# Basis concepts of robust design optimization

**Christian Bucher** 

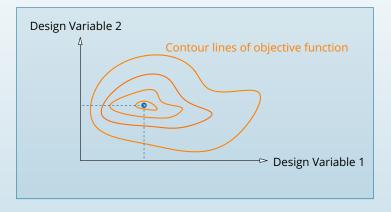


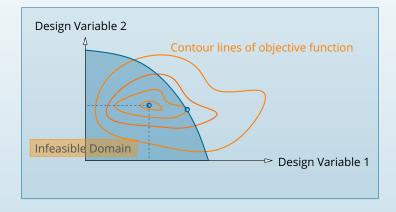
TU Wien & Dynardo Austria GmbH, Vienna

14th Annual Weimar Optimization and Stochastics Days, 1/2 June 2017

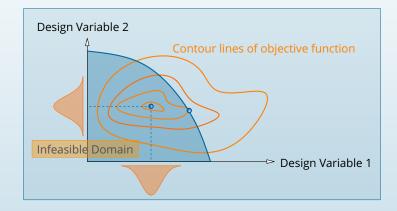
## **Overview**

- Introduction
- Uncertainties in Optimization
- Motivating Example
- Probability theory
- Estimation
- Failure probability
- Sampling methods
- Response Surface Method
- Quality of Meta-models
- Example

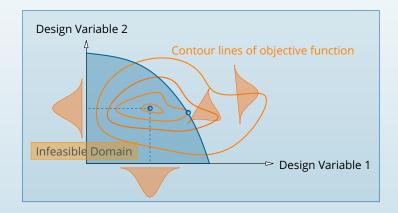




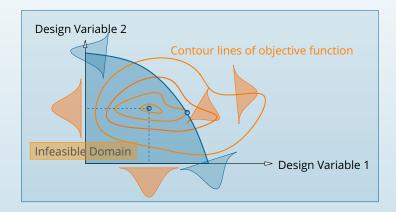
Design variables (e.g. manufacturing tolerances)



- Design variables (e.g. manufacturing tolerances)
- Objective function (e.g. tolerances, external factors)

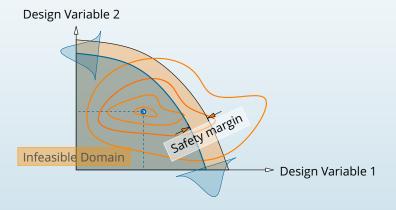


- Design variables (e.g. manufacturing tolerances)
- Objective function (e.g. tolerances, external factors)
- Constraints (e.g. tolerances, external factors)

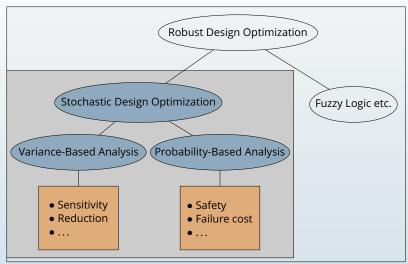


# **Traditional design approach**

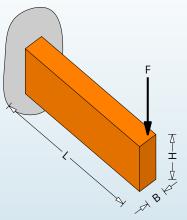
- Introduce "safety factors" into the constraints
- Leads to results satisfying safety requirement, but not necessarily optimal designs



## Tools for optimal robust design



## Deterministic problem



- Minimize cross section area of a cantilever  $A = B \cdot H$
- Constraint 1: limited vertical deflection w

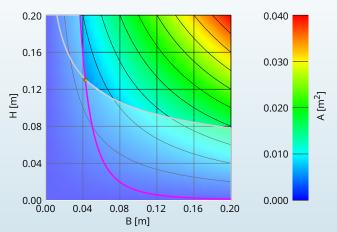
$$w = \frac{4FL^3}{EBH^3} \le w_0$$

Constraint 2: Sufficient stability in lateral torsional buckling

$$F_{cr} = 0.4741 \frac{EB^{3}H}{L^{2}} \ge \lambda F$$

Numerical solution for

L = 1 m, E = 210 MPa, F = 500 N,  $\lambda$  = 2, w<sub>0</sub> = 0.1 m: Solution: B = 0.0425 m, H = 0.1309 m, A = 0.00556 m<sup>2</sup>



- Stochastic problem
  - F is a random variables with mean value  $\overline{F}$  and standard deviation  $\sigma_{F}$ (assumed normally distributed)
  - Satisfy constraint conditions with certain probability  $P_i \approx 1$

$$\begin{split} \mathbf{P}[C_1 \leq 0] &= \mathbf{P}\left[\frac{4FL^3}{EBH^3} - w_0 \leq 0\right] = \mathbf{P}\left[F \leq \frac{EBH^3w_0}{4L^3}\right] \geq P_1 \\ \mathbf{P}[C_2 \leq 0] &= \mathbf{P}\left[\lambda F - 0.4741\frac{EB^3H}{L^2} \leq 0\right] = \mathbf{P}\left[F \leq \frac{0.4741EB^3H}{\lambda L^2}\right] \geq P_2 \end{split}$$

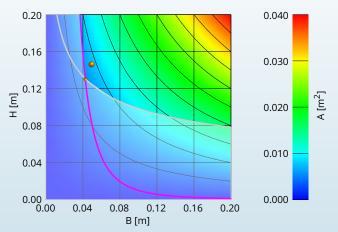
- B, H, L may be random, too
- **Objective function**

$$\mathsf{A}=\mathsf{BH}\to\mathsf{Min.!}$$

Constraint conditions

 $P[C_1 \ge 0] \le 1 - P_1 = P_{F_1}$  $P[C_2 \ge 0] \le 1 - P_2 = P_{F_2}$ 

- Numerical solution for  $\overline{F}$  = 500 N,  $\sigma_F$  = 100 N,  $P_{F_1}$  = 10<sup>-3</sup>,  $P_{F_2} = 10^{-4}$
- B = 0.0493 m, H = 0.1462 m, A = 0.00721 m<sup>2</sup> (30% more)





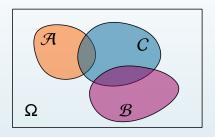
WOST14, 2017

 $\begin{aligned} |: & 0 \le \mathsf{P}[\mathcal{A}] \le 1 \\ ||: & \mathbf{P}[\Omega] = 1 \end{aligned}$ 

 $\mathsf{III}: \mathbf{P}[\mathcal{A} \cup \mathcal{B}] = \mathbf{P}[\mathcal{A}] + \mathbf{P}[\mathcal{B}]$ 

 $\mathbf{P}[\mathcal{A} \cup C] = \mathbf{P}[\mathcal{A}] + \mathbf{P}[C] - \mathbf{P}[\mathcal{A} \cap C]$ 

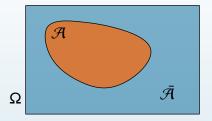
Axioms(Kolmogorov)

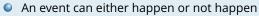


**Probability** 

Events

## **Complementary Event**



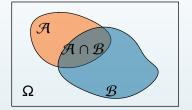


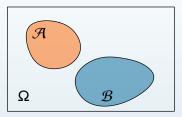
$$\mathbf{P}[\mathcal{A}] + \mathbf{P}[\bar{\mathcal{A}}] = \mathbf{P}[\Omega] = 1$$

An event cannot happen and not happen at the same time

$$\mathbf{P}[\mathcal{A} \cap \bar{\mathcal{A}}] = \mathbf{P}[\emptyset] = 0$$

## **Conditional Probability**



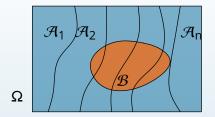


Definition

$$\mathsf{P}[\mathcal{A}|\mathcal{B}] = \frac{\mathsf{P}[\mathcal{A} \cap \mathcal{B}]}{\mathsf{P}[\mathcal{B}]}$$

Independence

$$\mathbf{P}[\mathcal{A}|\mathcal{B}] = \mathbf{P}[\mathcal{A}]$$
$$\rightarrow \mathbf{P}[\mathcal{A} \cap \mathcal{B}] = \mathbf{P}[\mathcal{A}]\mathbf{P}[\mathcal{B}]$$



Total probability

 $\mathbf{P}[\mathcal{B}] = \mathbf{P}[\mathcal{B}|\mathcal{A}_1] \, \mathsf{P}[\mathcal{A}_1] + \ldots + \mathbf{P}[\mathcal{B}|\mathcal{A}_n] \mathbf{P}[\mathcal{A}_n]$ 

Bayes' theorem

 $\mathbf{P}[\mathcal{R}_i|\mathcal{B}] = \frac{\mathbf{P}[\mathcal{B}|\mathcal{R}_i]\mathbf{P}[\mathcal{R}_i]}{\mathbf{P}[\mathcal{B}|\mathcal{R}_1]\mathbf{P}[\mathcal{R}_1] + \ldots + \mathbf{P}[\mathcal{B}|\mathcal{R}_n]\mathbf{P}[\mathcal{R}_n]}$ 

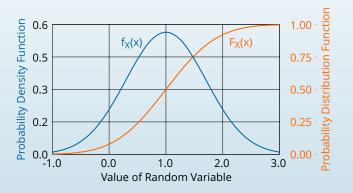
## **Random Variables**

Distribution function

$$F_X(x) = \mathbf{P}[X < x]; \lim_{x \to -\infty} F_X(x) = 0; \lim_{x \to +-\infty} F_X(x) = 1$$

Probability density function

$$f_X(x) = \frac{d}{dx}F_X(x)$$



## **Expected values**

 $\mathbf{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$ 

Mean value

$$\bar{X} = \mathbf{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

Variance (square of standard deviation)

$$\sigma_X^2 = \mathbf{E}[(X - \bar{X})^2] = \int_{-\infty}^{\infty} (x - \bar{X})^2 f_X(x) dx$$

Coefficient of variation (dimensionless) 

$$V_X = \frac{\sigma_X}{\bar{X}}; \quad \bar{X} \neq 0$$

Expectation is a linear operator

$$\mathbf{E}[g + h] = \mathbf{E}[g] + \mathbf{E}[h]; \quad \mathbf{E}[\lambda g] = \lambda \mathbf{E}[g]$$

WOST14, 2017

# 16/64

## **Estimation**

- Estimator  $\Gamma$  for an unknown parameter  $\gamma$  (e.g. mean value) from independent observations  $X_k$ ; k = 1 . . . n
- Consistency

$$\begin{split} & \Gamma: \Gamma_n = \Gamma(X_1, \dots X_n) \\ & \forall \varepsilon > 0: \quad \lim_{n \to \infty} P[|\Gamma_n - \gamma| < \varepsilon] = 1 \end{split}$$

Unbiasedness

 $\textbf{E}[\Gamma_n]=\gamma$ 

Asymptotic unbiasedness

 $\lim_{n\to\infty} \mathbf{E}[\Gamma_n] = \gamma$ 

 Any estimate based on finite sample size contains some uncertainty which should be made sufficiently small (usually by adjusting the sample size)

## **Estimation error**

- Limited number of samples leads to random deviation of the estimate from the true expected value
- Example: estimator for the mean value

$$m_X = \frac{1}{n} \sum_{i=1}^n X_i$$

Variance of the estimated value

$$\sigma_{\rm m}^2 = {\bf E}[({\rm m}-{\bar X})^2]$$

Estimator for the variance of the mean value estimator

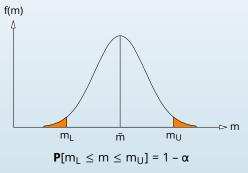
$$S_m^2 = \frac{1}{n(n-1)} \sum_{i=1}^n (m - X_i)^2 = \frac{1}{n} S_X^2$$

## **Confidence** interval

Statistical error (standard deviation) of the estimator

$$S_m = \frac{S_X}{\sqrt{n}}$$

 Assume normally distributed error → Compute confidence interval for estimated value



## **Two distribution functions**

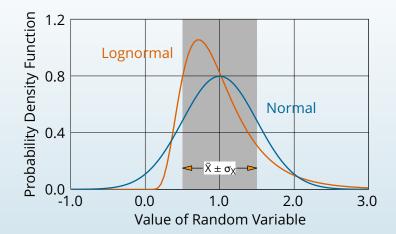
Normal (Gaussian) distribution

$$\begin{split} f_X(x) &= \frac{1}{\sqrt{2\pi}\sigma_X} \exp\left[-\frac{(x-\bar{X})^2}{2\sigma_X^2}\right]; \quad -\infty < x < \infty \\ F_X(x) &= \Phi\left(\frac{x-\bar{X}}{\sigma_X}\right); \quad \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z \exp\left(-\frac{u^2}{2}\right) du \end{split}$$

Log-normal distribution

$$\begin{split} f_X(x) &= \frac{1}{x\sqrt{2\pi}s} \exp\left[-\frac{(\log\frac{x}{\mu})^2}{2s^2}\right]; \quad 0 \le x < \infty \end{split}$$
 
$$F_X(x) &= \Phi\left(\frac{\log\frac{x}{\mu}}{s}\right); \quad \mu = \bar{X} \exp\left(-\frac{s^2}{2}\right); \quad s = \sqrt{\ln\left(\frac{\sigma_X^2}{\bar{X}^2} + 1\right)^2}$$

## Normal and log-normal density functions



## **Random Vectors**

Collect all random variables into a random vector

$$\mathbf{X} = [X_1, X_2, \dots X_n]^T$$

Mean value by applying expectation operator to all components

$$\bar{\mathbf{X}} = \mathbf{E}[\mathbf{X}] = [\bar{X}_1, \bar{X}_2, \dots \bar{X}_n]^T$$

Covariance matrix

$$\mathbf{C}_{\mathbf{X}\mathbf{X}} = \mathbf{E}[(\mathbf{X} - \bar{\mathbf{X}})(\mathbf{X} - \bar{\mathbf{X}})^{\top}]$$

Coefficient of correlation 

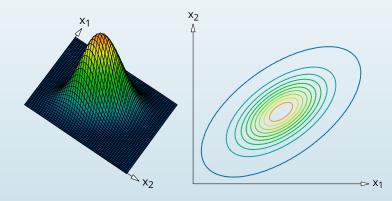
$$\rho_{ik} = \frac{\mathbf{E}[(X_i - \bar{X}_i)(X_k - \bar{X}_k)]}{\sigma_{X_i}\sigma_{X_k}}$$

## Joint probability density function

Multi-dimensional normal distribution

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{n}{2}}\sqrt{\det \mathbf{C}_{\mathbf{X}\mathbf{X}}}} \exp \left[-\frac{1}{2}(\mathbf{x}-\bar{\mathbf{X}})^{\mathsf{T}}\mathbf{C}_{\mathbf{X}\mathbf{X}}^{-1}(\mathbf{x}-\bar{\mathbf{X}})\right]; \ \mathbf{x} \in \mathbb{R}^{n}$$

Two-dimensional case



## Nataf model

 Transformation of correlated non-Gaussian random variables (ρ<sub>ik</sub>) to correlated standard Gaussian variables (ρ'<sub>ik</sub>)

 $\{X_i; f_{X_i}(x_i)\} \leftrightarrow \{V_i; \phi(v_i)\}$ 

Mapping

 $V_i = \Phi^{-1}[F_{X_i}(X_i)]$ 

Properties

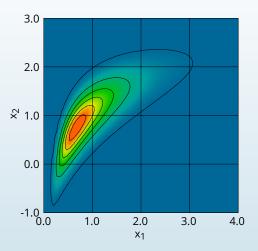
$$E[V_i] = 0; E[V_i^2] = 1; E[V_iV_k] = \rho'_{ik}$$

Assumption of a multi-dimensional Gaussian distribution

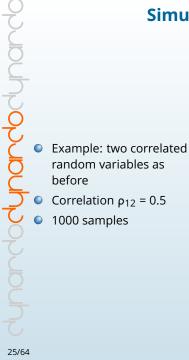
$$f_{\mathbf{V}}(\mathbf{v}) = \frac{1}{(2\pi)^{\frac{n}{2}}\sqrt{\det \mathbf{R}_{\mathbf{V}\mathbf{V}}}} \exp\left(-\frac{1}{2}\mathbf{v}^{\mathsf{T}}\mathbf{R}_{\mathbf{V}\mathbf{V}}^{-1}\mathbf{v}\right)$$

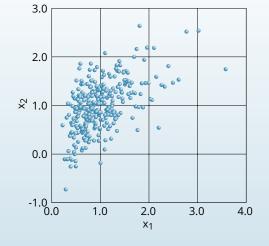
## Joint probability density function

- Example: two correlated random variables
- X<sub>1</sub>... Lognormally distributed
- X<sub>2</sub>... Normally distributes
  - Both variables have mean values 1, standard deviations 0.5, correlation  $\rho_{12} = 0.5$



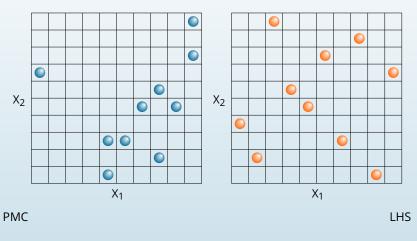
# Simulation of samples





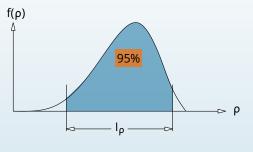
## Plain Monte Carlo vs. Latin Hypercube

- Special considerations required for small sample size
- 10 samples of uniformly distributed independent random variables
  - Quasi-random sampling provides better coverage of space



## **Estimation of correlations**

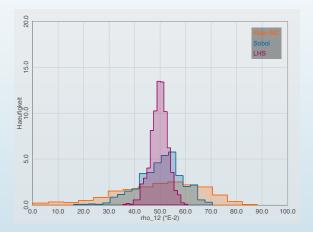
• Repeated simulations lead to different results  $\rightarrow$  estimator for  $\rho$  is randomly distributed (but not normal)



$$\begin{split} I_{\rho} &= [\tanh(z_{ij} - \frac{z_c}{\sqrt{N-3}}), \ \tanh(z_{ij} + \frac{z_c}{\sqrt{N-3}})] \\ z_{ij} &= \frac{1}{2} \log \frac{1+\rho_{ij}}{1-\rho_{ij}}; \quad z_c = \Phi^{-1}(1-\alpha'/2) \end{split}$$

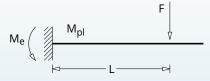
## Example

- Repeated simulation of two correlated Gaussian variables
- Estimate coefficient of correlation from samples
- Perform statistics on the estimators



## **Reliability analysis**





Failure condition

$$\mathcal{F} = \{(\mathsf{F},\mathsf{L},\mathsf{M}_{\mathsf{Pl}}):\mathsf{FL}\geq\mathsf{M}_{\mathsf{Pl}}\} = \{(\mathsf{F},\mathsf{L},\mathsf{M}_{\mathsf{Pl}}):1-\frac{\mathsf{FL}}{\mathsf{M}_{\mathsf{Pl}}}\leq 0\}$$

Failure probability

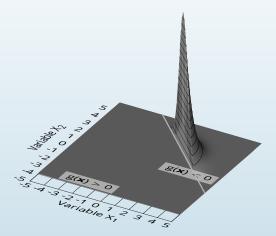
lg(X1

$$\begin{split} \mathbf{P}(\mathcal{F}) &= \mathbf{P}[\{\mathbf{X} : g(\mathbf{X}) \leq 0\} \\ & \mathbf{P}(\mathcal{F}) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} I_g(x) f_{X_1 \dots X_n} dx_1 \dots dx_n \\ \dots x_n) &= 1 \text{ if } g(x_1 \dots x_n) \leq 0 \text{ and } I_g(.) = 0 \text{ else} \end{split}$$

## **Computational Challenge**

- Integrand is non-zero only in a small region
- Difficult to find appropriate integration points
- Example in standard Gaussian space

$$g(x_1, x_2) = 3 - x_1 - x_2$$



## First order reliability method (FORM)

 Transformation to standard Gaussian space (here: Rosenblatt transform for Nataf-model)

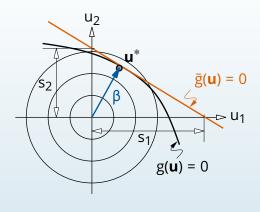
$$\begin{aligned} \mathbf{Y}_i &= \boldsymbol{\Phi}^{-1}[\mathbf{F}_{X_i}(\mathbf{X}_i)]; \quad \mathbf{i} = 1 \dots \mathbf{n} \\ \mathbf{U} &= \mathbf{L}^{-1}\mathbf{Y}; \quad \mathbf{C}_{\mathbf{Y}\mathbf{Y}} = \mathbf{L}\mathbf{L}^{\mathsf{T}} \end{aligned}$$

Inverse transformation

$$X_i = F_{X_i}^{-1} \left[ \Phi \left( \sum_{k=1}^n L_{ik} U_k \right) \right]$$

- Computation of "design point"
  - $\mathbf{u}^* : \mathbf{u}^T \mathbf{u} \rightarrow \text{Min.}; \text{ subject to } : g[\mathbf{x}(\mathbf{u})] = 0$
- Linearize the limit state function at the design point in standard Gaussian space

## **FORM Procedure**



$$\bar{g}: -\sum_{i=1}^{n} \frac{u_i}{s_i} + 1 = 0; \quad \sum_{i=1}^{n} \frac{1}{s_i^2} = \frac{1}{\beta^2}$$

$$\mathbf{P}(\mathcal{F}) = \Phi(-\beta)$$

### **Monte Carlo estimation**

• Write failure probability as expectation

$$\mathbf{P}(\mathcal{F}) = p_{f} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} I_{g}(x) f_{X_{1} \dots X_{n}} dx_{1} \dots dx_{n}$$

Indicator function

$$I_g(x_1 \dots x_n) = \begin{cases} 1 \text{ for } g(x_1 \dots x_n) \leq 0 \\ 0 \text{ else} \end{cases}$$

• Consistent and unbiased estimator (arithmetic mean)

$$\bar{p}_f = \frac{1}{m} \sum_{k=1}^m I_g(\boldsymbol{x}^{(k)})$$

Variance of estimator

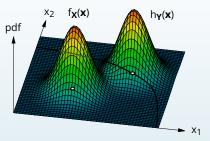
$$\sigma_{\bar{p}_f}^2 = \frac{p_f}{m} - \frac{p_f^2}{m} \approx \frac{p_f}{m} \rightarrow \sigma_{\bar{p}_f} = \sqrt{\frac{p_f}{m}}$$

WOST14, 2017

© Christian Bucher 2010-2017

### Importance sampling

#### Simulation density



Estimator of failure probability

$$\bar{\mathsf{P}}(\mathcal{F}) = \frac{1}{m} \sum_{k=1}^{m} \frac{f_{\boldsymbol{X}}(\boldsymbol{x})}{h_{\boldsymbol{Y}}(\boldsymbol{x})} \mathsf{I}_{g}(\boldsymbol{x}) = \boldsymbol{\mathsf{E}}\left[\frac{f_{\boldsymbol{X}}(\boldsymbol{x})}{h_{\boldsymbol{Y}}(\boldsymbol{x})} \mathsf{I}_{g}(\boldsymbol{x})\right]$$

Variance of estimator

$$\sigma_{\bar{P}(\mathcal{F})}^{2} = \frac{1}{m} \mathbf{E} \left[ \frac{f_{\mathbf{X}}(\mathbf{x})^{2}}{h_{\mathbf{Y}}(\mathbf{x})^{2}} I_{g}(\mathbf{x}) \right]$$

WOST14, 2017

### Importance sampling at the design point

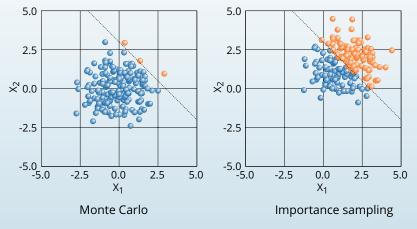
- Determine design point u<sup>\*</sup> in standard Gaussian space (e.g. using FORM)
- Construct a multi-dimensional standard Gaussian sampling density centered at the design point with unit covariance matrix (identical to that of the actual random variables in standard Gaussian space)

$$h_{\mathbf{Y}}(\mathbf{u}) = \frac{1}{(2\pi)^{\frac{n}{2}}} \exp\left[-\frac{1}{2}(\mathbf{u} - \mathbf{u}^*)^{\mathsf{T}}(\mathbf{u} - \mathbf{u}^*)\right]$$

Carry out random sampling and estimation of the failure probability

Two standard Gaussian random variables

$$g(X_1, X_2) = 3 - X_1 - X_2; \quad \mathbf{x}^* = [1.5, 1.5]^T$$

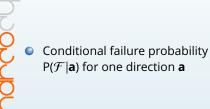


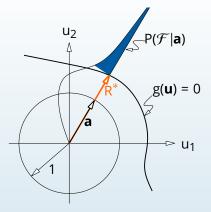
WOST14, 2017

# **Directional sampling**

- Transformation into standard Gaussian space
- Generate random unit direction vector
- Compute the distance from the origin to the failure domain in this direction (typically using bisection)
- Compute conditional failure probability for this direction (Chi-Square distribution)
- Statistical analysis (estimation of mean and variance)

### Procedure

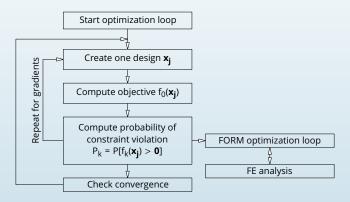




$$\begin{split} \mathsf{P}(\mathcal{F}|\mathbf{a}) &= \int_{\mathsf{R}^*(\mathbf{a})}^{\infty} \mathsf{f}_{\mathsf{R}|\mathbf{A}}(r|\mathbf{a}) dr = \\ &= \mathsf{S}_{\mathsf{n}} r^{\mathsf{n}-1} \frac{1}{\pi^{\frac{\mathsf{n}}{2}}} \exp\left(-\frac{r^2}{2}\right) dr = 1 - \chi_{\mathsf{n}}^2 [\mathsf{R}^*(\mathbf{a})^2] \end{split}$$

# **Robust Optimization Procedure**

- Outer optimization loop controls the structural design
- Probability of constraint violation computed by FORM
- Inner optimization driven by random variables
- Both loops need gradients ...



# The need for speed ...

- Complex system (many parameters, computationally expensive, slow, ...)
- Needed: Fast and reasonably accurate response prediction (e.g. for real-time applications such as control systems)
- Possible choices:
  - Reduce model complexity based on essential physical features ("reduced order model")
  - Replace model based on mathematical simplicity ("metamodel")
- Stochastic analysis needs to be very efficient

# **Reduced order model**

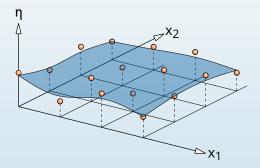
- Need to understand and represent physics
- May be applicable for many different load cases
- Very suitable for time dependent phenomena (structural dynamics, convection-diffusion processes)
- Can be difficult in the presence of strong nonlinearity
  - Typical examples
    - Modal analysis
    - Proper orthogonal decomposition (POD)

# Metamodel

- Mathematically formulated black box
- Suitable for arbitrarily nonlinear input-output relations
- Requires extensive training data
- Very difficult to extrapolate
- Time-dependent problems may be tricky
- Typical example: Linear or quadratic response surface model

# **Response surface method**

- Reduce computational effort by replacing expensive FE analyses
  - Establish meta-models in terms of simple mathematical functions
  - Fit model parameters to FE solution using regression analysis



- Mathematical formulation for response surfaces is closely related to linear regression and interpolation modeling
- Response surface model is based on linear regression if its functional form if linear in the unknown parameters p<sub>k</sub>, i.e.

$$\eta(\mathbf{x}) = \sum_{k=1}^{n} p_k f_k(\mathbf{x})$$

- Sequence of input values x<sub>i</sub>, i = 1...m and corresponding model output values y<sub>i</sub>, i = 1...m
- Determine parameters p<sub>k</sub> can be determined by solving the least squares problem

$$S^2 = \sum_{i=1}^m \left[ y_i - \eta(\boldsymbol{x}_i) \right]^2 \rightarrow \text{Min.!}$$

Together with the linear regression model this results in

$$S^{2} = \sum_{i=1}^{m} \left[ y_{i} - \sum_{k=1}^{n} p_{k} f_{k}(\boldsymbol{x}_{i}) \right]^{2} \rightarrow \text{Min.!}$$

- If the number of parameters n is equal to the number of data pairs m, then the regression model becomes an interpolation model.
- Global functions are functions not localizing in certain areas (such as polynomials)
- Linear polynomial function

$$\eta_{\mathsf{I}}(\boldsymbol{x}) = p_0 + \sum_{k=1}^n p_k x_k$$

Quadratic model

$$\eta_{q}(\mathbf{x}) = p_{0} + \sum_{k=1}^{n} p_{k}x_{k} + \sum_{k=1}^{n} \sum_{j=1}^{n} p_{kj}x_{k}x_{j}$$
wosti4.2017

© Christian Bucher 2010-2017

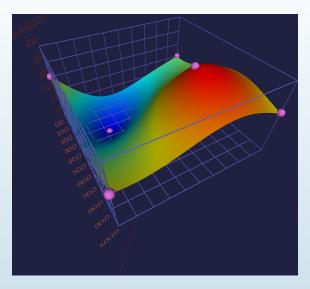
Localized models such as radial basis functions

$$\eta_r(\mathbf{x}) = \sum_{k=1}^n p_k \varphi_k(\mathbf{x}, \mathbf{x}_k)$$

in which  $\phi_k(\mathbf{y}) = \phi_k(||\mathbf{y}||) = \phi_k(r)$  are functions depending only on the magnitude of the vector argument and  $\mathbf{x}_k$  are the localization points of the RBF functions. If the localization points coincide with the data points, then this model is interpolating. Otherwise it is a linear regression model.

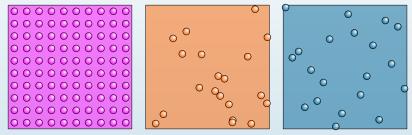
Thin plate splines

Example (6 data points in 2D)



# **Design of Experiments (DoE)**

- Explore range of variables by numerical experiments
- Cover range of all variables as uniformly as possible
- Keep number of experiments small

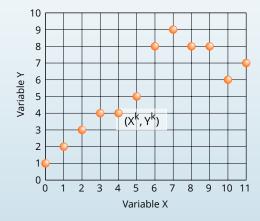


Factorial design

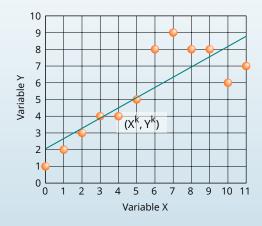
Monte Carlo Sampling

Latin Hypercube Sampling

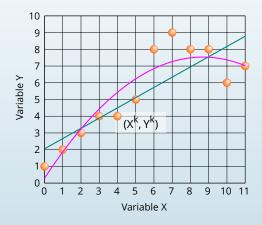
Adapt 1D metamodel to 12 data points



- Adapt 1D metamodel to 12 data points
- Linear function

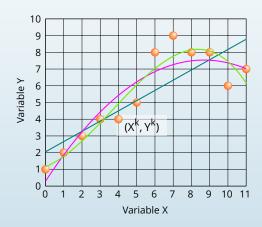


- Adapt 1D metamodel to 12 data points
- Quadratic function



Adapt 1D metamodel to 12 data points

### Cubic function



### **Quality of metamodel**

• Coeffient of determination (CoD, R<sup>2</sup>): correlation between experimental data and model predictions

$$\mathsf{R}^{2} = \left(\frac{\mathbf{E}[(\mathsf{Y} - \bar{\mathsf{Z}}) \cdot (\mathsf{Z} - \bar{\mathsf{Z}})]}{\sigma_{\mathsf{Y}}\sigma_{\mathsf{Z}}}\right)^{2} = \rho_{\mathsf{YZ}}^{2}; \mathsf{Z} = \sum_{i=1}^{n} p_{i}g_{i}(\mathsf{X})$$

CoD may be high due to overfitting (leads to bad prediction behavior)Adjusted CoD for small sample sizes m (penalize overfitting)

$$R_{adj}^{2} = R^{2} - \frac{n-1}{m-n} \left(1 - R^{2}\right)$$

 If an additional test data set T is available: Coefficient of Quality (CoQ)

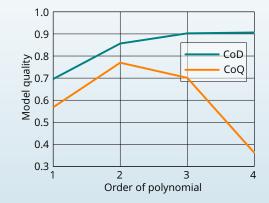
$$CoQ = \left(\frac{\textbf{E}[(T - \bar{T}) \cdot (Z_T - \bar{Z}_T)]}{\sigma_Y \sigma_Z}\right)^2 = \rho_{TZ_T}^2; \ Z_T = \sum_{i=1}^n p_i g_i(X_T); \ 0 \le CoQ \le 1$$

 Practical application: randomly split data into training set/test set or leave-one-out cross validation.

# **Previous Example**

Change model order k for best CoQ, compare to CoD

|   | k | CoD  | CoQ  |
|---|---|------|------|
|   | 1 | 0.70 | 0.57 |
| - | 2 | 0.86 | 0.77 |
|   | 3 | 0.90 | 0.70 |
|   | 4 | 0.91 | 0.36 |



### Importance measures

- Several possibilities, simplest is based on linear correlations (suitable only for almost linear models)
- Suggested: Use dependence of CoQ on individual variables
- Compute CoQ for full model (all input variables)
- Remove input variable xk from regression models, compute CoQk and  $\Delta_k = CoQ - CoQ_k$
- Normalised importance measure  $I_k = \frac{\Delta_k}{\sum \Delta_k} CoQ$
- Positive importance measures indicated important variables, negative measure indicate that variable should be removed.

5-dimensional test function (taken from optiSLang docu)

 $g = 0.5x_1 + x_2 + 0.5x_1x_2 + 5 \sin x_3 + 0.2x_4 + 0.1x_5$ 

- All variables are in the range  $[-\pi, \pi]$
- Introduce a 6th variable which does not appear in the function
- Establish DOE with 100 samples (using Latin Hypercube Sampling)
  - Carry out LOO cross validation
    - Remove sample k from training data, use this as test sample
    - Adjust regression model to training data (Thin Plate Spline)
    - Apply model to test input and compute model output k
    - Repeat with next k
- Compute correlations between all test data and corresponding model outputs

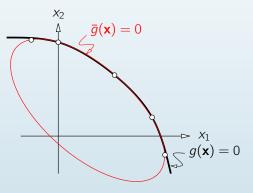
# **Metamodel of Optimal Quality**

- Determine importance measures I<sub>k</sub> and eliminate variables with smallest importance
- MOQ contains variables X<sub>1</sub>, X<sub>2</sub>, and X<sub>3</sub>.

| ρ     | I <sup>(1)</sup> | l <sup>(2)</sup> | l <sup>(3)</sup><br>k | I <sup>(4)</sup><br>k | I <sup>(5)</sup><br>k |
|-------|------------------|------------------|-----------------------|-----------------------|-----------------------|
| 0.19  | 0.16             | 0.15             | 0.16                  | 0.19                  | n.a.                  |
| 0.46  | 0.30             | 0.30             | 0.25                  | 0.32                  | 0.16                  |
| 0.62  | 0.43             | 0.50             | 0.55                  | 0.46                  | 0.44                  |
| 0.06  | -0.01            | -0.04            | -0.04                 | n.a.                  | n.a.                  |
| 0.19  | -0.01            | -0.05            | n.a.                  | n.a.                  | n.a.                  |
| -0.06 | -0.06            | n.a.             | n.a.                  | n.a.                  | n.a.                  |
| CoQ   | 0.77             | 0.86             | 0.92                  | 0.97                  | 0.61                  |

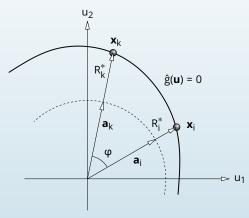
# Choice of support points for reliability analysis

- Contributions to failure probability only from very narrow region near the design point
- Most important to have support points for the response surface ĝ(x) very close to or exactly at the limit state g(x) = 0



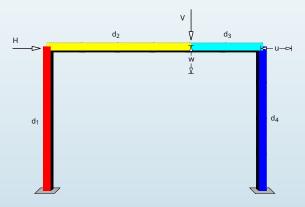
# **Determine support points**

- Locate points on the boundary using a search procedure (e.g. bisection)
- Close similarity to directional sampling method



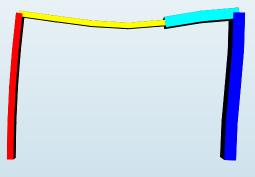
### **Example: Frame under static loads**

- Plane frame under two static loads H and V
- Minimize structural mass subject to constraints on
  - Horizontal deflection u < u<sub>0</sub>
  - Vertical deflection w < w<sub>0</sub>
  - Buckling load factor  $\lambda \ge \lambda_0$



# **Deterministic Optimization**

- E = 210 GPa,  $\rho$  = 7850 kg/m<sup>3</sup>, H = 100 kN, V = 117 kN, u<sub>0</sub> = 0.05 m, w<sub>0</sub> = 0.05 m,  $\lambda_0$  = 2.5.
- Optimal cross sections (requires 100 FE analyses):
   d<sub>1</sub> = 0.082 m, d<sub>2</sub> = 0.069 m, d<sub>3</sub> = 0.137 m, d<sub>4</sub> = 0.152 m, m = 1388 kg.
- Deformed optimal structure (magnified 5x)



# **Stochastic Problem**

- Loads are random variables with mean values  $\overline{H}$  = 100 kN,  $\overline{V}$  = 117 kN and coefficients of variation of 5%.
- Constraints are satisfied with prescribed reliability levels  $\beta_{11} = \beta_{yy} = 3$ ,  $\beta_{\lambda} = 4.$
- Two approaches
  - Method of safety factors: Upscale deterministic optimum cross sections such as to satisfy probabilistic constraints Leads to design with mass m = 1706 kg (increase of 23%).
  - Stochastic optimization (RBDO): Include probabilistic constraints into the optimization process

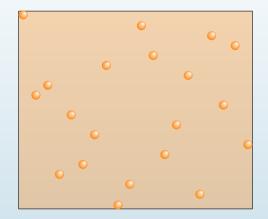
### **Stochastic Optimization**

- Loads are random variables with mean values  $\overline{H}$  = 100 kN,  $\overline{V}$  = 117 kN and coefficients of variation of 5%.
- Constraints are satisfied with prescribed reliability levels  $\beta_u = \beta_w = 3$ ,  $\beta_\lambda = 4$ .
- Probabilities of constraint violation computed by FORM
- Straightforward analysis requires about 35.000 structural analyses.
- Optimal cross sections:  $d_1 = 0.081 \text{ m}, d_2 = 0.076 \text{ m}, d_3 = 0.150 \text{ m}, d_4 = 0.171 \text{ m}$  m = 1657 kg (10% increase)
  - m = 1657 kg (19% increase).



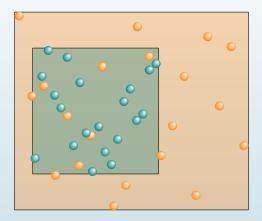
# **Adaptive Response Surface Method (ARSM)**

Repeated application of DOE scheme based on previous optimization results



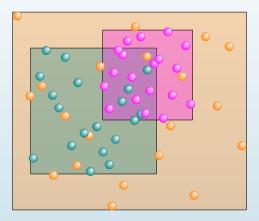
# Adaptive Response Surface Method (ARSM)

Repeated application of DOE scheme based on previous optimization results



# Adaptive Response Surface Method (ARSM)

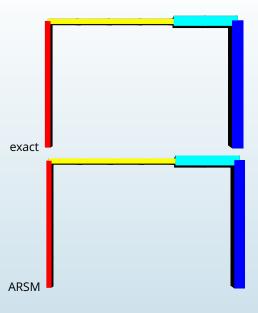
Repeated application of DOE scheme based on previous optimization results



# **Application of ARSM 1**

- 1. Initial DOE with 256 structural analyses
- 2. Approximate constraint functions by Metamodels of Optimal Quality
- Carry out stochastic optimization
- 4. re-center DOE and narrow range (factor 0.7), loop to Step 2 or break
- 5. Check feasibility of approximate solution
- 4 iterations result in d<sub>1</sub> = 0.083 m, d<sub>2</sub> = 0.078 m, d<sub>3</sub> = 0.144 m, d<sub>4</sub> = 0.172 m m = 1665 kg.
- Result is not feasible (Constraint 1 is slightly violated)
- Upscale solution by 0.2% satisfies all constraints, m = 1673 kg (20.5%) increase.
- Compared to full stochastic analysis: reduce computation by factor 35.
- Compared to deterministic analysis: increase factor by 10.

# **Application of ARSM 2**



### **Further reading**

C. Bucher: Computational Analysis of Randomness in Structural Mechanics, Taylor & Francis, 2009. Computational Analysis of Randomness in Structural Mechanics

**Christian Bucher** 

CRC Press

Structures and Infrastructures 3

64/64