

## Metamodel-based optimization and parameter estimation for solid oxide cell stack development

A. Nakajo<sup>a,b</sup>, F. Greco<sup>a</sup>, T. Cornu<sup>b</sup>, P. Caliandro<sup>a</sup>, Z. Wuillemin<sup>b</sup>, J. Van herle<sup>a</sup>, C. Zeichmeister<sup>c</sup>. S. Wolff<sup>c</sup>. C. Bucher<sup>c</sup>

WOST Conference 2018 Weimar, Germany 21<sup>th</sup> June 2018

- <sup>a</sup> Group of Energy Materials, Faculty of Engineering Sciences and Technology STI, Ecole Polytechnique Fédérale de Lausanne, Switzerland <sup>b</sup> SOLIDpower-HTceramix, Yverdon-les-Bains, Switzerland
- <sup>c</sup> Dynardo GmbH, Wien, Austria



# Introduction

## Solid Oxide Cell (SOC): direct energy conversion device (700-800°C)

Solid Oxide Fuel Cell (SOFC):

- ✓ 75 % dc electrical efficiency on natural gas.
- ✓ Long-term stability < 0.33% / 1000 h.



• Cell materials (SOLIDpower):

YSZ: yttria-stabilized zirconia GDC: gadolinia-doped ceria LSCF: lanthanum strontium cobaltite ferrite





# Introduction:



60% electrical efficiency 85% total efficiency

Example of applications (SOFC mode):

| 2.5 kW      | 5 kW           | 10+ kW                            |
|-------------|----------------|-----------------------------------|
| Residential | Schools        | Hotel                             |
|             | Social Housing | Sport Center                      |
|             | Buildings      | Data Center                       |
|             |                | H <sub>2</sub> refueling stations |
|             |                | Farms                             |
| (PA         | sever dynando  |                                   |
|             |                | PROSOFC                           |

# Current challenge: mitigation of the remaining degradation:

Few % per year (SOFC mode), increasingly difficult to detect, quantify and understand.

#### 4

# **FP7 PROSOFC EU-PROJECT**

## "Production and Reliability Oriented SOFC Cell and Stack Design"

M. Hauth et al., Production and Reliability Oriented SOFC Cell and Stack Design, ECS Trans. 78 (1), 2231-2249 (2017).

### PROSOFC consortium:

- 1. AVL GmbH (Austria)
- 2. <u>HTceramix SA/SOLIDpower</u> (Switzerland/Italy)
- 3. Dynardo GmbH (Austria)
- 4. Technical University of Denmark (DTU)
- 5. Forschungszentrum Jülich GmbH (FZJ, Germany)

- 5. Karlsruhe Institute of Technology (KIT, Germany)
- 6. Imperial College (IC, Great-Britain)
- 7. Joint Research Centre Petten (JRC, Netherlands)
- 8. <u>EPFL</u> (Switzerland)
- 2. Topsoe Fuel Cell (Denmark)

### Key addressed issues:

- <u>Mechanical robustness</u> and understanding of the <u>interplay</u> between <u>material properties</u>, <u>stack</u> <u>design</u> and <u>operating conditions</u>.
- Methodology for <u>cost-optimal reliability-based design</u> (COPRD) to guide the optimization of the cell and stack production (**Dynardo's software**).





PROSOFC

# **Study cases**

- 1. Measurement of the <u>elastic</u>, <u>primary</u> and <u>secondary creep</u> properties of <u>cell materials</u> by standard 4-point bending testing:
  - Metamodel-based parameter estimation for <u>improved accuracy</u> and <u>flexibility in terms of constitutive laws</u>, compared to processing by analytical solutions.
- 2. Metamodelling of the <u>stack thermo-electrochemical behavior</u>:
  - Optimization of the operation conditions for e.g load following (of the end-user demand).



# Models interfaced with Dynardo's OSL/SoS

# Finite-element model of 4-point bending (ABAQUS):

### Testing intrinsic inaccuracy:

- Friction.
- Anticlastic curvature.
- Wedging stress.
- Geometric non-linearity.
- Contact point tangency shift.

### Material non-linearity.



## Stack thermo-electrochemical model (gPROMS-FLUENT):

#### SOLIDpower stack:

- Close to 1-D temperature and overpotential profiles along the flow path.
- Model combination for fast simulations.



### Local 1-D electrochemical model:

- Continuum electrode models.
- Distributed charge transport and transfer.
- Effective material properties measured by 3-D imaging.

### Fast stack model:

• 1-D transport along fow path.

### 3-D CFD model:

- Sink/source terms from fast stack model.
- Periodic boundary conditions / y-symmetry.
- Discretized surrounding insulation and gas distribution domains.

## **Parameter estimation**

## High-temperature setups for standard 4-point bending testing:

### Elastic properties and strength:

- Testing of up to 30 samples per heating cycles.
- Reducing, oxidising and humid atmospheres.



Similar equipment at DTU



### **Creep properties:**

- Simultaneous testing of 4 samples.
- Reducing, oxidising and humid atmospheres.



> Focus on the Ni(O)-YSZ  $H_2$  electrode material.

# Parameter estimation workflow

### Sensitivity analysis:

- 1. Design of experiments.
- 2. FE model simulations.
- 3. Retrieval of the responses.

Elastic properties:

- a. Force vs. displacement Responses:
  - Loading.
  - Unloading.
  - Δ(Loading Unloading).

Creep properties:

b. Creep deformation vs. time Responses:

SOLID

Creep deformation at different loads.

Model runtime: ~ hours



a. **Components of RF (randomfields)** computed from the sensitivity anaylsis signals.

## b. **F-MOP** relative to $\phi_i$ generated from the amplitudes $Z_i$ .

Model runtime: ~ seconds



## **Optimization:**

a. Objective function: difference **between the simulated RF** and the **experimental data**.

- b. Optimisation using the **F-MOP**.
- ➔ Parameter estimation with distributed metamodels

Model runtime: ~ minutes

b. Primary and secondary creep properties:



# Verifications

## Numerical experiments:

Em [GPa]

Test

 Variations of target parameters, DoE sampling and optimization starting points:

hs [µm]

### Elastic modulus and coefficient of friction:

Start point of optimisation

μ[-]

| $\checkmark$ Input parameters retrieved in all the tests with < 3% e |    |       |      |     |       |     |  |    |          |      |
|----------------------------------------------------------------------|----|-------|------|-----|-------|-----|--|----|----------|------|
|                                                                      | #4 | 209.0 |      |     |       |     |  | #8 | 4.80E-06 | 2.4  |
|                                                                      | #3 | 39.0  | 0.99 | 280 | 100.0 | 0.7 |  | #7 | 1.28E-07 | 0.55 |
|                                                                      | π2 | 209.0 |      |     |       |     |  | #6 | 4.80E-06 | 2.4  |
|                                                                      | #2 | 209.0 | 0.05 |     |       |     |  | #5 | 1.28E-07 | 0.55 |
|                                                                      | #1 | 39.0  |      |     |       |     |  | #4 | 4.801-00 | 2.4  |

Em [GPa]

Set of parameters to

estimate

μ[-]

### Test A [h<sup>-1</sup>MPa<sup>-n</sup>] n [-] ent of friction: #1 1.28E-07 0.55

|    | A [h <sup></sup> MPa <sup></sup> ] | n [-] | m [-] | Em [GPa] | μ[-]  | hs [µm] | A [h <sup>-+</sup> MPa <sup>-</sup> "] | n [-] | m [-]    |     |     |
|----|------------------------------------|-------|-------|----------|-------|---------|----------------------------------------|-------|----------|-----|-----|
| #1 | 1.28E-07                           | 0.55  | -0.05 | 100      | 0.7   | 280     | 8.00E-07                               | 1.5   | -0.3     |     |     |
| #2 | 4.80E-06                           | 2.4   |       |          |       |         |                                        |       |          |     |     |
| #3 | 1.28E-07                           | 0.55  |       |          |       |         |                                        |       |          |     |     |
| #4 | 4.80E-06                           | 2.4   |       |          |       |         |                                        |       |          |     |     |
| #5 | 1.28E-07                           | 0.55  | -0.05 |          |       |         |                                        |       |          |     |     |
| #6 | 4.80E-06                           | 2.4   |       | -0.05    | -0.05 | 200.0   | 0.1                                    | 220   | 2.005.00 | 2.0 | 0.7 |
| #7 | 1.28E-07                           | 0.55  |       | 200.0    | 0.1   | 220     | 2.002-00                               | 2.0   | -0.7     |     |     |
| #8 | 4.80E-06                           | 2.4   |       |          |       |         |                                        |       |          |     |     |

✓ Input parameters retrieved in all the tests with < 3% error.</p>

## Comparison with computational homogenization (elastic properties):

- Computational domain: 3-D electron microscopy.
- Boundary value problem solved at the micro-scale with kinematic uniform boundary conditions.
- Approximately within the uncertainty on the properties of the YSZ and Ni phases.



|                               | E (GPa) |       |  |  |
|-------------------------------|---------|-------|--|--|
|                               | 25°C    | 800°C |  |  |
| 4-point bending               | 81±2    | 63±3  |  |  |
| Computational homogenization* | 86±1    | 69±2  |  |  |

Set of parameters to estimate

\* Standard deviation: 4 x 9<sup>3</sup> μm<sup>3</sup> FIB-SEM volume samples.

#### Creep parameters:

Start point of optimisation

# Ni(O)-YSZ elastic properties



- Temperature dependence of the coefficient of friction, higher for Ni-YSZ:
  - Drying of the grease (contact interface) and potentially testing sequence.
- Processing by analytical solution: limited overestimation by ~10% (compensating effects).
- Accuracy not sufficient for aging analysis of the SOLIDpower Ni-YSZ (4700 h).



# **Primary and secondary creep of Ni-YSZ**

### • Measurements-model comparison:



# **Study cases**

- 1. Measurement of the <u>elastic</u>, <u>primary</u> and <u>secondary creep</u> properties of <u>cell materials</u> by standard 4-point bending testing:
  - Metamodel-based parameter estimation for <u>improved accuracy</u> and <u>flexibility in terms of constitutive laws</u>, compared to processing by analytical solutions.
- 2. Metamodelling of the <u>stack thermo-electrochemical behavior</u>:
  - Optimization of the operation conditions for e.g load following (of the end-user demand).



### Scalar metamodels, CoP matrix:

Cell voltage (V) Temperature difference ( Power density (W cm<sup>-3</sup>) Electical efficiency (-) Indicators for the risk of Ni reoxidation (fuel starvation)

| <ul> <li>Polarization.</li> <li>DoE with 150 samples (132 successfull).</li> <li>Large operation window.</li> <li>Parameter definition for accurate results.</li> <li>Initialisation sequence for low simulation failure rate.</li> </ul> |                                                                                                                   |                   |                  |              |         |            |         |            |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|------------------|--------------|---------|------------|---------|------------|--------|
|                                                                                                                                                                                                                                           | Operation conditions:       Simple design         ~ Inlet gas flow, temperature and composition.       parameters |                   |                  |              |         |            |         |            |        |
|                                                                                                                                                                                                                                           | · u <sub>till</sub>                                                                                               | it ation ( )      | (Chy )           | no net ature | torning |            |         | river free | tio or |
|                                                                                                                                                                                                                                           | FUCI                                                                                                              | Mat               | (A Cutto         | Airin        | Artacti | Sr. Can an | this to | Aspender 1 | Total  |
| $\left\{ \right\}$                                                                                                                                                                                                                        | 31.5 %<br>37.1 %                                                                                                  | 0.0 %             | 51.6 %<br>51.8 % | 0.0 %        | 0.0 %   | 2.3 %      | 0.3 %   | 0.6 %      | 92.8 % |
| ſ                                                                                                                                                                                                                                         | 40.2 %                                                                                                            | 0.0 %             | 52.2 %           | 0.0 %        | 0.0 %   | 2.1 %      | 0.0 %   | 0.8 %      | 96.0 % |
| )                                                                                                                                                                                                                                         | <b>3.0 %</b>                                                                                                      | 1.5 %       6.2 % | 36.6 %<br>78.3 % |              |         |            | 4.0 %   | 1.1 %      | 96.7 % |
| e (K)                                                                                                                                                                                                                                     |                                                                                                                   | 11.7 %            | 31.9 %           | 21.3 %       | 1.1 %   |            | 34.6 %  | 11.4 %     | 98.4 % |
|                                                                                                                                                                                                                                           | 6.4 %                                                                                                             | 3.9 %             | 82.1 %           | 1.0 %        | 0.6 %   |            | 2.0 %   | 0.7 %      | 95.5 % |

### Temperature profile:

### 1-D stack model vs. metamodel:

Eample: 3/150 conditions



- Accurate over large operation window.
- Achieved local accuracy likely higher than the effects of model simplifications.



**3-D temperature metamodel (3 shapes):** 



### Temperature profile metamodel: F-CoP for individual factors

PROSOFC

SOLID



Overall expected trends, average effect of prereforming less than anticipated.

### **Optimization for spatial temperature control (static analysis)**

M. Fardadi, F. Mueller and F. Jabbari, *J. Power Sources* 195 (2010) 4222.

> Minimization of local temperature variations during load following:

Nominal load (0.35 W cm<sup>-2</sup>) Part load (0.23 W cm<sup>-2</sup>)

- Objective function without region-dependent weighting.
- Operation conditions manipulated by optimization:
  - Air inlet temperature.
  - Air ratio (flow).
  - Fuel utilization.

| Fraction of pre- | T <sub>Nom.</sub> - T <sub>Part</sub>   <sub>max.</sub> (K) |               |  |  |  |
|------------------|-------------------------------------------------------------|---------------|--|--|--|
| reformed methane | w/o adjustment                                              | Optimized     |  |  |  |
| 0.99             | <b>25</b> (16)                                              | <b>13</b> (3) |  |  |  |
| 0.25             | <b>38</b> (28)                                              | <b>10</b> (6) |  |  |  |

Parentheses: metamodel calculations

- Significant reduction of local temperature variations.
- Potential further improvements: manipulations of PR.
- Constraints from balance of plant components (BoP).





# Conclusion

### Relevance of OptiSLang/SoS for the SOC technology illustrated by 2 examples:

### Measurement of mechanical properties:

- Elastic, **primary** and secondary creep.
- Numerical and experimental verifications.
- Application to experimental data for the SOLIDpower Ni(O)-YSZ, wide range of testing conditions.

### Optimization:

- Scalar/**3-D** distributed metamodeling of the stack thermo-electrochemical behavior.
- Numerical verification and optimization test.
- Next steps:
  - Parameter estimation tests with different constitutive laws.
  - Full stack metamodeling, direct comparison with experiments.
  - Implementation of variability in component/assembly quality and defects.



## Acknowledgements

### • PROSOFC consortium.

 The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement <u>nr. 325278 (Project</u> <u>name: PROSOFC)</u>, funding for the Swiss partners was provided by the Swiss Federal Office of Energy under contract nr. SI/500084-04.

