

Current of the second control of the second

Predictive Maintenance

LHT: Motivation

ITB: Technical Solution

WOST 2018 Presented by H. Schulze Spüntrup – ITB

WOST 2018 – Predictive Maintenance LHT Motivation

C. Werner-Spatz | HAM T/ES-Z M. Zschieschank | HAM T/ES 21

22.03.2018

Brand value

Lufthansa Group – The business segments

Lufthansa Technik Product Divisions

Number of employees:

3,800*

7 test cells around the world

X

for ~40 engine and APU types

31.000 Engine and APUs overhauls in over **60 years**

Certified by **FAA** and **EASA** as Maintenance **Organization**, **Design Organization** and Manufacturer

* as of 31.12.2016

Lufthansa Technik Engine Services

We are designed to meet our customers demands

Why do we need prognostic methods?

- Contracts covering maintenance for engine fleets increasingly complex. Often flat-rate contracts or fixed / not-to-exceed price elements included → MRO supplier shares technical and financial risks with operator
- Fleet management becomes increasingly important
 - Removal and maintenance planning
 - Monitoring: plan vs. actual performance
 - \rightarrow Manage risk through early detection of problems
 - \rightarrow Improve cost per flight-hour
- Removal and maintenance planning requires prognosis: How will engines behave over several years under expected operating conditions?
 - Performance deterioration
 - Damage to critical components
 - → Expected removal reason; time on wing; required maintenance workscope

How do we apporach the subject?

- Issue complex and highly non-linear; many parameters involved
- "Normal" approach nowadays: Big data → statistical analysis as basis for identifying relevant sensitivities and for surrogate model
- But:
 - Available data from operation doesn't qualify as "big data" if filtered properly
 - Statistical methods may solve the problem, but don't provide thorough understanding of the sensitivities → who supervises the model?
- LHT approach: physics-based model based on thermodynamic cycle and numerical simulation
 - Accurate representation of engine geometry and engine behaviour
 - Determine loads throughout actual operation
 - Determine damage / life consumption resulting from these loads for critical components of the engine
 - Efficient implementation for routine application requires use of high-quality surrogate models

Ingenieurgesellschaft für technische Berechnungen mbH

WOST 2018 - Predicitive Maintenance Technical Solution for Lufthansa Technik

The Task

- LHT approach: physics-based model based on thermodynamic cycle and numerical simulation
 - Accurate representation of engine geometry and engine behaviour
 - Determine loads throughout actual operation
 - Determine damage / life consumption resulting from these loads for critical components of the engine
 - Efficient implementation for routine application requires use of high-quality surrogate models

"high-quality surrogate models" :

Solution

- ✓ CFX & FE 1-way FSI Simulation
- ✓ Actual operation parameters as input
- ✓ Simulation output fed into LHT fatigue assessment software

- ✓ FMOP created by Statistics on Structures and optiSlang
- "Efficient implementation for routine application" < Export and implementation for routine application"
 - Export and implementation of FMOP in third party software (NEW)

FMOP created by Statistics on Structures and optiSlang

The Plan:

Screening of actual flight data (half a million datasets) and reduction into a manageable, representative set of flight variants

Here 50 representative variants of engine operation at cruise

Setting up the 1-way FSI simulation models:

- Parametrization of available & validated turbine CFX-model
- Creation of a FE-model of the <u>High-Pressure-Turbine-Blade</u> (HPTB) suitable for fatigue assessment
- Optimizing the setup for fast processing
- Implementing the simulation models in an *optiSlang* workflow
- Improving the optiSlang workflow for maximum flexibility in order to easily apply it on future simulations (e.g. other engine parts)

Lufthansa Technik

T3 [K]

OptiSlang

T4 [K]

Setting up the 1-way FSI simulation models

Parametrization of available & validated turbine CFX-model

Setting up the 1-way FSI simulation models

Setting up the 1-way FSI simulation models

Optimizing the setup for fast processing

- Reduction of output to the required minimum (location & result)
- Definition of tight convergence values based on the remaining output values
- Automated selection of the best available initial solution, depending on the design-point parameters, for further decrease of solution time

Optimized mesh density & solver settings

Implementing the simulation models in an optiSlang workflow

Simulation loop in optiSlang

Implementing the simulation models in an optiSlang workflow

Setup in optiSlang

Implementing the simulation models in an optiSlang workflow

Setup in optiSlang

Run workflow!

~ 15 hours per design point \rightarrow 1 Month process time (50 design points total)

Results

FMOP in Statistics on Structures

Sensitivity of input (left) and output (top) values

Results

FMOP in Statistics on Structures List of available individual objects/samples: SX SXY SXZ SY SZ TEMP S1 S2 **S**3 SYZ 99.21 % F-CoP[Total] 95.37 % 91.52 % 91.96 % 96.49 % 92.38 % 93.27 % 92.00 % 92.08 % 95.01 FMOP_VALIDATED Statistics on Structures 3.3.1 File includes the FE-results of the validation points for direct comparison 4.90 GB Temperatures [K] Above Above Above 103% 102% 101% 100% 99% 98% 97% Below Below Below **Result accuracy FE-Results FMOP** Perfect match = 100 % Lufthansa Technik

dynamic software & engineering

Results

FMOP in Statistics on Structures

dynamic software & engineering

Outlook

- Since Statistics on Structures 3.3.3 (2017):
 - Shared library for Windows & Linux for evaluation of FMOP
 - ANSI C interface for usage in C, C++, Python, Matlab, ...

- Ability to approximate (predict) the complete FEM solution for new support points within very short time, i.e.:
 - Approximate temperature and stress tensors for every FEM node
 - Data exchange through vectors (binary)
 - Limited functionality to access FEM mesh connectivity information for advanced evaluation

With the FMOP as a high quality surrogate model, the structural responses from actual flight data can be predicted within seconds Contrary, direct simulation of the setup takes half a day on a 128-Core HPC-cluster

In future applications this allows close to real time insight on wear, paving the way for a digital twin

Thank you for your attention!

