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Uncertainties in optimization

Design Variable 2

Contour lines of objective function
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= Design Variable 1
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Uncertainties in optimization

© Design variables (e.g. manufacturing tolerances)

Design Variable 2

Contour lines of objective function

dynordo

= Design Variable 1

h 4
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Uncertainties in optimization

© Design variables (e.g. manufacturing tolerances)
© Objective function (e.g. tolerances, external factors)

Design Variable 2

Contour lines of objective function

dynordo

Infeasible
= Design Variable 1
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Uncertainties in optimization

© Design variables (e.g. manufacturing tolerances)
© Objective function (e.g. tolerances, external factors)
© Constraints (e.g. tolerances, external factors)

Design Variable 2

Contour lines of objective function

dynordo

= Design Variable 1
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Traditional design approach

© Introduce "safety factors” into the constraints

© Leads to results satisfying safety requirement, but not necessarily
optimal designs

Design Variable 2

dynanrdo

= Design Variable 1
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Tools for optimal robust design

Robust Design Optimization

Fuzzy Logic etc.

dynordo
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Motivating Example 1

© Deterministic problem

© Minimize cross section area of a
cantilever A=B-H

© Constraint 1: limited vertical
deflection w
4F13
W =
EBH3

< Wp

© Constraint 2: Sufficient stability in
lateral torsional buckling

dynanrdo

EB3H

B > AF

Ko Heo

Fer = 0.4741
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Motivating Example 2

© Numerical solution for
L=1m,E=210 MPa, F=500N,A =2, wp=0.1T m:
Solution: B =0.0425m, H=0.1309 m, A= 0.00556 m?

0.040 I

0.20

O
O 016 0.030 —
% _, 0.12 -
C % 0.020 5
D) 0.08
O
0.010
0.04
0.00 0.000
000 004 008 012 016 020

B [m]
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Motivating Example 3

© Stochastic problem

© Fis arandom variables with mean value F and standard deviation o
(assumed normally distributed)
© Satisfy constraint conditions with certain probability P; ~ 1

3

> Py

EBH3wyq
H3 3

4FL
P[C]SO]:P[EB —WOS0]=P[FS

EB3H 0.4741EB3H
P[C, < 0] = P |AF - 0.4741 = <o|l=pP FST > P,

© B, H,Lmaybe random, too
Objective function

©

A =BH — Min.!

dynanrdo

© Constraint conditions
P[C1 >0] <1-Pq :PF1

P[C2 > 0] < 1-P; =P,
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Motivating Example 4

© Numerical solution for F =500 N, of = 100 N, P, = 1073,
Pr, =107
© B=0.0493m, H=0.1462 m, A= 0.00721 m2 (30% more)

0.20 0.040 I
© 0.16
C 0.030 —
S .
D) 3 0.020 &
T <
< 0.08
0.010
0.04
0.00 0.000
0.00 004 008 012 0.16 020
B [m]

9/64 WOST14, 2017 © Christian Bucher 2010-2017



Probability

© Events

@)
k@
%
C Q
D)
_C/ © Axioms(Kolmogorov)
l: 0O<P[A]l<1
Il: P[R]=1

II: P[AUB]=PLA]+P[B]
P[A U C] = P[A] + P[C] - PLA N C]
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Complementary Event

Q

dynordo

© An event can either happen or not happen
P[A] +P[A] = P[Q] = 1
© An event cannot happen and not happen at the same time

PLANA]=P[2]=0
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Conditional Probability

@

O
¢
Q Q
@)
C
—8_ © Definition
P[ﬂlg] = M
P[B]
© Independence
P[A|B] = P[A]

— P[A N B] = P[AIP[B]
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Decomposition of event space

Q

© Total probability

Aynardo

P[B] = P[B|A1] P[A1] + ... + P[B|An]IP[An]

© Bayes' theorem

PLB|AIP[AI]
PLB|AIP[A] + . . . + P[B|AIP[AR]

P[A(|B] =

13/64 WOST14, 2017 © Christian Bucher 2010-2017



Random Variables

© Distribution function

Fx(x) = PIX <xJ; lim Fx(x)=0; 1lim Fx(x)=1
© Probability density function

d
fx(x) = ™ Fx(x)

=
o))

1.00

fx(x/ \/ Fx(x)
/ 0.75
0.50

N 0.25

_ N

=140 0.0 1.0 2.0 3.0
Value of Random Variable

=
o
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=
N

Probability Density Function
o
w

o
o

0.00

Probability Distribution Function
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Expected values

© Definition
E[g(X)] = / g(x)fx(x)dx

(%)

© Mean value
X =E[X] = / xfy(x)dx

(9]

© Variance (square of standard deviation)

o2 = E[(X - X)’] = / (x = X)*fx()dx

dynanrdo

© Coefficient of variation (dimensionless)

© Expectation is a linear operator
E[g + h] = E[g] + E[h]; E[Ag] = AE[g]
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Estimation

© Estimator I" for an unknown parameter y (e.g. mean value) from
independent observations X; k=1...n

© Consistency
MM =TX1,...X)

Ve>0: lim P[lh-y|<el=1
n—.soo

Unbiasedness
E[M]l=y

© Asymptotic unbiasedness

dynanrdo

lim E[MW] =Yy
n—oo
© Any estimate based on finite sample size contains some uncertainty

which should be made sufficiently small (usually by adjusting the
sample size)
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Estimation error

© Limited number of samples leads to random deviation of the
estimate from the true expected value

© Example: estimator for the mean value

18
my = EZ;Xi
=

© Variance of the estimated value

o = E[(M - X)?]

dynanrdo

© Estimator for the variance of the mean value estimator

n(n Z(m Xi)? ——52
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Confidence interval

© Statistical error (standard deviation) of the estimator

S = —
m \/ﬁ
© Assume normally distributed error — Compute confidence interval
for estimated value

f(m)
A

dynanrdo

mp m my

Pimi<m<myl=1-«a
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Two distribution functions

© Normal (Gaussian) distribution

fx(x) = ! exp —(X - %2 ;. —00 < X <00
'e) V2mox 207
© x - X 1 z u?
C Fx(x)=®|—]; P(2)= —/ exp |-— | du
G 194 \/ﬂ -00 2
_C)_ © Log-normal distribution
_C/ fx(x) = ! e 2 E)Z) 0<Xx<oo
W s T2 P
log 2 2 2
Fx(x)=d>< p), p=Xexp(——), s = In(%+1)
X
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Normal and log-normal density functions

1.2

0.8

Lognormal /\
Normal
04
4 =X+ Gx—‘x

-1.0 0.0 1.0 2.0 3.0
Value of Random Variable

dynanrdo
Probability Density Function
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Random Vectors

© Collect all random variables into a random vector
X = [X1, X2, ... Xnl'
© Mean value by applying expectation operator to all components

X =EX] = [X1, X2, ... Xn]"

© Covariance matrix
Cxx = E[X - X)(X - X)']

dynanrdo

© Coefficient of correlation

_ ELXG = Xi)(Xk = Xi)]

OX; OXy

Pik
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Joint probability density function
© Multi-dimensional normal distribution

1. o _
fx(X) = exp | -5 (x - X)'Cx-X)|; x € R"

1
(27)7 v/det Cxx

© Two-dimensional case

X1 A

dynanrdo

= X1
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Nataf model

Transformation of correlated non-Gaussian random variables (pjx) to
correlated standard Gaussian variables (pi'k)
X fx(xi)} o {Vi p(vi)}

Mapping
Vi = 7" [Fy, (X)]

Properties
EVI=0; EVI=1; EVVi] = pj

Assumption of a multi-dimensional Gaussian distribution

1
exp (—EVTR\_;VV)

1
V)= —F——
(2m)2 ydet Ryy
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©

©

©

Joint probability density function

Example: two correlated
random variables

X1 ... Lognormally
distributed

X2 ... Normally
distributes

Both variables have
mean values 1, standard
deviations 0.5,
correlation pq2 =0.5

X2

0.0

WOST14, 2017

1.0

2.0
X1

3.0 4.0
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Simulation of samples

3.0

©

Example: two correlated
random variables as
before

X2

Correlation p12 = 0.5

dynanrdo

o o

1000 samples
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Plain Monte Carlo vs. Latin Hypercube

© Special considerations required for small sample size
© 10 samples of uniformly distributed independent random variables
© Quasi-random sampling provides better coverage of space

O °
C
- o
O o
C
:y X2 © © © X2
C

00

o
o
X1 X1
PMC LHS
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Estimation of correlations

© Repeated simulations lead to different results — estimator for p is
randomly distributed (but not normal)

f(p)

dynanrdo

lp

lp = [tanh(Zij = \/%), tanh(zij ar Z—c)]

VYN -3

Zc=d(1-a’/2)

Z..—llo 1+pIJ
=5 g1'Pij'
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Example

© Repeated simulation of two correlated Gaussian variables
© Estimate coefficient of correlation from samples
© Perform statistics on the estimators

20.0

dynanrdo

5.0

0.0

0.0 10.0 20.0 30.0 40.0

0 500 600 700 80.0 90.0 100.0
tho_12 (*E-2)
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Reliability analysis

© Mechanical system

© Failure condition

FL
F ={(F,LLMp)) : FL > M} = {(F, L, Mp)) : 1 - o S o}
pl

dynanrdo

© Failure probability
P(7) = P[{X: g(X) < 0}

P(F) = / .. / |g(X)f)(1 L XaAXq .. dXn

lg(x1...xn)=1ifg(x1...xn) £ 0andlg(.) =0 else
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Computational Challenge

© Integrand is non-zero only in a small region
© Difficult to find appropriate integration points
© Example in standard Gaussian space

g(X1,X2) =3 -X1 - X2

dynanrdo
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First order reliability method (FORM)

© Transformation to standard Gaussian space (here: Rosenblatt
transform for Nataf-model)

Yi = &7 [ () i=1...n

U=L"Y; Cyy=LL"

o)

u”:u'u— Min,; subjectto:gx(u)]=0

© Inverse transformation

A_|:-1

dynanrdo

© Computation of "design point”

© Linearize the limit state function at the design point in standard
Gaussian space
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FORM Procedure
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Monte Carlo estimation

© Write failure probability as expectation

P(F) = ps = / / . / lg()fx;..x,0X1 . . . dXn

© Indicator function

o (x ) = 1forg(xq...xp) <0
gt 7n 0 else

© Consistent and unbiased estimator (arithmetic mean)

1 m
= = (k)
Pf m § lg (™)

k=1
© Variance of estimator
P P P P
2 _°f M P op, = Bf
PP m m m v m
WOST14, 2017 © Christian Bucher 2010-2017



Importance sampling

© Simulation density

© Estimator of failure probability

dynanrdo

_ 1 < fx(x) [fx(x) ]
P(F)=— I =E I
(F) 7 24 0 g00=E| 1500
© Variance of estimator
5 1 [ fxx)?
%™ 2 s
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Importance sampling at the design point

© Determine design point u* in standard Gaussian space (e.g. using

FORM)

© Construct a multi-dimensional standard Gaussian sampling density
centered at the design point with unit covariance matrix (identical to
that of the actual random variables in standard Gaussian space)

hy(u) = exp —%(u -u")(u-u®

@2n)2

dynanrdo

© Carry out random sampling and estimation of the failure probability
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Example

© Two standard Gaussian random variables

g(X1,X2) =3-X1 -Xo; X*=[1.5,1.5]"

O 5.0 5.0
% 25
5 =< 0.0
-2.5
-5.0 -5.0
-5.0 -2.5 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0
X4 X4
Monte Carlo Importance sampling
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Directional sampling

© Transformation into standard Gaussian space
© Generate random unit direction vector

© Compute the distance from the origin to the failure domain in this
direction (typically using bisection)

© Compute conditional failure probability for this direction (Chi-Square
distribution)

© Statistical analysis (estimation of mean and variance)

dynanrdo
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Procedure

© Conditional failure probability
P(¥ |a) for one direction a A

dynanrdo

P(F |a) =/ fra(rla)dr =
R*(a)
n-1 1 r’ R
=Spr — exp dr=1-x5[R*(@)"]

72 2
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Robust Optimization Procedure

Outer optimization loop controls the structural design

©
© Probability of constraint violation computed by FORM
© Inner optimization driven by random variables

©

Both loops need gradients ...

| Start optimization loop |

.

Create one design x; ‘

!

‘ Compute objective fo(x;) ‘

}

Compute probability of
constraint violation —«>| FORM optimization loop |
Py = PIfi(xj) > 0]

dynanrdo

Repeat for gradients

| FE analysis |

g
| Check convergence |
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The need for speed ...

© Complex system (many parameters, computationally expensive,
slow, ...)

© Needed: Fast and reasonably accurate response prediction (e.g. for
real-time applications such as control systems)
Possible choices:

© Reduce model complexity based on essential physical features
(“reduced order model”)
© Replace model based on mathematical simplicity (“metamodel”)

dynanrdo

© Stochastic analysis needs to be very efficient
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Reduced order model

© Need to understand and represent physics

© May be applicable for many different load cases

© Very suitable for time dependent phenomena (structural dynamics,
convection-diffusion processes)

© Can be difficult in the presence of strong nonlinearity

© Typical examples

© Modal analysis
© Proper orthogonal decomposition (POD)

dynanrdo
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Metamodel

Mathematically formulated black box

Suitable for arbitrarily nonlinear input-output relations
Requires extensive training data

Very difficult to extrapolate

Time-dependent problems may be tricky

© 00 0O0O©C

dynanrdo

Typical example: Linear or quadratic response surface model
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Response surface method

© Reduce computational effort by replacing expensive FE analyses
© Establish meta-models in terms of simple mathematical functions
© Fit model parameters to FE solution using regression analysis

dynanrdo
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Regression models 1

© Mathematical formulation for response surfaces is closely related to
linear regression and interpolation modeling

© Response surface model is based on linear regression if its
functional form if linear in the unknown parameters py, i.e.

n
o) = D Pifi®)
k=1

© Sequence of input values x;,i = 1...m and corresponding model
output valuesy;, i=1...m

dynanrdo

© Determine parameters p, can be determined by solving the least
squares problem

m
S2 = Z [y; - r|(xi)]2 — Min.!
i=1
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Regression models 2

© Together with the linear regression model this results in

m n 2
52 = Z: [yi - 2 pkfk(xi)] — Min.!
i= =]

© If the number of parameters n is equal to the number of data pairs
m, then the regression model becomes an interpolation model.

Global functions are functions not localizing in certain areas (such as
polynomials)

© Linear polynomial function

dynanrdo

n
ni(x) = po + Z PkXk
k=1

© Quadratic model
n n
MO = Po + Y PiXic + .

k=1 k=1 j
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Regression models 3
© Localized models such as radial basis functions

n
e = ), Pkl Xi)
k=1

in which oi(y) = dk(|lyll) = dk(r) are functions depending only on the
magnitude of the vector argument and xy are the localization points
of the RBF functions. If the localization points coincide with the data
points, then this model is interpolating. Otherwise it is a linear
regression model.

© Thin plate splines

dynanrdo

o(r) = r2 logr
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Regression models 4

© Example (6 data points in 2D)

dynanrdo
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Design of Experiments (DoE)

© Explore range of variables by numerical experiments
© Cover range of all variables as uniformly as possible

© Keep number of experiments small

dynordo

Factorial design Monte Carlo Sampling Latin Hypercube Sampling
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Example

© Adapt 1D metamodel to 12 data points

@)
—C/ 10
L 9
@) 8 =
C 7
> 5 —~
T

2 4 — K

3 (X%, Y7

27

1

ol

01 2 3 45 6 7 8 9 10 11

Variable X

49/64 WOST14, 2017 © Christian Bucher 2010-2017



Example

© Adapt 1D metamodel to 12 data points
© Linear function

@)
< 10
L 9
o) ’ -
C 7
D) % 6 -
O g s
>;‘ P A A e

5 7

1

ol

0 1 2 3 4 5 6 7 8 9 10 1

Variable X
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Example

© Adapt 1D metamodel to 12 data points

© Quadratic function

7l

O
t/ 10

9
5 ' L
C 7 ~~¢
> X g ¢
T g5

: : 27 v

2

14

0

SIS

1 2 3 45 6 7 8 9 10 11
Variable X
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Example

© Adapt 1D metamodel to 12 data points

© Cubic function

7

O
< o
L 9
O 8 S
\
5 - AT
< 2
o Ve,
= : Z AR
2
14
0

01 2 3 45 6 7 8 9 10 1
Variable X
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Quality of metamodel

Coeffient of determination (CoD, R?): correlation between
experimental data and model predictions

ElY-2)-(Z-2)])
o (BDED S

oyOoz

CoD may be high due to overfitting (leads to bad prediction behavior)
Adjusted CoD for small sample sizes m (penalize overfitting)

RZy = R? - r::__L (1-r%)

If an additional test data set T is available: Coefficient of Quality
(CoQ)

n
Z1 = i&(X1); 0 < CoQ <1
Py = Pz ; Pi&i

Coq = (E[(T-T) (Z1 - ZT)]) 2

Practical application: randomly split data into training set/test set or
leave-one-out cross validation.
WOST14, 2017 © Christian Bucher 2010-2017



Previous Example

© Change model order k for best CoQ, compare to CoD

1.0

O 0.9
_CJ 0'8 // CoD
%kCODCOQ % P CoQ
C [T 070057 507 7 N
| 2| 086|077 B 0.6 [ \
<, 3|09 | 070 =

4091|036 N\

o
i
/1

©
w

2 8 4
Order of polynomial

—_
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Importance measures

© Several possibilities, simplest is based on linear correlations (suitable
only for almost linear models)

© Suggested: Use dependence of CoQ on individual variables

© Compute CoQ for full model (all input variables)

Remove input variable xy from regression models, compute CoQy
and Ay = CoQ - CoQy

© Normalised importance measure Iy = ﬁCoQ

dynanrdo

© Positive importance measures indicated important variables,
negative measure indicate that variable should be removed.
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Example

© 5-dimensional test function (taken from docu)
g =0.5x1 +x2 + 0.5x1x2 + 5sinx3 + 0.2x4 + 0.1xs5

All variables are in the range [-xt, 7]
Introduce a 6th variable which does not appear in the function
Establish DOE with 100 samples (using Latin Hypercube Sampling)

Carry out LOO cross validation

© Remove sample k from training data, use this as test sample
© Adjust regression model to training data (Thin Plate Spline)
© Apply model to test input and compute model output k

© Repeat with next k

dynanrdo

© Compute correlations between all test data and corresponding
model outputs
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Metamodel of Optimal Quality

smallest importance

© MOQ contains variables X1, X3, and X3.

p |E(1) ||(<2) |§(3) |(4) |(5)
0.16 | 0.15 | 0.16
0.30 | 0.30 | 0.25
0.43 | 0.50 | 0.55

-0.01 | -0.04 | -0.04 n.a.

-0.01 | -0.05 n.a. n.a.

-0.06 | -0.06 n.a. n.a. . | n.a.

| CoQ | 0.77 | 0.86 | 0.92

WOST14, 2017

© Determine importance measures I and eliminate variables with
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Choice of support points for reliability analysis

© Contributions to failure probability only from very narrow region
near the design point

© Most important to have support points for the response surface g(x)
very close to or exactly at the limit state g(x) = 0

X2

g(x) =0

dynanrdo
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Determine

support points

© Locate points on the boundary using a search procedure (e.g.

bisection)

© Close similarity to directional sampling method

uz
4

]

Xy

*
Ry

WOST14, 2017
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Example: Frame under static loads

© Plane frame under two static loads H and V
© Minimize structural mass subject to constraints on

© Horizontal deflection u < ug
© Vertical deflection w < wg
© Buckling load factor A > Ag

da d3

dynanrdo
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Deterministic Optimization

© E=210GPa, p = 7850 kg/m3, H =100 kN, V = 117 kN, ug = 0.05 m,
wg =0.05m, A\g = 2.5.

© Optimal cross sections (requires 100 FE analyses):
dq =0.082 m, d; =0.069 m, d3 =0.137 m, d4 =0.152 m,
m = 1388 kg.

© Deformed optimal structure (magnified 5x)

dynanrdo
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Stochastic Problem

© Loads are random variables with mean values H =100 kN, V=117

kN and coefficients of variation of 5%.

© Constraints are satisfied with prescribed reliability levels By = Bw = 3,

B =4.
© Two approaches

© Method of safety factors: Upscale deterministic optimum cross

sections such as to satisfy probabilistic constraints
Leads to design with mass m = 1706 kg (increase of 23%).

© Stochastic optimization (RBDO): Include probabilistic constraints into

the optimization process

WOST14, 2017
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Stochastic Optimization

© Loads are random variables with mean values H =100 kN, V=117
kN and coefficients of variation of 5%.

© Constraints are satisfied with prescribed reliability levels By = Bw =3,

Br =4

Probabilities of constraint violation computed by FORM

Straightforward analysis requires about 35.000 structural analyses.

Optimal cross sections:

dq =0.081 m,d; =0.076 m,d3 =0.150 m, d4 =0.171 m

m = 1657 kg (19% increase).

00

dynanrdo
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Adaptive Response Surface Method (ARSM)

© Repeated application of DOE scheme based on previous
optimization results

dynanrdo
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Adaptive Response Surface Method (ARSM)

© Repeated application of DOE scheme based on previous
optimization results

o

dynordo
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Adaptive Response Surface Method (ARSM)

© Repeated application of DOE scheme based on previous
optimization results

dynordo
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Application of ARSM 1

. Initial DOE with 256 structural analyses

. Approximate constraint functions by Metamodels of Optimal Quality
. Carry out stochastic optimization

. re-center DOE and narrow range (factor 0.7), loop to Step 2 or break

u b W N =

. Check feasibility of approximate solution

4 iterations result in
d1 =0.083m, d> =0.078 m,d3 =0.144 m, d4 =0.172 m
m = 1665 kg.

Result is not feasible (Constraint 1 is slightly violated)

dynanrdo

©

© Upscale solution by 0.2% satisfies all constraints, m = 1673 kg
(20.5%) increase.

© Compared to full stochastic analysis: reduce computation by factor
35.

© Compared to deterministic analysis: increase factor by 10.
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Application of ARSM 2

exact
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ARSM
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Further reading

© C. Bucher: Computational
Analysis of Randomness in

Structural Mechanics, Taylor &

Francis, 2009.
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