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Abstract

In reliability and robustness analysis, imperfections of a mechanical or structural
system, such as material properties or geometrical deviations, are modelled as ran-
dom fields in order to account for their fluctuations over space. A random field
normally comprises a huge number of random variables. The present paper pro-
poses a method to reduce the random variables set. This reduction is performed on
the basis on a robustness analysis. In this way, numerical difficulties can be avoided
and the efficiency of the subsequent reliability analysis is enhanced.

As an example, the reliability of a cylindricral shell structure with random im-
perfections is studied. Within this example, the imperfections are discretized by
Stochastic Finite Element methods. it is demonstrated, how robustness analysis is
employed in order to identify the most relevant random variables. The probability
of failure is computed by Monte Carlo simulation involving Latin Hypercube sam-
pling. The failure criterion is derived from a comparison of the linear buckling loads
of the perfect and the imperfect structures.

This so-called non-parametric structural reliability analysis is a new method to
estimate the safety and reliability of finite element structures in such cases where a
CAD-based parametrization is not possible or not meaningful. The probabilistic and
structural analysis tasks are performed with the optiSLang, SoS and SLang software
packages.
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linearity, buckling, stability.
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1 Introduction

A realistic interpretation of the computational analysis of a mechanical or structural
system, in particular when compared to measurements, requires to take into account
the natural scatter of the structural properties. This uncertainty can be conveniently
modelled with methods of probability calculus. I.e., the properties are characterized by
distribution types and statistic moments. It is a major goal of stochastic computational
analysis to relate the uncertainties of the input variables to the uncertainty of the model
response performance. Several levels of stochastic modelling can be named as:

• Time-independent random problems (Reliability analysis)

– Random variables (constant in time and space),

– Random fields (correlated fluctuations in space),

• Time-dependent random problems (First passage reliability analysis)

– Random processes (correlated fluctuations in time).

The stochastic analysis software SLang (which stands for: Structural Language) in-
cludes several methods to solve all of the above stochastic models. Currently, optiSLang
(the optimizing Structural Language) supports methods to analyse random variables only.
It offers additional functions for robustness evaluation and structural optimization. In ad-
dition, the SoS (Statistics on Structures) add-on tool to optiSLang provides methods to
solve random fields.

There exist attempts to model uncertainties by few random variables which are gen-
erated by CAD programs. This approach is meaningful for few special problems only,
since the mentioned fluctuations in time and/or space cannot be modelled in this way.
Random processes or fields need to be discretized for a computer implementation. The
required number of random variables, however, can be considerably high. The present
paper proposes a method to model a random field with a reduced set of variables. Robust-
ness evaluation (section 3) is employed for this purpose, which relates the stochastic input
and output quantities and thus helps to identify the relevant variables. Unlike previous
approaches (sketched in sec. 2.2), it does not rely on purely stochastic considerations, but
takes into account the structural behaviour as well.

2 Random Fields

2.1 Properties

A random field is, in brief, a random function H(r) defined on a spatial structure. The
vector r ∈ RStr. points to a location on the structure. Random fields are used, e.g.,
to study random fluctuations in geometrical or material properties of a mechanical or
structural system. In other words, the considered property is a random variable at each
point on the structure. Moreover, the random properties at two different locations can
be mutually correlated among each others.

Any random variable is characterized by a probability distribution function, which can
be parameterized by distribution type and stochastic moments. For random fields, the
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moments become functions over space as well. From now on, a Gaussian (or Normal)
distribution type is assumed. In this case, the characterization by first and second moments
provides the full information. In particular

µH(r) = E[H(r)] =

+∞∫
−∞

hfH(r, h) dh (1)

denotes the mean function, and

RHH(r1, r2) = E[H(r1) ·H(r2)] =

+∞∫
−∞

+∞∫
−∞

h1h2fH(r1, r2, h1, h2) dh1 dh2 (2)

the correlation function, with E[.] being the expected value operation (see Soong and
Grigoriu, 1993). RHH is a function of the distance between two points and indicates the
amount of linear dependency between the random properties at these locations. It has
the properties of symmetry:

RHH(r1, r2) = RHH(r2, r1) (3)

and positive semi-definiteness:∫
Rx

∫
Rx

RHH(r1, r2)w(r1)w(r2) dr1 dr2 ≥ 0 (4)

for any real valued function w(r ∈ RStr.) defined on the structure.
The so-called correlation length LHH , which is actually the centre of gravity of the

correlation function, is a typical characteristic of RHH . It has to be estimated from man-
ufacturing processes, natural scatter of material properties, etc. An infinite correlation
length yields a structure with random properties, yet without fluctuations within the
structure. A zero correlation length yields uncorrelated (in case of the Gaussian distribu-
tion independent) variables.

Two special cases are important for the further studies. Homogeneity: A random field
is said to be homogeneous in the wide sense, if the first and second moments are the same
at any possible location, i.e.

µH(r) = µH(r + ξξξ) ∀ ξξξ (5)

RHH(r1, r2) = RHH(r1 + ξξξ, r2 + ξξξ) ∀ ξξξ (6)

Isotropy (in the wide sense) claims that the correlation function depends on the distance
between the two observed locations r1, r2 only, not on the direction:

RHH(r, r + ξξξ) = RHH(‖ξξξ‖) (7)

2.2 Modelling

For computational analyses, a random field has to be discretized in order to yield a
finite set of random variables X, which are assigned to discrete locations on the observed
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structure. Since the Finite Element Method is the standard for structural analyses, it is
convenient to discretize the random field in the same way as the finite element model.
One speaks of Stochastic Finite Elements in this case. The discretization can be oriented
at the element mid points, integration points, or nodes. The properties of the random
variables are derived from the random field properties explained previously. The spatial
discretization should be able to model the variability of the random field. For this purpose,
it has been recommended by Der Kiureghian and Ke (1988); Hisada and Nakagiri (1981)
that the distance between two discretization points should be not more than 1/4 of LHH .

The set of random variables is then characterized by a mean vector and a correlation
matrix. It is convenient for the developments that follow to use the covariance matrix
instead, which is defined as

CXX : cij = RHH(ri, rj)− µH(ri) · µH(rj) (8)

The joint density of all random variables can be modelled with help of the Nataf model
(Nataf, 1962; Liu and Der Kiureghian, 1986), given the type and properties of the marginal
distributions for each variable.

From now on, random fields with zero mean vector are considered. Then the covariance
matrix suffices for the characterization of the random variables set. Random number
generators can produce independent random variables only. For the assumed case of
Gaussian distributed variables, independence is equivalent to zero correlation. It can be
shown that the random variables will be uncorrelated after the following transformation.
The covariance matrix is decomposed with help of an eigenvalue analysis:

ΨΨΨTCXXΨΨΨ = diag{λi} (9)

Therein, ΨΨΨ is the matrix of eigenvectors of CXX stored columnwise, and the eigenvalues
are identical to the variances of the uncorrelated random variables Yi: λi = σ2

Yi
. The

transformation rule reads

Y = ΨΨΨTX (10)

and the backward transformation

X = ΨΨΨ Y (11)

because the eigenvectors ΨΨΨ form an orthonormal basis. Hence it is possible to simu-
late the random field with a set of uncorrelated random variables Y and the respective
(deterministic) shape funtions ΨΨΨ.

The eigenvalues are usually stored sorted by magnitude in descending order, which
is a measure for their relevance in representing CXX . This opens a way of reducing the
usually huge number of variables. Only the random variables with the highest variances
are needed for simulation. The quality of approximation of the random field is expressed
by the variability fraction (Brenner, 1995)

Q =

n∑
i=1

σ2
Yi

trace
(
CXX

) ; 0 ≤ Q ≤ 1 (12)

The number of the random variables considered has to be adjusted before the simulation
in order to reach a sufficient quality, e.g. Q > 0.9.
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3 Robustness Analysis

The number of random variables used to model a random field can be very high, such
that numerical difficulties may occur, particularly when the probability of failure is low.
Experience with other applications of reliability analysis with geometrical imperfection
(e.g. in Schorling, 1998) shows, that the reduction of variables explained in section 2,
eq. (12) fails, because the criterion is purely stochastic and does not account for the
structural behaviour. On the other hand, purely mechanical considerations may not work
as well, if they fail to represent the random field properly.

The program optiSLang (DYNARDO GmbH, 2006) offers the feature of robustness
analysis. This is used to find a suitable selection of variables. In brief, the robustness
analysis examines statistical dependencies between any input and output quantities the
user desires. The data is obtained from a Monte Carlo simulation with small sample size.
The input variables are simulated following statistical properties provided by the user,
or they are varied systematically within given bounds. optiSLang comprises functions
such as filters, fit tests or a principal component analysis of the correlation matrix, which
shall reveal the most relevant influences on the output quantities observed. Results are
plotted as coloured matrices, histograms etc. which make it easy to identify dependencies
between variables. Two functions are explained in more detail in the following.

By computing the quadratic correlation it is tested, if one variable Y can be represented
by a quadratic regression of another variable, X. The regression model is

Ŷ (X) = a + bX + cX2 (13)

Samples of Ŷ are gained by inserting samples of X into eq. (13), values of Y itself are
computed directly. Then the correlation coefficients ρY bY and ρbY Y 6= ρY bY are evaluated.
The values range from 0 to 1, high values indicate a strong quadratic correlation between
X and Y .

The coefficient of determination is the ratio of variances of a regression model and the
original variable. It indicates the amount of variability of an output variable Y , which can
be explained by the variability of the input variable X underlying the regression model.
For the quadratic regression of eq. (13):

R2 =

n∑
i=1

(
Ŷi(Xi)− µY

)2

n∑
i=1

(
Yi − µY

)2
(14)

Values of R2 vary from 0 to 1. A high value, e.g. R2 = 0.8, means that 80 % of the
variability of Y can be explained by a quadratic relation between Y and X. However,
this is no accuracy measure of the regression model. While the (quadratic) correlation
coefficients only give information about the mutual relation of two variables, the coeffi-
cients of determination allow for a comparison of the influences of all input variables to
the output.
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4 Example: Cylindrical Shell

4.1 Structure and Random Field Properties

The concept of non–parametric reliabality analysis shall be demonstrated by an appli-
cation example. The structure considered is a cylindrical shell with properties as given
in table 1. The cylinder has a Navier–type suppport along the top and bottom edges
and is loaded along the top edge with a continuous vertical unit load. The structure
is modelled with a 9-node isoparametric shell finite element type within the program
SLang (Institut für Strukturmechanik, Bauhaus-Universität). Figure 1 is a sketch of the
finite element model with loads and restraints.

A random field is applied on the structure in order to model geometrical imperfec-
tions. The random properties are coordinate deviations from the perfect structure in the
cylinder’s radial direction. Thus the random field is discretized at the nodes of the finite
element mesh. It has zero mean and a standard deviation of σH = 10−3 mm, which is
roughly a hundredth of the radius. The orthogonal field has different correlation func-
tions along the perimeter and height as plotted in fig. 2. The spatial correlation structure
with respect to one node on the bottom edge is visualized, too. While fig. 3 shows a few
eigenvectors of the covariance matrix, a sampled imperfection shape can be seen in fig. 4,
both are scaled.

Table 1: Properties of cylindrical shell structure.

Wall thickn. Radius Height Young’s mod.
[mm] [mm] [mm] [N/mm2]
0.197 101.6 139.7 6.895 · 104

4.2 Stability Analysis

The reliability of the imperfect structure towards stability failure shall be studied here.
The method of analysis to be applied has to be a compromise between accuracy and
computing time. For the example observed here, which shows a pre–buckling behaviour
close to linear and a sudden buckling failure, the linear buckling analysis suffices. It is very
fast and not prone to being trapped on a postbuckling equilibrium state. The method is
explained briefly in the following.

First, the initial stiffness matrix of the unloaded structure is established, denoted as
0
0K. After applying a small initial load, the secant matrix t

0K− 0
0K is evaluated. Failure

occurs when
det

(
0
0K + λ(t

0K− 0
0K)

)
= 0 (15)

Determination of the buckling load can be formulated as the generalized eigenvalue prob-
lem

0
0KΦΦΦ = λλλ

(
0
0K− t

0K
)
ΦΦΦ (16)

In the above, the eigenvalues stored in λλλ are incrementation factors of the initial load
which lead to buckling failure. The smallest value λ1 is the relevant one.
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Figure 1: Finite element model of the cylindrical shell with schematic loads and supports.
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Figure 2: Correlation functions over perimeter (above) and height (below) and spatial
correlation structure with respect to the marked node (right).
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Figure 3: Selected eigenvectors of the covariance matrix.
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Figure 4: Sample of an imperfection shape (magnified).

The limit load for reliability analysis is adopted from the buckling load of the perfect
structure subtracted a “safety margin”. The limit state function reads

g(X) = Fbuckling − 34 kN ≤ 0 (17)

Failure is defined as the event, that the limit state function takes values of less than zero.
For an overview of methods to compute the probability of failure, see e.g. Bayer (1999).
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5 Results

5.1 Preliminary studies

A robustness analysis is performed with optiSLang, wherein all 396 variables of the random
field are involved and, among others, their relations to the critical buckling loads of the
simulated imperfect structures are examined.

No significant linear correlations could be found. Instead, strong quadratic correlations
are observed between the first 14 random variables (where “first” indicates those variables
with the highest variances, i.e. highest eigenvalues after decomposition of the covariance
matrix, cf. sect. 2.2) and the critical load. For variables of order higher than 14, the
quadratic correlation coefficients are close to zero. The quadratic correlation matrix as
explained in section 3 is displayed in fig. 5. The nonlinear dependency becomes obvious
by an anthill (or scatter) plot, that is a plot of realizations of input and output variable
pairs, see fig. 6 for an example. Fig. 7 shows a histogram of the sampled critical load and
a probability density of Weibull type, which was the type of highest acceptance in the fit
test. Since all input variables are of Gaussian type but the output is not, this is another
evidence for the non–linear relation.

Based on the quadratic regression of eq. (13) for the buckling load, with each random
variable set in for X successively, the coefficients of determination, eq. (14), are computed.
The sum of all values is less than 100 %. That means, the variance of the critical load
cannot be fully explained by a quadratic relation to the input variables. The results are
sorted and plotted as bar diagram, fig. 8. The strongest influences can easily be identified.
A closer look reveals that not all of the “first 14” variables (see above) are most relevant,
but a few variables assigned to higher order eigenvectors of the covariance matrix as well.
The eigenvalues and eigenvectors of the covariance matrix (used as random amplitudes
and shape functions in the reliablity analysis) which are selected by the criterion of the
“top 14” coefficients of determination are that of order 1, 2, 5, 6, 15, 21, 22, 26, 29, 30,
32, 34, 83 and 197.
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INPUT: rv1 vs. OUTPUT: critLoad, r = 0.438

2018161412108642
Quadratic - Linear  r = 0.416

23
8

23
6

23
4

23
2

23
0

22
8

22
6

22
4

22
2

P
ar

am
et

er
 | 

R
es

po
ns

e

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Matrix (part) of quadratic correlation coefficients. The lowest row shows
correlations of the critical load with the first 20 random variables.
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Figure 6: Anthill plot of critical load vs. first random variable.
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OUTPUT: critLoad
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Figure 7: Histogram of the sampled critical load and fitted Weibull distribution.
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Figure 8: The top 14 coefficients of determination of critical load, quadratic regression
model for random input variables.
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5.2 Reliability Analysis

The reliability of the structure is studied by means of a Monte Carlo simulation (Bayer,
1999; Hammersley and Handscomb, 1967; Rubinstein, 1981), with the limit state function
as defined by eq. (17). Three variants are computed: as a reference, the full representation
of the random field, which employs 396 random variables, is used. Second, the “first 14”
variables were selected by the criterion described on page 4 and third, a set of random
variables with the “top 14” coefficients of determination, cf. sect. 5.1. In each case,
a sample with 36000 realizations is generated by Latin Hypercube Sampling (McKay
et al., 1979; Florian, 1992; Huntington and Lyrintzis, 1998). No other variance reduction
scheme such as Importance Sampling is applied. Because the random field defines the
structural geometry and hence the structural behaviour, the limit state function cannot
be programmed explicitely, but a linear buckling analysis as explained in section 4.2 is
carried out for each sample.

The failure probabilities computed with the different sets of variables are listed in
table 2. Since Monte Carlo is a statistical method, the so–called statistical error is listed as
well. This is the standard deviation of the estimator of the failure probability, which gives
information about the confidence in the result. The simulation results with all variables
and the “top 14” selection show a good quality. With the “first 14” set of variables, the
probability of failure is underestimated by more than a magnitude. This set of random
variables is able to represent the random field in good quality, but is not able to model
the structural behaviour. The result obtained with the “top 14” selection is close to the
reference, although it tends to be lower, too. Obviously, this selection criterion provides
a good compromise for both modelling the stochastic and the mechanical problem.

Table 2: Probabilities of failure for different sets of random variables.

No. of random variables 396 14 14
Selection criterion none highest σ2

Xi
highest R2

(all) (“first 14”) (“top 14”)

Prob. of failure Pf 9.7 · 10−3 2.8 · 10−4 3.6 · 10−3

Statistical error σPf
5.2 · 10−4 8.8 · 10−5 3.2 · 10−4

cov(Pf ) 5 % 32 % 9 %
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6 Conclusions

In this study, a procedure for calculating the reliability of a structural system with random
imperfections was developed and tested. Such a complex problem still needs preliminary
studies, but is already applicable to realistic problems. Within such preparations, atten-
tion must be paid on the analysis of the mechanical problem and choice of the calculation
method. A compromise between accuracy and computing time should be found.

The reliability was computed by the Monte Carlo method, with the imperfections
modelled as random fields. This may require a huge number of random variables, which
in turn may cause numerical difficulties in the computation of the probability of failure.
Hence another important task in the preparation phase is a suitable selection of the
random variables. It is suggested to perform a robustness analysis for this purpose, which
requires relatively few additional samples compared to the sample size needed for the
reliability analysis itself. The robustness analysis comprises, among other functions, a
quadratic regression of the state function by the input random variables. It turned out
that for the underlying geometrically non–linear problem, this approach helps to detect
the important input variables.

The kind of reliability analysis presented here is called non–parametric, because it
depends on stochastic properties defined continuously on the entire structure, but not on
geometry parameters. Quite often the randomness of the geometry is introduced by few
random structural parameters, such as radius, material thickness etc. These values can be
generated by CAD programs. In fact, only variants of the perfect structure are generated
that way. It is impossible to consider the random fluctuations over space, which result
e.g. from manufacturung tolerances. The proposed approach is more effective for this
class of problems.

The efficiency of the reliability analysis still can be improved, e.g. by application of
Response Surface methodology or variance reducing Monte Carlo techniques. This is part
of current software developments which will become available in the future by integrating
all necessary functions within optiSLang.
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C. E. Brenner. Ein Beitrag zur Zuverlässigkeitsanalyse von Strukturen unter
Berücksichtigung von Systemuntersuchungen mit Hilfe der Methode der Stochastischen
Finite Elemente. Thesis (Dr. tech.). Leopold Franzens Universität Innsbruck, Inns-
bruck, 1995.

A. Der Kiureghian and J.-B. Ke. The stochastic finite element method in structural
reliability. Probabilistic Engineering Mechanics, 3(2):135–141, 1988.

DYNARDO GmbH. optiSLang – the optimizing Structural Language, Version 2.1.
Weimar, 2006.

A. Florian. An efficient sampling scheme: Updated latin hypercube sampling. Probabilistic
Engineering Mechanics, 7:123–130, 1992.

J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Methuen & Co. Ltd.,
London, 1967.

T. Hisada and S. Nakagiri. Stochastic finite element method developed for structural
safety and reliability. In Third Int. Conf. on Structural Safety and Reliability, pages
409–417, Trondheim, 1981.

D. E. Huntington and C. Lyrintzis. Improvements to and limitations of latin hypercube
sampling. Probabilistic Engineering Mechanics, 13(4):245–253, 1998.

Institut für Strukturmechanik. SLang – The Structural Language, Users Manual. Weimar.

P.-L. Liu and A. Der Kiureghian. Multivariate distribution models with prescribed
marginals and covariances. Probabilistic Engineering Mechanics, 1(2):105–112, 1986.

M. D. McKay, W. J. Conover, and R. J Beckmann. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21:239–245, 1979.
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