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Abstract

The purpose of this study is to investigate and elaborate various stategies of

adapting mutation within evolutionary algorithms. Since the early development

of evolutionary optimization, adaption has always been a topic of research and

numerous strategies with different levels and types of adapation have been proposed.

Our motivation is the application of evolutionary algorithms for solving real-

world optimization problems, which often requires a problem-specific algorithm de-

sign. The complex customization of the algorithms to the specific problem either

needs a specialist or limits the field of application to mainly scientific research. But

there is a growing demand for up-to-date optimization software, applicable by a non-

specialist within an industrial development environment. A possible way to supply

this demand are intelligent algorithms containing a mechanism to modify the pa-

rameters without external control. This process of dynamic adaption happens while

the algorithm is searching for the problem solution.

Within this study we investigate different adaption methods regarding their

effect on optimization results. The discussion of these results shall give an indication

towards promising self-adapting strategies for practical application.

Keywords: Evolutionay Algorithm, Adaptive Mutation, Fitness Landscape Analysis,
Probability Density Modulation

∗Kontakt: Dipl.-Ing. Stephan Blum, DYNARDO – Dynamic Software and Engineering GmbH,

Luthergasse 1d, D-99423 Weimar, E-Mail: stephan.blum@dynardo.de



1 Introduction

Adaption within evolutionary algorithms (EAs) reflects the attempt to mimic processes
of natural evolution. State of the art EA implementations often require a comprehensive
algorithmic knowlege from the user in order to choose appropriate strategy parameters for
solving a specific optimization problem. Even for an expert, the parameter configuration
for an optimal performance is hard to find. The idea of adaption is to change these
parameters regarding the current state of search. A survey on adaption in evolutionary
computation is given in (Hinterding u. a. (1997)).

In this paper two methods of adapting mutation parameters based on different criteria
are presented. The first strategy analyzes the fitness frequency distribution in order to
determine the current search state. A second method evaluates succesful mutations and
modulates probability density functions of mutation steps. The proposed methods are
applied to different test problems and evaluated regarding their perfomance compared to
the use of static mutation parameters.

2 Fitness Landscape Analysis

The introduction of the fitness landscape concept (Wright (1992)) was intended to explain
the dynamics of biological evolution. From the mathematical point of view, the fitness
landscape (FL) represents a (N + 1)-dimensional hypersurface, where N is the number
of genes in a chromosome while the extra dimension stands for a fitness function F . The
genes represent the components of a N -dimensional point P , and the fitness function is a
map F : P → R. The objective of EAs is to search for the lowest or highest peak of FL
while minimising or maximising, respectively. The shape of FL reflects a physical problem
that can be inhomogeneous having several different homogeneous sub-regions. Within the
scope of this paper we distinguish unimodal, multimodal, or flat sub-hypersurfaces.

At each FL region the search by EAs undergoes a corresponding state. The list of FL
regions with appropriate EA search states is as follows:

1. Flat or neutral - Steady state with weak population replacement.

2. Multimodal - Varying with increasing and decreasing convergence.

3. Unimodal - Population brackets an optima; relatively steady in terms of the im-
provement/convergence.

The first EA search state (further on just search state) is most undesirable due to
the weak replacement, since offspring populations have no improvement. Therefore the
algorithm must jump out from this state as soon as possible. The second FL state is
the case of multimodality. The search is inefficient due to the varying convergence. As a
result, the overall search improvement can be quite small or even not exist at all (e.g. all
the local optima have the same fitness values), therefore this FL state is also undesirable.
At the third EA search state, the search converges to an optimum, so that it is a most
desirable state of the search.
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Abbildung 1: Creeping on FL (from the left to the right), 1D model. The lettered
shapes denote the fitness distribution while minimising.

To jump out from undesirable states, some search strategies changing the EA be-
haviour have to be employed (Beyer und Deb (2001)). The adjustment of the search in a
way of increasing search efficiency is the main purpose of the fitness landscape analysis.
The actual search state reflects a FL region being explored. Statistical analysis methods
based on the FL mean and variance are generally proposed for the analysis. Such meth-
ods allow to adjust the search by choosing the appropriate values for EA parameters. For
example, those parameters can include: the crossover and mutation rates and types of
crossover or mutation used. Therefore, the final purpose of the FL analysis is to draw the
explicite relationship Σ between a search state S and EA paremeters V, as Σ : S → V.
In the following section, we propose one point of view on the fitness landscape analysis
and consequently establish Σ.

2.1 Fitness Frequency Distribution

Generally, a population represents a list of (N + 1)-dimensional points. However, let’s
take advantage only of the (N + 1)’th dimension, i.e. the fitness value. So, we can also
consider the population as a list of one dimensional points, where point values correspond
to fitness values. For example consider the 1D fitness landscape and population fitness
shapes creeping on it. Fig. 1 shows a quite idealised model of the population creeping on
the FL. Analysing it from the left to the right, the population moving towards the local
minimum (shape A) has quite a large diversity due to the high positive (the majority of
offspring are better than their parents) replacement rate, i.e. the population converges
to a local optimum. After having reached it (shape B), the population should be dis-
tributed symmetrical around it. Then, after several generations without improvement,
the shape becomes flatter, i.e. more points with similar fitness values appear (shape C).
Fortunately, some individuals get produced by genetic operators out of the local optimum,
and the search starts moving down towards the better solutions (shape D). After several
generations the population gains the big positive replacement, i.e. the search is efficient
and converges (shape E).

The fitness shape of a population changes during the search and reflects the search
or convergence state. To find the fitness shape, the fitness frequency distribution (FFD)
histogram has to be constructed and appropriate statistic methods have to be used to
investigate it. The FFD histogram is constructed from the fitness values ti which are
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Abbildung 2: Easom’s (left) and Rastrigin’s test function.

divided into class intervals (Kenney und Keeping (1962)), where the frequence fi of a
certain fitness value ti shows what part of a population it occupies, that is

fi =
ni

D
, (1)

where D is the population size and ni is the number of individuals in the population
falling into the class interval with ith fitness value as a class mark.

If we take the frequency value of a best fitness value (BFF), we can also see the
convergence efficiency of EAs since the BFF also reflects the FFD shape. To calculate
the BFF the class interval with the best fitness value as a class mark is used. It follows
the expression

BFF =
1

D

N
∑

i=1,i6=b

δi, BFF ∈ [0, 1), (2)

where

δi =

{

1, ti ∈ [tb − ε, tb + ε],

0, otherwise,
(3)

tb is the best fitness value, and ti is the fitness value of ith point. The bandwidth ε of the
class interval is calculated as a percentage r ∈ (0, 1] from the tb magnitude

ε = tb · r. (4)

In this work we used r = 0.05 as 5% of the tb value. In the following the BFF measures
for Easom’s and Rastrigin’s (Fig. 2) test functions are presented. Fig. 3 shows how BFF
values reflect the search state. Since BFF ∈ [0, 1), it rises up to approx. 1 when search
creeps on the flat and goes down to 0 when the search is most efficient. In case of the
FL multimodality and EA convergence, BFF has small values with some peaks indicating
temporal lingering at a local minimum (Fig. 4).

Summarising, BFF reflects the current search state and can be used to indicate its
efficiency. The coming section discusses how BFF can be used for the mutation rate and
mutation step adaptation.
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Abbildung 3: Plain-GA convergence behavior and corresponding BFF behavior for Ea-
som’s test-function.
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Abbildung 4: Plain-GA convergence behavior and corresponding BFF behavior for Ras-
trigin’s test-function.

3 Mutation Adaption in Evolutionary Algorithms

3.1 Evolutionary Algorithm

In this section we outline the algorithm used in our work. We derive our evolutionary
algorithm from the GAs (Holland (1975), Goldberg (1989), Bäck (1996)). The algorithm
follows the common scheme of GAs however, instead of the classical binary genotype,
where every gene gi in a chromosome is defined as ∀i : gi ∈ {0; 1}, we use the floating-
point representation, ∀i : gi ∈ R (Michalewicz (1992)).

The floating-point representation implies the use of appropriate genetic operators,
since, for example, the classical binary mutation (Goldberg (1989)) is absolutely mean-
ingless. The algorithm uses two crossover operators: simple crossover and arithmetical

crossover. The simple crossover operator is a classical n-point crossover , where n ≥ 1.
When n = 1 we have a simple one-point crossover operator. The arithmetical crossover
mates two parent individuals, gt

v and gt
w, and bears two children, gt+1

v and gt+1
w , in the

following way

gt+1
v = λgt

v + (1 − λ)gt
w, (5)

gt+1
w = λgt

w + (1 − λ)gt
v, (6)

where λ ∈ R is a constant, which is randomly generated within the interval λ ∈ [0, 1].
We use the Gaussian mutation operator introduced into Evolution Strategies (Rechen-
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berg (1973)). Here every gene gi is mutated with the mutation probability pm as follows

gt+1
i = gt

i + N(0, σ), (7)

where N(0, σ) is the normal distribution with zero mean and the standard deviation σ.
The mutation probability pm is also called mutation rate, which stays constant in the
classical GAs. However, the algorithm becomes more efficient when pm varies depending
on the algorithmic convergence. The following subsection discusses the pm adaptation
issue.

3.2 Mutation Rate Adaptation

The previous section has shown that BFF values indicate the efficiency of the search
and can be used for changing its behaviour. Actually, the EA behaviour is changed by
increasing or decreasing population movement intensity (PMI) depending on the search
state. The mutation rate has a significant effect on PMI, but how can the mutation rate
be changed?

In fact, the mutation rate should be increased in case of the flatness of FL or its big
multimodality as defined in the basic search strategies (see section 2). The increase of the
mutation rate would rise the PMI and increase the exploration of the fitness landscape
(Spears (2000)). We chose a deterministic strategy where the mutation rate is proportional
to the search efficiency criteria BFF. The mutation rate is calculated as

pD
m = pavg + µ, (8)

with the average mutation rate

pavg =
pmax + pmin

2
(9)

and

µ = 3σ

(

f̄L

ξ

)

, µ ∈ [0, 3σ] , (10)

where f̄L is an average BFF value within L generations, ξ is a linking coefficient and σ
is the standard deviation of the Gaussian mutation-operator. Values for ξ ∈ [1, 2] showed
to produce reasonable results.

3.3 Mutation Step Adaptation

In this section, we present the scheme for the mutation step adaptation (MUSA). The
formula (7) expresses the Gaussian mutation in a general form. Another general form is
as follows

gt+1
i = gt

i + σN(0, 1), (11)

or
gt+1

i = gt
i + SmN(0, 1), (12)

where Sm = σ is the mutation step for Gaussian mutation. Several MUSA approaches
have been proposed (Hansen und Ostermeier (1996)), (Hansen und Ostermeier (2001)),
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Abbildung 5: Mutation step adaptation scheme. The line segment AB decreases the
mutation step value, meanwhile the segment BC increases it.

(Müller (2002)) and a comprehensive review of mutation step adaptation can be found in
(Hinterding u. a. (1997)).

In the following we propose one more model for the Sm adaptation. The search
strategies mentioned in section 2 state that the PMI must be increased in case of inefficient
search. PMI is also directly proportional to Sm, so that by increasing Sm the search faster
escapes infeasible regions of the fitness landscape. Seeking to minimise the number of
tuning parameters for the used EA, the Sm is expressed through the already defined mean
for normal distribution µ (10). However, the expression for µ calculation is transformed
to µ′ as discussed below. Fig. 5 shows the graphical interpretation of Sm adaptation. The
relationship between µ′ and Sm is expressed by two line segments AB and BC. If the mean
µ′ < κ, then the mutation step is decreased until its minimum value Smin, otherwise Sm

rises up. Mathematically it is expressed in the following way

Sm =

{

A0 + A1µ
′, µ′ ≤ κ,

B0 + B1µ
′, otherwise,

(13)

where Ai and Bi are coefficients for line segments interpolation calculated as

A0 = Smin, A1 =
Savg − Smin

κ
, (14)

B0 =
κSmax − 3Savg

κ − 3
, B1 =

Savg − Smax

κ − 3
, (15)

where Savg = Smin+Smax

2
is an average mutation step between the predefined minimum

Smin and maximum Smax values. The parameter κ ∈ (0, 3) is a threshold value, once
it is reached by µ′ the Sm is increased above its average value. We can calculate the
increase probability p+

s for the mutation step Sm if the parameter κ is given. Explicitly
this probability is expressed as

p+
s = 1 − κ

3
, (16)

consequentely, the decrease probability p−
s for the mutation step Sm is

p−s = 1 − p+
s (17)

The µ′ is derived from the formula (10) expressing a mean value for the probabilistic
mutation rate adaptation:

µ′ = 3

(

f̄L

ξ

)

, µ′ ∈ [0, 3] (18)
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Abbildung 6: Modulation function ξ(xi) with δi = 0.1 and σi = 0.2 (left) and probability
density functions ϕt(xi) and ϕt+1(xi) (right).

This way of adaptation for the mutation step is based on the assumptions defined in
section 2. That is, the mutation step increases in case of a flat FL, and rises down
during the multimodality and quick convergence. The threshold κ also represents a µ′

value before which the search is supposed to be either creeping on the multimodal FL or
quickly converging.

3.4 Modulated Probability Density Mutation

The methods of adapting mutation parameters described so far are based on the analysis
of the fitness landscape and are applied to Genetic Algorithms. The following method
analyzes successful mutations and adaptively changes the distribution hypothesis for mu-
tation steps.

The mutation of the gene gi is defined as

gt+1
i = gt

i + Xi ; i ∈ (1, n) (19)

where Xi is a random variable with zero mean and standard deviation σt
i . At the initial

stage a normal distribution is assumed for each random variable Xi. The corresponding
probability density function (PDF) is given by

ϕt(xi) =
1

σt
i

√
2π

exp

[

− x2

2(σt
i)

2

]

; t = 0 (20)

The adaption takes place on component level and is based on the evaluation of suc-
cessful mutations. For a successful mutated offspring individual, whose fitness is better
than the fitness of its parent, the mutated genes and the realised mutation steps δi are
identified. The probability density function of the random variable Xi corresponding to
each mutated gene gi, which has led to an improved fitness, is modulated to

ϕt
mod(xi) = ϕt(xi) (1 + ξ(xi)) (21)

where ξ(xi) is a symmetric modulation function which takes a value h if |xi| = δi and
becomes zero for |xi| > |δi| ± σt

i . The modulated probability density function has to be
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normalised according to

ϕt+1(xi) = ϕt
mod(xi) /

+∞
∫

−∞

ϕt
mod(xi) dxi (22)

The resulting PDF ϕt+1(xi) still has zero mean due to the symmetric modulation. The
new standard deviation of each random variable Xi can be calculated as

(

σt+1
i

)2
=

+∞
∫

−∞

x2
i ϕt+1(xi) dxi (23)

Figure (6) illustrates both the modulation function ξ(xi) and the modulated proba-
bility density function. The method provides a self-adaptive strategy for changing the
probability density of the mutation steps. The probability of mutation steps which led to
an improvement is increased by the modulation function.

4 Simulation and Comparison

In this section we present the simulation for the mutation rate and mutation step adap-
tation. We also give the comparison between a Plain-EA and an EA search with the
integrated adaptive approaches (Adaptive-EA).

4.1 Simulations of BFF-based Adaptation

The first test case (TC1) is Easom’s test function presented in the previous section (see
Fig. 2). The function is unimodal, where the descent to the global minimum covers a
small area relative to the search space. Due to the small area, the probability to randomly
generate a point inside this area is quite small. Therefore, a population often creeps on the
flat FL at the beginning of the optimisation. This creeping must cause an increment in the
mutation rate as has been defined. If the search finds that small area, a quick convergence
towards the global minimum occurs, and the mutation rate can be decreased. During the
stay at the global minimum, the search has no improvement, however due to applied
mutation, some individuals get mutated outside of the optimum and the average fitness
value is always changing. These fluctuations must cause the appropriate variance of the
mutation rate because of the changing BFF. The results of the simulation are presented
in Fig. 7. A mutation rate of pmax = 0.5; pmin = 0.1, a crossover rate px = 0.5 and a
population size D = 50 was used.

The test function for the second test case (TC2) is Rastrigin’s function (see Fig. 2).
The simulation results for TC2 are illustrated in Fig. 8. A mutation rate of pmax =
0.7; pmin = 0.1, a crossover rate px = 0.5, a mutation step Smax = 0.5; Smin = 0.1 and a
population size D = 50 was used. The results show a fast convergence from the beginning
combined with a small BFF value. With proceeding convergence to the global minimum
the BFF values are increasing. Compared with the results of the Plain-GA (see Fig. 4)
the adaptive strategy produced improved results for this test function.
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Abbildung 7: TC1: The Best and Average fitness (left) and BFF values while optimising
Easom’s test function.
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Abbildung 8: TC2: Best and Average fitness (left) and BFF values while optimising
Rastrigin’s test function.

4.2 Simulations of Modulated PDF Adaptation

The adaptive mutation strategy of modulating probability densities for mutation steps is
applied to both test problems as used in the previous section. In contrast to the BFF-
based adaption, an evolution strategy without crossover is used. The replacement scheme
conforms with the (µ + λ) strategy. The values µ = 1, λ = 30 and mutation rate = 0.2
are used. The initial standard deviation is set to σ1

i = 0.2 for all n variables.
Figure 9 shows the average fitness of 10 different simulations optimizing Easom’s

function (TC1). The logarithmic diagram reveals the the faster convergence and better
approximation of the global optimum when applying the adaptive mutation strategy. The
course of standard deviations σt

i is illustrated in Fig. 10 with the corresponding modulated
probability density functions of parameter 5 for different generations. Because the global
optimum is closely approximated after 20 generations, only small mutation steps lead to
an improvement afterwards, hence the adaption mechanism emphasizes the probability of
small mutation steps. The results for TC2 shows a similar performance of the adaption
mechanism (see Fig. 11 and 12).

5 Conclusions

Both strategies presented in this paper have proven to be suitable for adaptively changing
mutation paramters within Evolutionary Algorithms. The adaptive mutation based on
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Abbildung 9: TC1: Fitness values of plain-EA and modulated pdf-mutation while opti-
mising Easom’s test function.

Abbildung 10: TC1: Course of standard deviations of mutation steps (left) and modu-
lated pdf (right) while optimising Easom’s test function.
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Abbildung 11: TC2: Fitness values of plain-EA and modulated pdf-mutation while
optimising Rastrigin’s test function.

Abbildung 12: TC2: Course of standard deviations of mutation steps (left) and modu-
lated pdf (right) while optimising Rastrigin’s test function.

the Best Fitness Frequency considers all individual of a population for deriving modified
strategy parameters, which again are applied to the whole population. The method is
recommended for use within GAs, since it is not biased by crossover effects.

Modulating probability density functions introduces adaption on component level,
where a random variable for mutation steps is assigned to each optimization variable.
Because the strategy evaluates single mutations of individuals, it can only be applied
to Evolution Strategies, where no crossover operator can blur the effects of successful
mutations.
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