolating. Otherwise it is a linearregression model.
Thin plate splines

φ(r) = r2 log r
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Regression models 4
Example (6 data points in 2D)
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Design of Experiments (DoE)

Explore range of variables by numerical experiments
Cover range of all variables as uniformly as possible
Keep number of experiments small

Factorial design Monte Carlo Sampling Latin Hypercube Sampling
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Example
Adapt 1D metamodel to 12 data points

Linear function
Quadratic function
Cubic function
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Quality of metamodel
Coeffient of determination (CoD, R2): correlation betweenexperimental data and model predictions

R2 =
(E[(Y – Z̄) · (Z – Z̄)]

σYσZ
)2 = ρ2YZ; Z = n∑

i=1
pigi(X)

CoD may be high due to overfitting (leads to bad prediction behavior)
Adjusted CoD for small sample sizes m (penalize overfitting)

R2adj = R2 – n – 1m – n
(1 – R2)

If an additional test data set T is available: Coefficient of Quality(CoQ)
CoQ =

(E[(T – T̄) · (ZT – Z̄T)]
σYσZ

)2 = ρ2TZT ; ZT = n∑
i=1
pigi(XT); 0 ≤ CoQ ≤ 1

Practical application: randomly split data into training set/test set orleave-one-out cross validation.
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Previous Example

Change model order k for best CoQ, compare to CoD

k CoD CoQ
1 0.70 0.572 0.86 0.773 0.90 0.704 0.91 0.36
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Importance measures

Several possibilities, simplest is based on linear correlations (suitableonly for almost linear models)
Suggested: Use dependence of CoQ on individual variables
Compute CoQ for full model (all input variables)
Remove input variable xk from regression models, compute CoQkand ∆k = CoQ – CoQk
Normalised importance measure Ik = ∆k∑

∆kCoQ
Positive importance measures indicated important variables,negative measure indicate that variable should be removed.
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Example

5-dimensional test function (taken from optiSLang docu)
g = 0.5x1 + x2 + 0.5x1x2 + 5 sin x3 + 0.2x4 + 0.1x5

All variables are in the range [–π, π]
Introduce a 6th variable which does not appear in the function
Establish DOE with 100 samples (using Latin Hypercube Sampling)
Carry out LOO cross validation

Remove sample k from training data, use this as test sample
Adjust regression model to training data (Thin Plate Spline)
Apply model to test input and compute model output k
Repeat with next k

Compute correlations between all test data and correspondingmodel outputs
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Metamodel of Optimal Quality

Determine importance measures Ik and eliminate variables withsmallest importance
MOQ contains variables X1, X2, and X3.

ρ I(1)k I(2)k I(3)k I(4)k I(5)k0.19 0.16 0.15 0.16 0.19 n.a.
0.46 0.30 0.30 0.25 0.32 0.16
0.62 0.43 0.50 0.55 0.46 0.440.06 -0.01 -0.04 -0.04 n.a. n.a.
0.19 -0.01 -0.05 n.a. n.a. n.a.-0.06 -0.06 n.a. n.a. n.a. n.a.
CoQ 0.77 0.86 0.92 0.97 0.61
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Choice of support points for reliability analysis

Contributions to failure probability only from very narrow regionnear the design point
Most important to have support points for the response surface ĝ(x)very close to or exactly at the limit state g(x) = 0

x1

x2

g(x) = 0

ḡ(x) = 0
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Determine support points
Locate points on the boundary using a search procedure (e.g.bisection)
Close similarity to directional sampling method

ai

ak R∗i

R∗k

xi

xk

ϕ

ĝ(u) = 0

u2

u1
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Example: Frame under static loads
Plane frame under two static loads H and V
Minimize structural mass subject to constraints on

Horizontal deflection u < u0Vertical deflection w < w0Buckling load factor λ ≥ λ0
V

H

w
u

d1

d2

d4

d3
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Deterministic Optimization

E = 210 GPa, ρ = 7850 kg/m3, H = 100 kN, V = 117 kN, u0 = 0.05 m,w0 = 0.05 m, λ0 = 2.5.
Optimal cross sections (requires 100 FE analyses):d1 = 0.082 m, d2 = 0.069 m, d3 = 0.137 m, d4 = 0.152 m,m = 1388 kg.
Deformed optimal structure (magnified 5x)

58/64 WOST14, 2017 c© Christian Bucher 2010–2017



Stochastic Problem

Loads are random variables with mean values H̄ = 100 kN, V̄ = 117kN and coefficients of variation of 5%.
Constraints are satisfied with prescribed reliability levels βu = βw = 3,
βλ = 4.Two approaches

Method of safety factors: Upscale deterministic optimum cross
sections such as to satisfy probabilistic constraints
Leads to design with mass m = 1706 kg (increase of 23%).
Stochastic optimization (RBDO): Include probabilistic constraints into
the optimization process
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Stochastic Optimization
Loads are random variables with mean values H̄ = 100 kN, V̄ = 117kN and coefficients of variation of 5%.Constraints are satisfied with prescribed reliability levels βu = βw = 3,
βλ = 4.Probabilities of constraint violation computed by FORMStraightforward analysis requires about 35.000 structural analyses.Optimal cross sections:d1 = 0.081 m, d2 = 0.076 m, d3 = 0.150 m, d4 = 0.171 mm = 1657 kg (19% increase).
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Adaptive Response Surface Method (ARSM)

Repeated application of DOE scheme based on previousoptimization results
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Application of ARSM 1

1. Initial DOE with 256 structural analyses
2. Approximate constraint functions by Metamodels of Optimal Quality
3. Carry out stochastic optimization
4. re-center DOE and narrow range (factor 0.7), loop to Step 2 or break
5. Check feasibility of approximate solution
4 iterations result ind1 = 0.083 m, d2 = 0.078 m, d3 = 0.144 m, d4 = 0.172 mm = 1665 kg.
Result is not feasible (Constraint 1 is slightly violated)
Upscale solution by 0.2% satisfies all constraints, m = 1673 kg(20.5%) increase.
Compared to full stochastic analysis: reduce computation by factor35.
Compared to deterministic analysis: increase factor by 10.
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Application of ARSM 2

exact

ARSM
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Further reading

C. Bucher: ComputationalAnalysis of Randomness inStructural Mechanics, Taylor &Francis, 2009.
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