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Abstract 

Input scatters of forming process parameters can lead to significant scattering of 
the forming results. In order to predict the influence of these scatters on the form-
ing results, stochastic analysis are increasingly employed. Generally, so called 
robustness evaluations are performed, i.e. sensitivity analyses of input scattering 
on important result variables. These means prediction can be employed in early 
stages of the product development process until serial production. However, the 
biggest potential is expected to lie in a robustness evaluation and consequential 
definition of actions in a very early development phase. 
Based on a deterministic forming simulation, a number of possible realizations of 
the forming process are computed. The characteristics of the input scattering are 
described by statistical distribution functions. The robustness of the forming proc-
ess is analyzed by means of correlation and variation analysis. Based on linear 
correlation hypotheses and their measures of determination and on variation mea-
sures displayed on the FE structures, a first evaluation of the robustness is per-
formed. In the following, statistical measures of linear and quadratic correlation 
hypotheses and their variations are calculated on local level, i.e. the level of the 
FE discretisation.  
In the present paper, the special demands on reliable correlation coefficients, mea-
sures of determination and fractile values regarding the representation on FE mes-
hes are discussed. 
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1 Introduction 
For many years, FE methods have been used to evaluate the forming process in 
industrial applications. In the beginning, the computation times were long, often 
yielding but unsatisfactory results. Nowadays, thanks to improved material laws 
and new numerical methods, the simulation is an essential part of the design and 
ensuring of forming processes. Nevertheless, most investigations are performed 
assuming deterministic conditions, i.e. all parameters are regarded as fixed. Thus, 
the simulation results can only describe singular process states. However, real sys-
tems are always subjected to scattering of process parameters. Such input scatters 
can lead to significant scattering of the forming results. Thus, a prognosis of the 
range of variations proves necessary. 
 
Decisive input scatters might be scattering material properties or sheet thick-
nesses, variations in the cut blanks ensuing displacements in the moulding press, 
as well as scattering process forces or friction between forming tool and blanks to 
form. The quality of the component regarding the scattering of the forming results 
can be judged by verifying the dimensional accuracy of the blanks to form, as 
well as the compliance to the admissible thinning and the prescribed surface qual-
ity. If the component does not always meet the admissible tolerances because of 
process variations, the process is judged non robust. The resulting reject rates and 
necessary post-treatment and control represent a considerable expense factor in 
the production. 
In practice, a trial and error strategy is often employed in order to achieve robust-
ness. However, due to the high pressure of time and cost as well as resulting from 
a lack of precise knowledge of the effect of scattering input parameters, the area 
of action is restricted to the scatter reduction of only few process parameters. 
Thanks to the growing computing capacities and power, stochastic analyses of 
forming simulations are increasingly employed to predict the influence of process 
parameter scattering on the forming results. As the knowledge of input scatters 
usually is limited, it is recommended to start with so called robustness evaluations 
or sensitivity analyses of input scattering on important result variables. The ad-
vantages of this prognosis tool can be exploited in the early phase of the product 
development process up to the series production. However, the highest potential 
lies in the robustness evaluation and in the definition of appropriate measures in a 
very early development phase, as, in this phase, the component design as well as 
the production process are still accessible to fundamental changes. In the present 
paper, the current processes as implemented at the BMW group as well as the as-
sociated boundaries are described. Hereupon, the strategy to evaluate the process 
robustness is explained. The reliability of the statistical measures is a crucial crite-
rion to decide whether the results of the stochastic analyses can serve as a base for 
measure definition. In the following, the conditions for a reliable computation and 
visualization of appropriate statistical measures are discussed. The implementa-
tion of these into the optiSLang post processing is explained and illustrated by an 
application on a structural component of the three series BMW. 
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2 Forming simulation process  

2.1 Deterministic CAE simulation process 
Finite element methods are successfully employed to simulate the forming process 
in industrial applications. In order to reduce the computation time, the meshes are 
adaptively refined during the calculation. To make the results comparable there-
fore it is necessary to map the results of different computation runs onto a uniform 
mesh. 
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3 Computational robustness evaluation 
Robustness evaluations are also known as sensitivity analyses of input scattering 
on important result variables. Based on a forming simulation with a deterministic 
set of parameters, e.g. corresponding to the mean values of the scattering parame-
ters, a number of possible realizations of the forming process are computed. The 
characteristics of the input scattering are described by means of statistical distri-
bution functions, thus defining the probability space of possible realizations. 
Please note that the statistical measures of the result variables are naturally de-
pending on the quality of the input information about the input scattering. In cases 
when only coarse assumptions on input scattering are possible, the statistical 
measures should be judged as nothing more than a trend, taking into account that 
the measures of small probabilities (e.g. 3 sigma values) are afflicted with very 
high uncertainties.  
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Figure 2: Robustness evaluation procedure 

 
By means of an appropriate sampling strategy, a number of possible samples are 
generated and calculated. The suggested methodology to generate the samples and 
to compute the statistical measures ensures an as good estimation as possible of 
the statistical measures requiring as little computation runs as possible. The sensi-
tivity is estimated by means of statistical measures of variation and correlation 
analysis and evaluated regarding robustness requirements. Once the most impor-
tant scatters are identified via robustness evaluations, small probabilities of occur-
rence can be estimated by means of reliability analysis. 
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3.1 Definition of scattering input parameters 
The first step of a robustness evaluation is to assess and model the input scatter-
ing. Hereto, the following methods are available: 
 

1. Determining the scatter of the input parameters by means of tests and 
translating them into appropriate statistical measures, i.e. distribution func-
tions. 

2. Assessing the distribution functions based on the relatively coarse knowl-
edge on presumed scatters, generally assuming a uniform distribution and 
associating upper and lower boundaries of scattering to different levels of 
probability. 

The software used for the robustness evaluation should be capable of taking into 
account the complete existing knowledge on input information. This means that 
appropriate distribution functions (normal distribution, cut-off normal distribu-
tion, lognormal distribution, Weibull distribution or uniform distribution) should 
be available, and correlations of single scattering input variables or of spatially 
correlated random fields need to be considered. 
An example shall illustrate this necessity: Generally, in forming simulations, the 
yield curves of steel are described by the yield strength, tensile strength, and the 
strain at failure. The yield strength and tensile strength often can be described by a 
lognormal distribution, while the strain at failure usually follows a normal distri-
bution. But the material variables are significantly correlated. Only by taking into 
account the complete statistical information (distribution and correlation) in the 
sampling method, realistic yield curves are computed from a “random“ choice of 
the three correlated scattering input parameters. On the other hand, choosing a 
normal distribution for all three scattering input variables without taking into ac-
count the correlations would result in a large amount of unrealistic yield curves. 
 
Generally, only such input scatters can be taken into account that can be directly 
or indirectly incorporated into the simulation model. In the forming process, such 
input scatters are, e.g.: 
 
- Material parameter, e.g. yield strength, tensile strength, n value, R values 
- Sheet thickness 
- Cut blanks 
- Blank position in the tool 
- friction value 
 

3.2 Sampling methods 
 
The estimation of the statistical measures from a sample of possible realizations 
naturally is afflicted with an error. In order keep this error as small as possible 
while the number of computations is relatively small, Latin Hypercube sampling 
methods are preferable to Monte Carlo sampling method. 
By investigating the linear correlation coefficients, it can be shown that, for the 
same expected error, Latin Hypercube samplings are ten times more efficient than 
Monte Carlo samplings. However, the number of computations needed to ensure a 
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certain error size depends on the total number of scattering input variables plus 
the number of the result values to estimate. Thus, the probability that the maxi-
mum error of single correlation coefficients rises is increasing with an increasing 
number of result value. Therefore, in many engineering disciplines, typically only 
a small number of significant result variables are considered in robustness evalua-
tions. In the special case of forming simulations, the necessity arises to visualize 
the spatially strongly correlated statistical measures on the finite element struc-
ture. This results in a very high number of correlation coefficients to estimate. 
Thus, a special procedure is necessary to even so achieve reliable statistical meas-
ures with a relatively small number of calculations (e.g. 100). 

3.3 Robustness evaluation by means of statistical measures 
 
The histogram of the result variables contains the statistical measures which to-
gether with correlation analysis form the base for identification of noticeable con-
nection between the variation of individual input variables and the variation of 
individual result variables. Correlations determined by linear and quadratic corre-
lation hypothesis thereby characterize a measure of linear and quadratic connec-
tion between parameters. The correlation coefficients in turn form the base of 
measures of coefficients of determination of individual result variables which are 
percent wise estimates of the ratio of variance which can be explained by the cor-
relations to all input variables. 
 
The histogram of the result variable contains variation measures, i.e. standard de-
viation, min/max values or 3-sigma-values, describing the measure of variation. 
Starting with the linear correlation hypothesis and its measures of determination 
as well as variation measures displayed on the FE structure a first evaluation of 
robustness can be made. The found “hot” spots should then be statistically vali-
dated locally on element level. Should small measures of determination be found 
in the area of relevant scatter on the FE structure then continuative statistic 
evaluations (i.e. quadratic correlations hypothesis or cluster analysis) on element 
level are essential to determine robustness. 
 

3.4 Specific requirements for visualising statistical meas-
ures on forming simulations 

 
A visualisation of statistical measures on the FE-mesh considerably facilitates the 
engineering evaluation since the result values of a forming simulation which are 
to evaluate are generally spatial correlated values. The statistical measures on the 
FE structures serve as discussion basis for identification of critical areas and as a 
basis of comparison for evaluating the quality. In addition this type of representa-
tion leads to a high acceptance of the results in the production departements. 
Therefore it is important to visualize the statistic measures directly on the compo-
nent and respectively on the corresponding reference mesh and to communicate 
them in the hardware process. Mean value, variation coefficient, standard devia-
tion and min/max values thereby can be determined in the FE discretisation (node 
or element wise) and displayed on the FE structure. 
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As well the computations of the correlation coefficients as the reliable determina-
tion of fractile values of small probability levels (i.e. 3-sigma-values as basis of 
process stability) however have specific requirements.  

3.4.1 Projection of result variables into a subspace in order to 
determine correlation structures 

 
The amount of estimated correlation coefficients and the amount of necessary 
computations to ensure the desired confidence interval rise significantly, if the 
correlation coefficient is determined for every point of discretisation or for every 
finite element. 
Concerning forming simulations furthermore it can be assumed that the correla-
tion structures are strongly spatial correlated and that therefore the estimation on 
discretisation level creates noise on the existing correlation structures. If a single 
simulation run costs significant CPU, then it can be assumed that the necessary 
amount of samples to eliminate nameable noise is too costly, too. In the following 
it is shown that by a projection via stochastic fields a significant reduction of cor-
relations coefficients to estimate and a reduction of noise can be achieved. 
Thereby a higher accuracy of prognosis can be obtained while using a signifi-
cantly smaller amount of samples and when using a smaller amount of computa-
tions (e.g. 100) small confidence levels of the estimate of the statistical values can 
be obtained respectively.  
 
For correlation analysis the result variables are projected onto a reduced base in 
order to reduce the amount of correlations coefficients to estimate (limiting the 
necessary amount of samples). The base appropriately is assumed as orthogonal 
over the structure. 
 
An appropriate base results from spectral decomposition of the covariance func-
tion of probability fields. Assuming that a structural result ( )xH  is spatial corre-
lated stochastic distributed the mean value function then is defined by 
 

( ) ( )[ ]xHExH =      (1) 
 

E refers to the expectation operator and the mean value over the ensemble of all 
realizations (fig. 3) respectively. The covariance function is defined by 
 

  
 ( ) ( ) ( ){ } ( ) ( ){ }[ ]yHyHxHxHEyxCHH −−=,   (2) 

 
The covariance function shows the correlation between the values of the stochas-
tic field at different positions x and y. In most instances of FE-applications the 
stochastic field  is a priori discretized which leads to ( )xH
 

    ; ( )xHH i = Ni ...1=     (3) 
 
A spectral representation of this discrete stochastic field is given by 
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Figure 3: ensemble of realisation of one-dimensional probability fields of struc-
tural result H (the covariance matrix describes the values of the probability fields 

at any positions x and y) 
 
This is the index notation of a matrix-vector multiplication: 
 

cH Φ=       (5) 
 
The orthogonality condition for the columns of Î¦  
 

IT =ΦΦ       (6) 
 
are automatically fulfilled if these columns Ï†k are solutions to the following Ei-
genvalue problem: 

kcHH kk
C φσφ

2=  ; Nk ..1=     (7) 
 
In the following examples it is assumed that an isotropic exponential covariance 
function is used to generate the orthogonal base Ï†k . Therefore only a number m 
<< N of base vectors actually are computed and used. Per result value the covari-
ance matrix of the projected value as well as the matrix of the correlation coeffi-
cient corresponding to the input scatter is computed. In the subspace also coeffi-
cients of determination are computed from the correlation between result variables 
and input parameters assuming a linear correlation hypothesis. After determining 
the correlation in the subspace the results are projected back onto the FE-mesh. 
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3.4.2 Determination of reliable fractile values 
 
Fractile values with small probabilities (in this case 3-sigma-values usually this 
means a value with a failure probability of 0.0013) generally can be estimated 
from the sample set when doing computational robustness evaluations or calcu-
lated by assuming distribution functions from mean value and standard deviation. 
The calculation of the fractile values via distribution functions is strongly recom-
mended because when doing robustness evaluation it can be assumed that there 
are too few realisations for a reliable estimation of small probabilities from the 
sample set. The determination of fractile values from mean value and standard 
deviation is however tightly bound to the assumption of a certain distribution 
function generally the normal distribution. This is a hypothesis for which’s valida-
tion often no traceable justification is given. It therefore is recommended that non-
normality of scatter in the result variables is eliminated by transforming to normal 
distribution. After determining the fractile values in normalized space they are 
transformed back. By doing so the distribution hypothesis to determine fractile 
values is assured and is not subject to scattering. Thereby especially implausible 
jumps of the 3-sigma-values of adjacent discretion points can be avoided resulting 
from various distribution hypothesis. An appropriate transformation is given in 
form of a quadratic function 

 
2cubuax ++=     (8) 

 
Whereas the coefficients are computed by regression over the 20% highest values 
(superior fractile value) of the sample and respectively the 20% lowest values (in-
ferior fractile value) of the sample (cp. Fig4). The wanted„ σ3 “ value results from 
 

( ) cbax 933 ++==ξ    (9) 
 

 
Figure 4: Determination of fractile values by means of transformation on normal 

distribution
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4 Example – Rear extension sideframe, three series 
BMW 

For demonstration purposes the possibilities of the optiSLang post processing are 
demonstrated using a car body part, the extension of the rear extension sideframe. 
 
4.1 Description of components and robustness task 

The component is manufactured in several maintenance sequences, i.e. using a 
deep draw operation and several following operations. During the last following 
operation amongst others the flange is set, as shown in the following figure. Occa-
sionally difficulties arose concerning this matter during tool try-out, so the process 
could not be called robust. The process only could be stabilised by complex 
changes of the geometry. 
 
 
 
 

 
 
 
 
 
 
 

flange with risk of cracks 

 
Figure 5: rear extension sideframe, three series BMW

 
The blank is cut from the usable waste of the blank of a different, larger compo-
nent. That way the comparatively small component is dependent on the tolerance 
limits of the large coil. Thus the assumption of the manufacture was that the size 
of the cut blanks as well as the connected variation in length between the gauge 
pin were the reason for the process not being robust. This assumption should be 
reviewed by doing sensitivity- and robustness analysis using optiSLang.  

 
 

variation in length between 
the gauge pin 
 

Figure 6: Blank 
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For this drawing simulations were reviewed, because it was know from real 
measurements that the thinning of the critical area underlies measurable fluctua-
tions during this process step. During the following operations a significant ampli-
fication of the thinning arises which can ultimately lead to material failure. The 
reason for this risk of cracks in the manufacturing process lies in the pre damage 
of the material by the draw operation.  
 

 
 

critical area

Figure 7: Drawing simulation 
 
4.2 Results of the robustness evaluation using OptiSLang 

Besides considering the cut blanks and respectively the position of the blank also 
the variation of the sheet thickness, the yield stress und R-Values (R90, R45, R0) 
were considered as input scatter. Since no real distribution function of the parame-
ters was known a uniform distribution of the values with upper and lower bound-
ary of assumed scatter was adopted. As the estimation of the input scatter was 
relatively raw, in the following mainly correlation coefficients are evaluated and 
using those sensitivities considering the suspected causes of the crack problem are 
performed.  
 
Overall 100 computations (optiSLang Latin Hypercube Sampling) were made us-
ing the solver LS-Dyna, which in each case were mapped on a standardized mesh 
and converted to an internal meta format. The statistical measures then were de-
termined and visualized using the aforementioned optiSLang post processing. In 
Figure 8 the result value thickness reduction is displayed element wise as minimal 
value and respectively maximum value. Thereby blue stands for large and red for 
a small thinning value. 
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Figure 8: Min/Max-values thickness reduction 
 
In the following figure the mean deviation of the result variable thickness reduc-
tion is shown. One can recognize that the thickness reduction varies strongest in 
the area considered critical. 

 
 

 

MinimumMaximum 

 
 

Figure 9: Standard deviation - thinning 
 
The measure of determination of the examined result value can now also be 
mapped on the FE-mesh and gives information about the amount of variation of 
this result variable over all linear correlations to the input variables that can be 
explained. A larger measure of determination shows that linear correlation analy-
sis is sufficient to identify the important input parameters. A smaller measure of 
determination shows that nonlinear correlations are important or that numerical 
noise of the CAE-computation affects the result variable significantly. Therefore 
the measure of determination may also give some a measure of quality for the 
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numeric CAE-process. In the present case the measure of determination of linear 
correlations is large (>80%) in the region of interest. The most important coher-
ences can be explained this way using linear correlation coefficients. 
 

 
 

Figure 10: linear measure of determination – thinning 
 
Using plots of the correlation values of the single scattering input variable it can 
be detected which input scatter determines the result variable the most. In Figure 
11 the correlation values of the R-values and the position Y are visualised for 
thinning. It can be clearly seen that the variation of the sheet thickness is domi-
nated by the R-values. The position Y does not show any noteworthy correlation 
in this area.  
 

 
 

R-value Position Y

Figure 11: Correlation to Thickness Reduction 
 
For further detailing of the statistical measure now histogram, measures of deter-
mination and anthill-plots can be displayed element wise. For this purpose the 
element with the greatest thinning in the area of interest is chosen. 
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Figure 12: Histogram of the element with the highest thinning in the „hot spot“ 
 

 
Figure 13: Measure of determination of linear correlation 

 
The local measure of determination of linear correlations (figure 13  84 %) af-
firms the results on the FE-mesh. Taking into account quadratic correlations the 
measure of determination rises to 91% (figure 14). The distinct dominance of the 
material characteristic R-value is reflected in the Anthill-Plot regarding thinning 
(figure 15), the linear correlation, which according to figure 13 constitutes to 54% 
of the variation in thinning can be clearly seen (orange line). The scatter of all the 
other process parameters furthermore causes the scatter around this linear correla-
tion. 
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Figure 14: Measure of determination of linear and quadratic correlation 

 

 
 

Figure 15: Anthill plot thickness reduction over R90, element 45381 
 
4.3 Interpretation of the results 

 Using the visualisation it becomes apparent that the area of the component 
viewed as critical shows a large scatter of the result variable “Thickness Reduc-
tion”. The suspected influence of the size of the blank has very small correlation 
coefficients and measures of determination in this area and therefore can not be 
identified as the main cause. The greatest influence on the scatter of the thinning 
results from the assumed scatter of the R-value, followed by the scatter of the 
sheet thickness. Scatter of the yield stress and the position of the blank in contrast 
do not noteworthy affect the thinning in the area of interest. 
 
Using the visualization of statistical measures the sphere of influence of different 
input parameters can quickly be identified. On local level these insights can be 
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verified using further statistical measures. This allows a reliable identification of 
decisive input scatter on scatter in the forming process. At this point it shall be 
pointed out that the above results apply under the assumption of scatter as de-
scribed in chapter 4.2. When adding further scatter the statistical measures can all 
change significantly if these scatter have significant influence on the scatter of the 
result variables. 
 

5 Outlook 
The procedure shall be further automatized and made accessible by the regular 
design process. Here fore, the optiSLang post processing module shall be en-
hanced by a graphical interface to the meta format. 
 
The number of stochastic fields used for the projection of the result variables is 
crucial for the usability of the linear correlations and measures of determination 
on the finite element mesh. 
As can be seen in 17, 100 stochastic fields are sufficient to determine the correla-
tions in the areas of maximum variation more reliably than without projection 
(figure 16). Using 200 stochastic fields, only correlations in areas of little varia-
tion change compared to the projection with 100 stochastic fields. This „error“ of 
the projection might be tolerable, as the correlation relationships are of no interest 
in these areas. Nevertheless, this points out the necessity to verify correlation rela-
tionships on element level. 
 
In view of the automatization, methodological enhancements might prove neces-
sary to calculate and evaluate a spatial quality measure of the projection. This 
might serve as a criterion for the choice of the number of stochastic fields. 
 

 
 

 
figure 16: projected linear correlations. without projection 
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figure 17: projected linear correlations. left with 100, bottom right with 200 sto-
chastic fields projected 
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