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Abstract

In this paper the applicability of neural networks for the approximation of several
nonlinear problems is investigated. Neural networks are used to represent the limit
state and implicit performance functions of complex systems. The obtained results
are compared to these from classical response surface approaches. The advantage
of neural networks especially for high-dimensional problems will be shown. Finally
the successful application of neural networks for the identification of the numerical
parameters of complex constitutive laws will be presented.
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1 Introduction

In engineering science the modeling and numerical analysis of complex systems and re-
lations plays an important role. In order to realize such investigation, for example a
stochastic analysis, in a finite computational time, approximation procedure have been
developed. A very famous approach is the response surface method, where the relation
between input and output quantities is represented for example by global polynomials or
local interpolation schemes as Moving Least Squares introduced by Lancaster and Salka-
uskas (1981). In recent years artificial neural networks (ANN) have been applied as well
for such purposes.

Artificial Neural Networks have been designed to model the processes in the human
brain numerically. These mathematical models are used today mainly for classification
problems as pattern recognition. In the recent years a large number of different neural
network types have been developed, e.g. the multi-layer perceptron, the radial basis
function network, networks with self-organizing maps and recurrent networks. A good
overview is given e.g. in Hagan et al. (1996).

Neural networks (ANN) have been applied in several studies for stochastic analyses,
e.g. in Papadrakakis et al. (1996), Hurtado and Alvarez (2001), Cabral and Katafygiotis
(2001), Nie and Ellingwood (2004a), Gomes and Awruch (2004), Deng et al. (2005) and
Schueremans and Van Gemert (2005). In these studies the structural uncertainties in ma-
terial, geometry and loading have been modeled by a set of random variables. A reliability
analysis has been performed either approximating the structural response quantities with
neural networks and generating ANN based samples or by reproducing the limit state
function by an ANN approximation and decide for the sampling sets upon failure without
additional limit state function evaluations. The main advantage of ANN approximation
compared to RSM is the applicability to higher dimensional problems, since RSM is lim-
ited to problems of lower dimension due to the more than linearly increasing number of
coefficients. In Hurtado (2002) firstly a neural network approximation of the performance
function of uncertain systems under the presence of random fields was presented, but this
approach was applied only for simple one-dimensional systems.

A further application in engineering science is the identification of parameters of nu-
merical models e.g. of constitutive laws. In Lehký and Novák (2004) the material pa-
rameters of a smeared crack model for concrete cracking were identified. In this study
the relation between artificial load-displacement curves and the corresponding numerical
parameters are used to train the network and the parameters are approximated directly
from the experimental curves.

Both types of application are in the point of interest of the actual research activities
at the Institute of Structural Mechanics of The Bauhaus-University. In this paper several
examples will be presented, which clarify the power of neural networks. The numerical
results will be compared to these obtained from classical response surface approaches.
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2 Neural network approximation

The basic network includes nodes and connections which link the nodes. Each link is
associated with a weight property which is the principal mechanism how a network stores
information. Before a neural network can approximate complex coherences it has to be
trained for the specific problem by adjusting these weights. The most widely used network
type for approximation problems is the multi-layer perceptron which is also called feed-
forward back-propagation network. This network type is used in this study and is shown
in Fig. 1. The network consists of an input layer, several hidden layers and an output layer

Figure 1: Neural network with feed-forward architecture and one hidden layer

and all nodes which are called neurons of one layer are connected with each neuron of the
previous layer. This connection is feed-forward and no backward connection is allowed
as in recurrent networks. At the neuron level a bias is added to the weighted sum of the
inputs and the neuron transfer function is applied, which can be of linear and nonlinear
type. The output of a single neuron reads

aj
i = f j

i (x) = f

(

m
∑

k=1

wj
k,ia

j−1
k + bj

i

)

(1)

where m is the number of input impulses, i is the number of the current neuron in the
layer j. wj

k,i is the synaptic weight factor for the connection of the neuron i, j with the
neuron k, j − 1. For the approximation of functions with minor discontinuities generally
a combination of layers with sigmoid transfer functions f(x) = 1/(1 + e−x) and a linear
output layer with f(x) = x are used. Other transfer types are for example hard limit
and sign function, which can represent strong discontinuities. A complete list of different
transfer functions is given in Demuth and Beale (2002).

Three points have an important influence on the approximation quality of a neural
network. The first one is the training of the network. The training for a feed-forward
multi-layered network is called back propagation where the network operation is executed
reversely for the training sets and the calculated input values are compared to the given
values. Depending on a given learning rate the calculated error is corrected and the same
procedure is repeated until the training values are reproduced optimally by the network.
If no convergence is achieved, generally the training is terminated after a given number
of training loops called epochs. Different learning algorithm have been developed for this
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purpose which are described in Hagan et al. (1996). In this work the Scaled Conjugate
Gradient Algorithm proposed by Møller (1993) is used since it has a fast and stable
convergence. In the investigated examples the training is generally stopped after 2000
epochs and the best training set of three runs is used for each configuration.

The second important point for a sufficient network approximation is the design of the
network architecture. Depending on the number of available training samples the number
of neurons in the hidden layers has to be chosen in that way, that the so-called over-fitting
is avoided. This phenomenon occurs, if the number of hidden nodes is to large for the
number of training samples. Then the network can converge easier and fits well for the
training data but it can not generalize well for other data. In Hagan et al. (1996) it is
mentioned that the number of training samples m should be larger than the number of
adjustable parameters

(n + 2)M + 1 < m (2)

where n is the number of input values and M is the number of hidden neurons for a
network with single hidden layer. This leads to a much smaller number of required samples
compared to RSM for high-dimensional problems if the number of hidden neurons is taken
not to large. In Demuth and Beale (2002) two other approaches are discussed to avoid
over-fitting for a large number of hidden neurons and a small number of training samples:
regularization and early stopping. One automatic regularization method is called Bayesian
training proposed by MacKay (1992) which handles the input values as random variables.
This training method leads to a very good generalization of the data approximation but
it is very slow for higher dimensions compared to Newton-based training approaches.
The early stopping needs an additional data set, the control set, and stops the training
if the error in the control set starts to increase, while the training error decreases. In
general this approach does not avoid over-fitting completely and the disadvantage is that
an additional number of data sets is needed compared to standard training. Because of
the disadvantages of both alternative methods, here the standard way is used and the
number of neurons is estimated following Eq. 2.

The final important influence on the approximation quality is the choice of appro-
priate training samples. In the most probabilistic analyses with neural networks e.g. in
Papadrakakis et al. (1996) and Hurtado (2002) the training samples are generated by
standard Monte Carlo Simulation. Especially for a small number of training samples this
may lead to an insufficient covering of the stochastic space. In Lehký and Novák (2004)
a stochastic training using Latin Hypercube Sampling was proposed, where the space is
covered much better.

Weimarer Optimierungs- und Stochastiktage 2.0 – 1./2. Dezember 2005

4



3 Numerical examples

3.1 Approximation of nonlinear limit state functions

In this example first a nonlinear limit state function given in Katsuki and Frangopol
(1994) is investigated. This two-dimensional function is defined by a set of two linear and
two quadratic functions:

g1(x) = 0.1(x1 − x2)
2 − (x1 + x2)/

√
2 + β1

g2(x) = 0.1(x1 − x2)
2 + (x1 + x2)/

√
2 + β2

g3(x) = x1 − x2 +
√

2β3

g4(x) = −x1 + x2 +
√

2β4

(3)

whereby X1 and X2 are independent Gaussian random variables with zero mean and
unit standard error. The reliability indices are given in Katsuki and Frangopol (1994) as
β1 = β2 = 4.0 and β3 = β4 = 4.5.

The approximation of the limit state g(x) = 0 is carried out by estimating the closest
distance from the mean to g(x) = 0 depending on the direction 1/‖X‖ · [X1 X2]

T . In
order to enable an application of this approximation concept for limit state functions which
are unbounded in a certain region the inverse radius is used as approximation quantity
similar to Nie and Ellingwood (2004b), which leads to a zero value for an unbounded
direction and to the largest values for the points with the largest probability.

The support points are generated in order to be regular on this unit circle. In Fig. 2 the
original and the approximated limit state functions are shown by using neural networks,
a quadratic polynomial, weighted interpolation and MLS interpolation with exponential
weight (MLS-G) and a scaled influence radius D = 8/n, where n is the number of support
points. The figure clearly indicates, that with increasing number of support points the
neural network and MLS approximations become very good estimates of the very complex
function. By using the weighted interpolation the original function is approximated well,
but with with remarkable oscillations between the support points. The application of
the quadratic polynomial does not lead to an improved approximation if the number of
support points increases.

In order to quantify the quality of the approximation the failure probability is cal-
culated for each function by using directional sampling proposed by Bjerager (1988). In
Fig. 3 the obtained results are shown in comparison to the reference solution P̂ref(F ) =
4.541 · 10−5 obtained with exactly the same 1000 samples.

The figure indicates, that the neural network approximation gives very good results if
at least 16 support points are used. The failure probability using the MLS interpolation is
also estimated very well with a small number of samples. Due to the mentioned oscillations
the weighted interpolation converges slower to the reference solution. As already shown in
Fig. 2 the approximation with a global polynomial is not very sufficient for this example
and it converges to a wrong failure probability.

This example shows that for very complex functions the neural network approximation
needs a certain number of neurons and the corresponding support points to obtain a
sufficient approximation. If only 8 support points are available only 2 neurons can be
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Figure 2: Limit state function of Katsuki and Frangopol (1994): original and approxima-
tions using a) 8, b) 16 and c) 32 regular support points
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Figure 4: Approximated limit state function and approximated inverse radius
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Figure 5: Approximated limit state function and inverse radius for a simpler function
type
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used in 2D, which is not enough for this function type. This is pointed out in Fig. 4,
where an sufficiently approximated function is shown for 6 neurons. The black circle
indicates the interesting approximated inverse radius depending on the direction.

For simpler limit state functions a small number of neurons gives very good results,
which is demonstrated for a quadratic limit state function:

g(x) = −0.1(x1 − x2)
2 − (x1 + x2)/

√
2 + β1 (4)

In Fig. 5 the original and the approximated limit state function is shown, whereby
an excellent agreement is reached with only 2 neurons and 10 support points. This
is caused by the much simpler distance function shown additionally in Fig. 5. The
failure probability for this function obtained again with 1000 directional samples reads
P̂ref(F ) = 3.0439 · 10−4 and the approximated value by using the 2 neurons and 10

support points is P̂approx(F ) = 3.0536 · 10−4 agrees almost exactly with this solution.
For this function type an unbounded region exists, thus the approximation works only
sufficiently using the inverse radius as output quantity.

3.2 Crack growth in a plain concrete beam

3.2.1 Stochastic model and probabilistic analysis

d

P

a

l

Figure 6: Three point bending beam with
initial crack (Carpinteri et.al. 1986)
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Figure 7: Histogram of the MCS samples
and probability density function

In this example the three-point bending beam with initial crack shown in Fig. 6, which
was analyzed deterministically in Carpinteri et al. (1986), is investigated by assuming
random material properties. For this purpose a multi-parameter random field proposed
by Most and Bucher (2005) with lognormal distribution is used to model the Young’s
modulus E, the tensile strength ft and the fracture energy Gf as correlated parameters.
The mean values of these three quantities are taken as Ē = 3.65 · 1010N/m2, f̄t = 3.19 ·
106N/m2 and Ḡf = 100Nm/m2. The correlation length, the coefficients of variation
(COV) and the parameter correlation coefficients are taken as lH = 0.6m, COVE =
COVft

= COVGI
f

= 0.2 and ρ̂12 = ρ̂13 = ρ̂23 = 0.8, respectively. The other material

and geometrical parameters are assumed to be deterministic as follows: Poisson’s ratio
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Approximation type Sampling points Approximation error ε
εmax ε̄ β̄

Neural network 2 Neurons LHS50 (10000) 0.2537 0.0106 0.0285
Neural network 6 Neurons LHS200 (10000) 0.0903 0.0026 0.0100
Neural network 6 Neurons LHS200W (10000) 0.0188 0.0019 0.0035

RSM linear polynomial LHS50 (10000) 0.2773 0.0251 0.1036
RSM linear polynomial LHS200 (10000) 0.2792 0.0249 0.1037
RSM linear polynomial LHS200W (10000) 0.2082 0.0508 0.0604

RSM quadratic polynomial LHS50 (10000) 0.1641 0.0201 0.0293
RSM quadratic polynomial LHS200 (10000) 0.1347 0.0189 0.0307
RSM quadratic polynomial LHS200W (10000) 0.1626 0.0195 0.0227

RSM cubic polynomial LHS50 (10000) 1.4873 0.0398 0.1603
RSM cubic polynomial LHS200 (10000) 0.1768 0.0197 0.0319
RSM cubic polynomial LHS200W (10000) 0.1517 0.0189 0.0250

RSM MLS-G linear base LHS50 (10000) 0.4728 0.0237 0.0492
RSM MLS-G linear base LHS200 (10000) 0.1715 0.0202 0.0311
RSM MLS-G linear base LHS200W (10000) 0.2381 0.0237 0.0351

RSM MLS-G quadratic base LHS50 (10000) 0.6601 0.0242 0.0623
RSM MLS-G quadratic base LHS200 (10000) 0.1818 0.0195 0.0301
RSM MLS-G quadratic base LHS200W (10000) 0.1844 0.0212 0.0305

Table 1: Approximation errors of the maximum relative load using neural networks and
response surfaces with different numbers of training points

ν = 0.1, beam length l = 0.6m, beam height d = 0.15m, beam thickness t = 1.0m and
initial crack length a0 = 0.045m.

The initial random field, which contains 4800 random variables (40×10 four-node finite
elements, each having 4 integration points with 3 random parameters) is modeled with the
largest 30 eigenvalues and belonging eigenvectors, which is equivalent to a representation
of Q = 95.84%.

First a stochastic analysis is carried out by calculating the load displacement curves
of 10000 plain Monte Carlo samples. The cracking process is modeled by a coupled
discretization with a meshless zone in the cracking area and standard finite elements in
the undamaged part of the beam. More details about the crack growth algorithm can
be found in Most (2005) and Most and Bucher (2005). The histogram of the maximum
relative load determined from these MCS results is shown in Fig. 7. Additionally the
probability density function (PDF) by assuming a lognormal distribution is shown using
the indicated mean value and standard deviation obtained from the 10000 samples. The
histogram and the PDF agree very well, thus the distribution type of the relative load is
nearly lognormal.

3.2.2 Approximation of the maximum relative load

In the next step an approximation of the maximum relative load is performed using
neural networks trained with 50, 200 and 200 wide-spanned LHS samples. The wide-
spanned LHS training is obtained by stretching the original space of the random variable
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distributions artificially to its double size.
The networks are defined using all 30 independent Gaussian random field variables as

input values and one output value. Only 2 neurons are used together with the 50 training
samples and 6 neurons for the 200 samples in order to fulfill Eq. 2. In Table 1 the calculated
approximation errors are given. The approximation error is quantified by the maximum
error εmax, the mean error ε̄ and the mean error β̄ = ε̄F<0.01∩F>0.99 which quantifies the
error for all samples with distribution function values less than 1% and larger than 99%.
Thus β̄ gives an information about the approximation error for the regions with very low
probability. The table indicates, that with increasing number ε̄, εmax and β̄ are reduced.
By using the wide-spanned training εmax and β̄ are smaller than using standard LHS,
which clarifies, that the approximation works well for the whole distribution space. In
Fig. 8 this is shown more clearly. Due to the wide-spanned training the approximation
of events with very low probability is much better than with the standard training. This
is displayed in Fig. 9 in terms of the probability distribution function. The figures shows
additionally the lognormal probability distribution functions using the statistical values
of the 10000 MCS samples. The approximated probability distribution of 1000000 ANN
samples with wide-spanned LHS200 training agrees very well with this function, thus
the approximation of very small probabilities with the presented neural network concept
seems to lead to very good results.

The excellent neural network results are compared to a response surface approximation
using a global polynomial and the MLS interpolation. For this purpose only the random
variables are used which have a correlation coefficient together with the response quantity
larger than ten percent. Since only four random variables are assumed to be important
a third order polynomial could be used for the approximation. The MLS approximation
are carried out using the exponential weighting function with D = 2.7 for the linear
base and D = 4.7 for the quadratic base. In Table 1 the errors of all response surface
approximations are given, whereby the smallest approximation errors, which are obtained
with the quadratic polynomial, are one order of magnitude larger than these of the neural
network approximation.

3.2.3 Approximation of the random load displacement curves

In the final analysis of this example the neural network approximation of the complete
nonlinear response is investigated. For this purpose the load values at ten fixed displace-
ment values are used as output values while the 30 random variables are taken again
as input variables of the network. 10 neurons are used in the hidden layer. As train-
ing samples the results of the 200 wide-spanned LHS samples are taken. In Fig. 10 the
statistical load displacement curves obtained with the 10000 MCS samples and with the
corresponding neural network approximation are shown. In Table 2 the maximum and
the mean error of the approximated load for each displacement value are shown. These
errors are normalized by the deterministic peak load in order to obtain comparable values.
The table clearly indicates, that the approximation of the complete nonlinear response of
the investigated structure leads to very good results. For the larger displacement values,
where the structure is in the post-peak part of the load displacement curve, the maximum
error increases, but the mean error stays in the same range. This means that although
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Figure 8: Approximation errors of the 10000 ANN samples using 50, 200 and 200 wide-
spanned LHS training points with indicated range of the LHS samples

Weimarer Optimierungs- und Stochastiktage 2.0 – 1./2. Dezember 2005

11



a)

1e-04

1e-03

1e-02

1e-01

1e+00

0.05 0.10 0.15 0.20 0.25

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

Maximum relative load

MCS 10000
ANN-LHS50 10000

ANN-LHS200 10000
ANN-LHS200W 10000

b)

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0.05 0.10 0.15 0.20 0.25

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

Maximum relative load

F(MCS 10000)
ANN-LHS200W 1000000

Figure 9: Probability distribution obtained by a) ANN approximation and using b) the
statistical values and a lognormal distribution type

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.00 0.20 0.40 0.60 0.80 1.00 1.20

R
el

at
iv

e 
lo

ad
 δ

p

Relative mid deflection f/d · 10-3

MCS
ANN

Figure 10: Statistical load displacement curves of the MCS samples and neural network
approximation (mean values and mean values ± standard deviations)

Weimarer Optimierungs- und Stochastiktage 2.0 – 1./2. Dezember 2005

12



the input parameters of the neural network describe only the initial state of the structure,
the network approximation can represent the strongly nonlinear softening process due to
cracking. A response surface approximation of this problem would require a much higher
number of samples since most of the 30 random variables have a significant influence on
at least some load values.

Relative mid deflection Maximum error Mean error
0.0002 0.02455 0.00227
0.0003 0.03133 0.00314
0.0004 0.03414 0.00555
0.0005 0.03457 0.00654
0.0006 0.04840 0.00516
0.0007 0.13592 0.00563
0.0008 0.14354 0.01044
0.0009 0.13899 0.01102
0.0010 0.12804 0.01145
0.0011 0.20828 0.00820

Table 2: Approximation errors of the relative external force values using the neural net-
work

3.3 Identification of the parameters of a complex interface ma-

terial model for concrete

Within this final example the neural network approach is used to identify the parameters
of a material model for cohesive interfaces proposed by Carol et al. (1997). The model
has twelve parameters: elastic stiffness and strength, each in normal and tangential direc-
tion, Mode-I and Mode-IIa fracture energy, friction coefficient, dilatancy stress and four
shape parameters describing normal and tangential softening and the dilatancy behavior
depending on the stress and the damage state.

In the first step the pure tensile softening is analyzed. For this purpose the normal
stress curve used as reference is obtained with the following parameters: tensile strength
χ0 = 3 · 106N/m2, Mode-I fracture energy GI

f = 100Nm/m2 and the shape parameter for
tensile softening αχ = 0. The corresponding softening curve depending on the irreversible
crack displacements is shown in Fig. 11. All other parameters do not have an influence on
the softening curve. Eleven regular points on this curve have been used as input values and
the three parameters as output values for the neural network approximation. In Fig. 11 the
curve from the identified parameters using 100 uniformly distributed LHS training samples
and 15 hidden neurons is shown additionally. This curve shows a very good agreement
with the reference solution, which clarifies that the neural network approximation works
very well for this problem.

In the next step all twelve parameters together have been identified by means of a
combined normal-shear-cracking test carried out by Hassanzadeh (1990). In Fig. 12 the
measured curve for the normal and shear stress depending on the crack opening and sliding
are shown. Additionally the curves obtained from the parameters identified by Carol et al.
(1997) using an optimization strategy are displayed. The parameters are given in Table 3.
The neural network approximation has been carried out using 150 uniformly distributed
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Figure 12: Normal and tangential stresses depending on the crack opening and sliding;
Experimental and numerical curves with identified parameters

LHS samples with 4 hidden neurons and 1000 LHS samples with 29 hidden neurons. The
training bounds and the identified parameters using 10 points from each curve are given
in Table 3. Fig. 12 shows the curves belonging to these parameters. With 150 training
samples the estimated parameters do not lead to a sufficient agreement of the normal
and tangential stresses. If 1000 samples are used the agreement is much better and the
resulting curves close to these obtained by Carol et al. (1997). But a very good agreement
with the experimental curves could not be achieved, which might be caused on the one
hand by the ill-conditioned experimental curve with softening and hardening, which can
not represented by the material model. On the other hand the complexity of the problem,
which needs much more neurons for a very good representation, might by another reason.
With 4 neurons the minimum mean square error of the training was about 0.23 and with
29 neurons about 0.13, which shows that the training fitting improves with increasing
number of samples and neurons, but for a very good fitting with a mean square error
for example below 10−5 a much larger number of neurons and belonging training samples
might be necessary. Although the neural network approximation leads to similar results
as the application of classical optimization strategies.
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Carol Training ANN LHS150 ANN LHS1000

Normal stiffness kN [109N/m3] 200 100− 500 314 155

Tangential stiffness kT [109N/m3] 200 100− 500 301 102

Tensile strength χ0 [106N/m2] 2.8 2.0 − 3.5 2.5 2.6

Shear strength c0 [106N/m2] 7.0 4.0 − 10.0 8.0 9.9

Mode-I fract. energy GI
f [Nm/m2] 100 50 − 300 156 105

Mode-IIa fract. energy GIIa
f [Nm/m2] 1000 500− 2000 1670 1590

Dilatancy stress σdil [106N/m2] 56 20 − 100 65 76

Friction coefficient tan φ [-] 0.9 0.5 − 1.0 0.83 0.87

Shape parameter αχ [-] 0.0 -1.0− 1.0 0.04 0.11

Shape parameter αc [-] 1.5 0.0 − 3.0 1.33 2.16

Shape parameter αdil
σ [-] 2.7 0.0 − 6.0 2.53 3.57

Shape parameter αdil
c [-] 3.0 0.0 − 6.0 2.91 3.29

Table 3: Identified parameters and training bounds

4 Conclusions

The paper has shown that neural networks are a powerful tool for approximation purposes.
For problems of lower dimension similar results as with the common response surface ap-
proach could be achieved. For higher-dimensional problems much better results could be
obtained, since a smaller number of supports is necessary for a high order approximation.
The applicability for identification problems could be shown, but for very complex mod-
els this application requires a large number of neurons and belonging training samples.
Because of this reason optimization strategies might be more efficient for such tasks.
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