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Abstract

Within the robust design optimization, the statistical variability of the design
parameter is considered. The most general method for solving optimization prob-
lems under uncertainties is the well established Monte Carlo simulation method.
However, the major shortcoming of this approach is its vast need of computational
resources (the number of solver runs required), and these cannot be presumed in
general situations.

This paper reviews theories and methodologies that have been developed to
solve optimization problems under uncertainties. In the first part the paper gives
an overview over the state of the art in stochastic optimization methods such as
robust design and reliability-based design optimization.

In addition, new adaptive response surface techniques as well as evolutionary
algorithm in combination with first order reliability methods in robust design op-
timization and reliability-based optimization are developed. A numerical example
from structural analysis under static and dynamic loading conditions shows the ap-
plicability of these concepts. The probabilistic and structural analysis tasks are
performed with the optiSLang and SLang software packages.
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1 Introduction

1.1 Challenges on virtual prototyping and multidisciplinary op-
timization

Methods of multidisciplinary optimization have obtained an increasing importance in the
design of engineering problems for improving the design performance and reducing costs.
The virtual prototyping is an interdisciplinary process. Such a multidisciplinary approach
requires to run different solvers in parallel and to handle different types of constraints and
objectives. Arbitrary engineering software and complex non-linear analyses have to be
connected. Resulting optimization problems may become very noisy, very sensitive to de-
sign changes or ill-conditioned for mathematical function analysis (e.g. non-differentiable,
non-convex, non-smooth).

During the last years, many challenges on virtual prototyping have occurred. Product
life cycles are expected to last for as little as a few months, and more and more customized
products are developed, e.g. 1700 car models compared to only 900 ten years ago. The
engineer’s focus is more and more on “built-in-quality” and “built-in-reliability”. The
products are developed in the shortest amount of time, and, inspire of that, they have
to be safe, reliable and robust. Some markets require optimized product designs to be
robust, e.g. defense, aerospace, jet engine, nuclear power, biomedical, oil industry and
other mission critical tasks.

At the same time, the numerical models become increasingly detailed and numerical
procedures become more and more complex. Substantially more precise data are required
for the numerical analysis. Commonly, these data are random parameters. From this it
follows that the optimization process includes uncertainties or stochastic scatter of design
variables, objective function and restrictions as shown in Figure 1. Furthermore, the opti-
mized designs lead to high imperfection sensitivities and tend to loose robustness. Using
a multidisciplinary optimization method, the deterministic optimum design is frequently
pushed to the design space boundary. The design properties have no room for tolerances
or uncertainties. So the assessment of structural robustness, reliability and safety will be
more and more important. Because of that, an integration of optimization and stochastic
structural analysis methods is necessary.

1.2 Design for Six Sigma

Six Sigma is a quality improvement process to optimize the manufacturing process in a
way that it automatically produces parts conforming to the Six Sigma quality level, as
shown in Figure 1.1. Motorola documented more than $16 Billion in savings as a result
of their Six Sigma efforts1. Since then, hundreds of companies around the world have
adopted Six Sigma as a way of doing business.

In contrast, Design for Six Sigma optimizes the design itself such that the part con-
forms to Six Sigma quality even with variations in manufacturing, as shown in Figure
3. Design for Six Sigma is a concept to optimize the design such that the parts conform
with Six Sigma quality, i.e. quality and reliability are explicit optimization goals. Robust
design is often synonymous to “Design for Six Sigma” or “reliability-based optimization”.
The possible sigma levels start at 1,2 σ (robust design optimization) and go up to 6 σ

1source: www.isixsigma.com/library/contentc020729a.asp
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Figure 1: Sources of uncertainty in design
optimization.
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Figure 2: Normal distribution fX(x) with
lower and upper specification limit on 2σ
and 6σ level. Robust design (RD) and
safety design (SD) (≥ ±2σ) depending on
chosen limit state function g(X) ≤ 0, e.g.
stress limit state.

Figure 3: Product Development Phases: within the ”Design for Six Sigma“ the degree
of freedom to affect the product lifetime cost is very high and the cost of design change
is propositional moderate in contrast to ”Six Sigma Design“ concept to optimize the
manufacturing processes only.
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Sigma Percent Probability of Defects per million Defects per million
level variation failure P (F) (short term) (long term)

±1σ 68.26 3.17 · 10−1 317400 697700
±2σ 95.46 4.54 · 10−2 45400 308733
±3σ 99.73 2.7 · 10−3 2700 66803
±4σ 99.9937 6.3 · 10−5 63 6200
±5σ 99.999943 5.7 · 10−7 0.57 233
±6σ 99.9999998 2.0 · 10−9 0.002 3.4

Table 1: Sigma level depending on the variation of the normal distribution, defects per
million and associated probability of failure P (F). A probability of 3.4 out of 1 million
is achieved when the performance target is 4.5 σ away from the mean value (short term).
The additional 1.5 σ (long term) leading to a total of 6 standard deviations are used as
a safety margin to allow for “drift of the mean value” in the properties and environment
which the product can see over its lifetime.

(reliability-based design optimization) (Koch et al. (2004)), as shown in Table 1. Within
the robust design optimization, the statistical variability of the design parameter is con-
sidered. The most general method for solving robust design optimization problems is the
well established Monte Carlo simulation method. However, the major shortcoming of this
approach is its vast need of computational resources (the number of solver runs required),
and these cannot be presumed in general situations.

1.3 Robust design optimization

Optimized designs within the sigma level ≤ ±2σ are characterized as robust design (RD).
The objective of the robust design optimization (e.g. Hwang et al. (2001); Ben-Tal and
Nemirovski (2002); Doltsinis and Kang (2004)) is to find a design with a minimal variance
of the scattering model responses around the mean values of the design parameters (see
Byrne and Taguchi (1987); Phadke (1989)).

Other approaches for an evaluation of the design robustness, e.g. the linear approx-
imation of “scattering” solver responses (see e.g. Abspoel et al. (1996)) or the variance
estimation in genetic programming (see e.g. Pictet et al. (1996); Branke (1998)), inde-
pendently of given parameter distributions will not be subject of the following remarks
as they are not to be counted to robust design optimization methods in a stricter sense.

1.4 Reliability-based optimization

In the reliability-based optimization, the optimization problem can be enhanced by ad-
ditional stochastic restrictions ensuring that prescribed probabilities of failure can not
be exceeded. Furthermore, the probability of failure itself can be integrated into the
objective function. Frequently, the search for the optimum by means of deterministic
optimization is combined with the calculation of the failure probability, e.g. using the
first- order second-moment analysis (FOSM) (e.g. Melchers (2001)). A more promising
combination may under certain circumstances involve the first and second order reliability
methods (FORM/SORM) (e.g. Choi et al. (2001a); Allen et al. (2004); Allen and Maute
(2004)).
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Within the deterministic optimization, a calculation of the failure probability of indi-
vidual designs has to be performed in order to be able to properly evaluate these designs.
Therefore, special attention has to be paid to the cost efficiency of this calculation. As
an example, for smooth and well-scaled objective functions with few continuous design
parameters, the deterministic optimization as well as the determination of the failure
probability that is included within the optimization iteration loop may be performed
by means of gradient based programming (e.g. Sequential Quadratic Programming, see
Schittkowski (1985)).

In Kharmanda et al. (2002) a decrease of the numerical expense of these two nested
iterations is attempted by substituting the deterministic objective function as well as the
limit state function on which the point of largest probability density is searched within
FORM by a single objective function in a hybrid design space. However, this leads to an
enlargement of the design space for the gradient based programming.

In the reliability-based optimization, frequently approximation function are applied
that at the same time approximate the design space and the space of random parameters
by means of a meta-model, e.g. in Choi et al. (2001b); Youn et al. (2004); Yang and Gu
(2004); Rais-Rohani and Singh (2004). Successful industrial applications of these methods
can amongst others be found in Youn and Choi (2004).

In Royset and Polak (2004), a linear approximation of the limit state function serves
as a constraint of the optimization problem. An improvement of the optimization result
is tempted in Royset et al. (2003) by taking into account the gradients of the limit state
function.

However, in the robust optimization (see Chen et al. (2004); Wilson et al. (2001))
as well, different approximation models in combination with an appropriate variance de-
termination are used, e.g. global polynomial approximations and Kriging models. Their
use is restricted to problems with few random variables and few optimization variables
(n ≤ 5).

2 Robust design optimization

2.1 Introduction

Reliability-based design optimization In reliability-based design optimization, the
deterministic optimization problem

f(d1, d2, . . . dnd
) → min

gk(d1, d2, . . . dnd
) = 0; k = 1, me

hl(d1, d2, . . . dnd
) ≥ 0; l = 1, mu

di ∈ [dl, du] ⊂ Rnd

dl ≤ di ≤ du

di = E[Xi]

(1)

with nr random parameters X and nd means of the design parameters d = E[X] is
enhanced by additional mg random restrictions∫

nr. . .

∫
gj(x)≤0

fX(x)dx− P (X : gj(X) ≤ 0) ≤ 0; j = 1, mg (2)
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Figure 4: The state function g(x) of a numerical model is given implicitly, e.g. is result
of a finite element analysis depending on several design responses. The failure condition
leads to a unknown deterministic limit state function g(x) = 0, where fX(x) is the joint
probability density function.

with the joint probability density function of the basic random variables fX(x) and mg

limit state functions gj(x) ≤ 0 (see Figure 2.1). The probability of failure in (2) is
calculated applying the reliability analysis.

Furthermore the objective function can be enhanced by additional criteria such as
minimization of the probability of failure P (F)

f(d1, d2, . . . dnd
, P (F)) → min (3)

with

P (F) =

∫
nr. . .

∫
gj(x)≤0

fX(x)dx (4)

Robust design optimization Within the robust design optimization, the objective
(1) is enhanced by the requirement to minimize the variances σ2

Xi

f(d1, d2, . . . dnd
, σ2

X1
, σ2

X2
, . . . σ2

Xnr
) → min (5)

with

σ2
Xi

=
1

M − 1

M∑
k=1

(
xk

i − µXi

)2
2.2 Evolutionary algorithm in combination with the first-order

reliability method (FORM)

Evolutionary algorithm For a multitude of optimization problems in structural me-
chanics, the precision of the input data must be doubted. The deviations from the target
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Figure 5: Transformations from correlated non-Gaussian variables X to uncorrelated
Gaussian variables U with zero mean and unit variance. Gradient-based optimization
for design point search (most probable point β-point). Approximation of the limit state
function g(u) by a linear function g̃(u) in standard Gaussian space.

values or nominal values can often be reasonably described by random variables. Espe-
cially such problems without any overlapping of design variables and random variables
permit to choose completely different strategies for optimization and stochastic analysis
in order to ably exploit the their advantages.

Evolutionary algorithm is reasonably used in cases when the objective function’s and
or the restrictions’ dependency on the design parameters is not differentiable or not even
continuous. Evolutionary algorithms are stochastic search methods that mimic processes
of natural biological evolution like adaption, selection and variation. Based on the prin-
ciple ’survival of the fittest’ a population of artificial individuals search the design space
of possible solutions in order to find a better approximation for the solution of the opti-
mization problem.

Many variants have been implemented over the past decades, based on the three
main classes genetic algorithms (GA) developed by Holland (1975) and Goldberg (1989),
evolution strategies (ES) introduced by Rechenberg (1973) and Schwefel (1981) and evo-
lutionary programming (EP) developed by Fogel et al. (1966). These algorithms have
been originally developed to solve optimization problems where no gradient information
is available, like binary or discrete search spaces, although they can also be applied to
problems with continuous decision variables. optiSLang (Bucher et al. (2001)) provides
two different EA implementations: a real-coded genetic algorithm and a customizable
evolutionary algorithm framework whose different features.

FORM - First Order Reliability Method Typically, the failure probabilities of well
designed systems are small. Therefore, a reliability method has to be applied that pro-
vides these value at a reasonable expense. This can be with good success the first-order
reliability method (FORM) (Hasofer and Lind (1974); Rackwitz and Fießler (1978); Shi-
nozuka (1983); Hohenbichler and Rackwitz (1988); Tvedt (1983); Breitung (1991)) for
problems the restrictions of which (usually including the failure probability in some form)
are depending on the stochastic variables in a differentiable way.

The FORM-Concept is based on a description of the reliability problem in standard
Gaussian space. Hence transformations from correlated non-Gaussian variables X to
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uncorrelated Gaussian variables U with zero mean and unit variance are required. This
step is called Rosenblatt-transformation.

In order to determine the failure probability P (F) in Eq. (2) the limit state function
g(u) can be approximated by a Taylor expansion ḡ(u). The optimal expansion point is the
design point with coordinates (s1, .., sN), which is the point on g(u) closest to the origin
in Gaussian space, as shown in Fig. 2.2. From a safety engineering point of view, the point
x∗ corresponding to u∗ is called most probable failure point or design point . The distance
β to the origin is called the reliability index. From the geometrical interpretation of the
expansion point u∗ in standard Gaussian space it becomes quite clear that the calculation
of the design point can be reduced to an optimization problem:

u∗ : uTu → Min.; subject to: g[x(u)] = 0 (6)

This leads to the Lagrange-function

L = uTu + λg(u) → Min. (7)

Standard optimization procedures can be utilized to solve for the location of u∗. In
optiSLang (Bucher et al. (2001)) the NLPQLP algorithm is used, which is based on a
sequential quadratic programming (SQP) method. Within this method the gradients
of the objective function and the restrictions need to be determined, which is performed
using finite differences. For further details see of the optimization method see Schittkowski
(2004).

In the next step, the exact limit state function g(u) is replaced by a linear approxi-
mation ḡ(u). From this, the probability of failure is easily determined to be

P (F) = P [Z ≤ 0] ≈ P
[
Z̄ ≤ 0

]
(8)

=

∫ 0

−∞
fZ̄(z̄)dz̄ = FZ̄(0) (9)

= Φ

(
−E

[
Z̄
]

σZ̄

)
= Φ

(
− 1

1
β

)
(10)

= Φ (−β) (11)

This result is exact, if g(u) is actually linear. In general FORM gives a good approximation
of the failure probability.

In this context it has to be considered that genetic algorithms generally implement
the restrictions in the form of penalty terms. Thus, the choice of an appropriate penalty
method is of a certain importance.

2.3 Adaptive response surfaces

2.3.1 Introduction

The response surface methodology (RSM) is one of the most popular strategies for non-
linear optimization. Due to the inherent complexity of many engineering optimization
problems it is quite alluring to approximate the problem and to solve the optimization in
a smooth sub-domain by applying response surface methodology.
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Usually, for a large number of real-life design optimization problems the objectives
and constraints are determined as a result of expensive numerical computations. Fur-
thermore, the function values and their derivatives may contain numerical noise and the
calculability of some of the response functions is domain-dependent, e.g. situations when
these functions cannot be evaluated at some points of the design space. Especially, to
solve this kind of optimization the adaptive response surface methodology (ARSM) (see
e.g. Etman et al. (1996); Toropov and Alvarez (1998); Abspoel et al. (1996); Stander
and Craig (2002); Kurtaran et al. (2002)) is developed as a consequent combination of
optimization strategy and response surface methodology.

Of course the accuracy of the approximation compared to the real problem has to be
checked and verified. Mainly three factors influence the accuracy of a response surface:

1. The number and distribution of support points. The systematic sampling schemes
try to place the support points in an optimized way according to the boundary of
the design space and the distance of the support points. For reasonably smooth
problems, the accuracy of response surface approximations improves as the number
of points increases. However, this effect decreases with the degree of oversampling.

2. The choice of the approximation function. In general, higher order functions are
more accurate. Linear functions require fewest support points, but are weak ap-
proximations. Quadratic functions are most popular. The second order polynom
results in a smooth approximation function and is well scaled for gradient based
optimizers. Using polynomials higher than second order may only result in higher
local accuracy with many sub-optima.

3. The design space. The overall possible design space is given by the lower and upper
boundaries of the optimization parameters. Of course the smaller the approximated
subregions, the greater the accuracy. In practical problems we will start with the
overall design space and further investigate smaller subregions.

In contrast to the RSM the ARSM uses a subregion of the global parameter range to
approximate the responses. Starting with a presumably large subregion the iteration
moves and shrinks the subspace till a solution converges to an optimum. This strategy
will be denoted as move limit strategy . Usually, this is done using low level trial functions
(e.g. linear and quadratic polynomial functions).

In Roos et al. (2006) a new adaptive response surface method on random space is intro-
duced in combination with an advanced moving least square approximation. Additionally,
on the design space a modified moving least square function is introduced to approximate
the responses with high accuracy and efficiency using of all calculated support points.

2.3.2 Moving Least Square Approximation

Moving least square (MLS) functions can approximate locally clustered support point
samples with higher local approximation quality. In addition MLS improve the response
surface model using additional support points. MLS is formulated as

ŷ(x) =

nb∑
i=1

hi(x)ai(x) = hT (x) a(x) (12)
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Figure 6: A comparison of different approximation functions: global 2nd order polyno-
mial, moving least square with quadratic basis and constant basis (weighted interpola-
tion).

with a predefined number of basis terms nb, a vector of basis functions h and the associated
vector of the coefficients a. Lancaster and Salkauskas (1986) formulates a local MLS
approximation as

ŷ(x,xj) =

nb∑
i=1

hi(xj)ai(x) = hT (xj) a(x)

with j = 1, ..., ns support points. The approximate coefficient vector a can be calculated
using the weighted least square postulate

S(x) =
ns∑

j=1

w(x− xj) (ĝ(x,xj)− ĝ(xj))
2

=
ns∑

j=1

w(x− xj)

(
nb∑
i=1

hi(xj)ai(x)− ĝ(xj)

)2

= (Ha− g)TW(x)(Ha− g) → min

(13)

with the weighting function w(x− xj) and

g = [y(x1) y(x2) ... y(xns)]
T

H = [h(x1) h(x2) ... h(xns)]
T

W(x) = diag[w(x− x1) w(x− x2) ... w(x− xns)]

The least square error S(x) may be a minimum in case that the partial gradients

∂S(x)

∂a
= 0
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are zero. So using the equation (13) a linear equation system gives an estimation of the
coefficient vector a

a(x) = M−1(x) B(x) g (14)

with

M(x) = HT W(x) H

B(x) = HT W(x)

Cause the matrix of the basis function M(x) should be non-singular always a sufficient
number of ns immediate neighbor support points have to be available. The number must
be at least as large as number of the basis terms. The equation (14) inserted in (12) gives
the approximation function

ŷ(x) = hT (x) M−1(x) B(x) g

An accurate as possible approximation quality requires a weighting function which is larger
than zero w(x− xj) > 0 and monotonically decreasing w(‖x− xj‖) inside of a small sub
space Ωs ⊂ Ω. So the influence of supports far from the actual coordinates is unimportant.
A uniform weighting is given by a symmetry condition w(x−xj) = w(‖x−xj‖). Usually,
an exponential function is used in this way:

w

(
‖x− xj‖

D

)
=

 e
−

0@‖x− xj‖
Dα

1A2

‖x− xj‖ ≤ 1
0 ‖x− xj‖ > 1

with a constant

α =
1√

− log 0.001

and a influence radius D to choose. It is obvious that the smaller D the better the
response values of the support points fit the given values. But as mentioned above at
least nb support points have to be available in every point to be approximated. Therefore
it is possible that a D has to be chosen which leads to a large shape function error at
the support points. To avoid these problems a new regularized weighting function was
introduced by Most and Bucher (2005):

wR(‖x− xj‖) =


ŵR(‖x− xj‖)

ns∑
i=1

ŵR(‖x− xi‖)
‖x− xj‖ ≤ D

0 ‖x− xj‖ > D

(15)

with

ŵR(d) =

((
d

D

)2

+ ε

)−2

− (1 + ε)−2

(ε)−2 − (1 + ε)−2
; ε � 1 (16)

It is recommended by the authors to use the value

ε = 10−5
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This new regularized weighting function works better than the exponential function. But
if the ratio of the minimal distance among the supports to the extent of areas where are
no supports becomes worse the same problems occur again. As a matter of fact a large
D is needed to approximate for coordinates where no support points are around and a
small D is needed for coordinates where are a lot of support points in order to reach a
minimal approximation error. To comply with this conditions it is necessary to use a
function d(x) for the influence radius instead of a constant D. In comparison with the
global 2nd order polynomial and MLS with constant basis (weighted interpolation) the
Figure 6 shows the high accuracy and efficiency of the surrogate model using moving least
square with quadratic basis and an adaptive influence radius for D.

2.3.3 Adaptive design of experiment

In conformity with the gradient based optimization, a start point must be determined.
Typically, the start design is the center point x(0) of the start region. The parameter
boundaries depend on the center point and the global range r

(0)
i

x
l(0)
i = x

(0)
i − γstart r

(0)
i and x

u(0)
i = x

(0)
i + γstart r

(0)
i i = 1, . . . , n (17)

for all n parameters. The factor γstart gives the relationship between global range and sub
range. The default value γstart is 50% (γstart = 0.5) of the global range. If the subregion
is outside the global range the subregion will be moved back inside the global boundaries.

The generation of support points depends on the order of the approximation function.
Usually Koshal or D-optimal designs are used because they require the least number
of support points. This means only as much (expensive) numerical calculations of the
problem as necessary.

When the response values for all support points are calculated, the response surfaces
for every single response value will be separately approximated. For these local approxi-
mations polynomials of first or second order are used (linear or quadratic approximation).
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In order to approximate all support points the moving least square function increases ap-
proximation accuracy.

If the next iteration will exceed these boundaries the algorithm will be stopped, as
shown in Figure 10. Furthermore, the convergence of parameter and objective values will
be analysed using a percentual limit for the changes from the previous iteration:∣∣∣∣xi − xi−1

xi

∣∣∣∣ ∗ 100% < ∆x (18)

The new subregion boundaries depend on the last optimum and the range of the appro-
priate subspace. A modification of the subspace can be classified in a pure panning, pure
zooming or a combination of both (see Stander and Craig (2002)). Beginning with the
start design every ascertained optimum is the new start and center point of the following
subspace optimization. The displacement

∆x
(j)
i = x

(j)
i − x

(j−1)
i (19)

describes the quantity of the subspace movement. The movement indicator

d
(j)
i =

2∆x
(j)
i

r
(j)
i

with d
(j)
i ∈ [−1; 1]. (20)

describes the quality of the displacement. A movement indicator equal to zero (d
(j)
i = 0)

moves the range of the subregion only. If the found optimum is between the center point
and the subspace boundaries 0 < |d(j)

i | < 1 then the subspace boundaries are modified and

the subregion will be moved. The third case |d(j)
i | = 1 leads to a subspace shift because

the optimum is located on the boundaries of the subregion. The algebraic sign sign(d
(j)
i )

indicates the relative movement direction of the subregion.
The contraction rate λ

(j)
i describes the proportion of the last subregion range r

(j−1)
i

to the current range r
(j)
i . This rate is the relevant numeric determination of the new
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subspace boundaries.

r
(j)
i = λ

(j)
i r

(j−1)
i with i = 1, . . . , p ; j = 1, . . . , n iterations

x
l(j)
i = x

(j)
i − 1

2
r
(j)
i (lower boundaries) (21)

x
u(j)
i = x

(j)
i +

1

2
r
(j)
i (upper boundaries)

For the determination of λ
(j)
i a linear absolute value function (see Fig. 7)

λ
(j)
i = η + |d(j)

i | (γ − η) . (22)

is used. The zoom parameter η and the contraction parameter γ determine the thresh-
old values of the linear function. The default values are η = 0.5 and γ = 1.0 (Kok and
Stander (1999)) and η = 0.5 and γ = 1.0 (Kurtaran et al. (2002)) using quadratic function.

In order to avoid an alternating subregion between two states an oscillation criterion
which influences the contraction parameter γ is needed. For this purpose an oscillation
indicator

c
(j)
i = d

(j)
i d

(j−1)
i (23)

is introduced or a normalized oscillation indicator

ĉ
(j)
i =

√
|c(j)

i | sign(c
(j)
i ) (24)

respectively.
Typically, the parameter γosc is chosen between 0.5 and 0.7 and represents the shrink-

age of the oscillation. The size of γ is determined by means of the parameters panning
parameter γpan which represents the pure panning case with the last optimum on the sub-
region boundaries and the oscillation parameter γosc which shrinks the subspace range.
Figure 8 shows the linear relationship

γ
(j+1)
i =

1

2

[
γpan

(
1 + ĉ

(j)
i

)
+ γosc

(
1− ĉ

(j)
i

)]
(25)

between contraction parameter and normalized oscillation indicator.

Consequently, the determination function of λi is a plain function which depends on
the movement and oscillation indicators, as well as on the three parameters η, γpan and
γosc which determine the magnitude of the function, as shown in Figure 9.

3 Example – Robust design optimization of a dy-

namic structure

3.1 Structural system

The aim of the classical optimization problem for structural elements is to minimize the
mass while observing deformation or strength restrictions. As an example for a robust
design optimization the mass of this simple beam with rectangular cross section (d, h)
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Figure 11: Beam with rectangular cross section

Figure 12: Deterministic objective and
feasible design space. The deterministic
optimal design is located in the red colored
point (d = 0.06, h = 1.00).

Figure 13: Compute conditional probabil-
ity of violating constraint depending on h
and d by using FORM.

is to be minimized subjected to deadload and a harmonic load. The central deflection
wd due to the dynamic load F (t) has to be smaller than 5 mm. The computational
probabilistic and multidisciplinary analysis tasks were done with the software package
optiSLang (Bucher et al. (2001)). The objective function (i.e. the cross section area)
and the admissible area are displayed in Figure 12 for assumed values of F0 = 20 kN ,
ω = 60 rad/s, E = 3 · 1010 N/m2, ρ = 2500 kg/m3, L = 10 m and g = 9.81 m/s2.

Furthermore, in many application cases – especially concerning structural dynamics –
the characterizing parameters are afflicted with stochastic uncertainties. In the present
example it is assumed that the dynamic load amplitude F0 and the excitation angular
frequency ω are random variables with Gaussian distribution. The mean values correspond
to the aforementioned nominal values, and both variational coefficients have been assumed
to be 10%. This yields that the restriction from the dynamic load can only be met with
a certain probability < 1.
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Figure 14: Evolutionary algorithm with 20 generations and 50 individual designs and
FORM with 15 design evaluations (N = 20 · 50 · 15 = 15.000). Concentration of regions
with acceptable failure probability. Best robust design: d = 0.888, h = 0.289 with a
failure probability 0.98% < 1%.

3.2 Evolutionary optimization with FORM

Fig. 12 shows that two separate admissible areas exist. A gradient based optimizer gen-
erally encounters difficulties to override the area boundaries in order to find the global
optimum. Fig. 13 displays the probability of violation of the dynamic restriction (i.e. the
conditional failure probability P (F|d, h)) as a function of the design parameters d and h.

The subsequent optimization was started with the additional restriction that the con-
ditional failure probability be < 1%. In the framework of genetics, designs with a higher
failure probability were punished by a penalty term S the value of which is independent
from P (F). Hence, the objective function writes

L = h · d + SH[P (F : wd ≤ 5 mm)− 0.01] (26)

In this equation H[.] designates the Heavyside function. The penalty parameter S has
been assumed as 100. A evolutionary optimization with 20 generation with 50 individuals
each yielded the following best individual: The failure probability in this case was 0.98%,
which is significantly below the threshold of 1%. Fig. 14 illustrates the progression of
the genetic algorithm by displaying the populations of the first, the tenth, and the 20th
generation. In addition, in order to calculate the failure probability using FORM for each
individual design 15 design evaluations are necessary. So, in total N = 20 ·50 ·15 = 15.000
design evaluations to receive a concentration of designs on an area with acceptable failure
probability. The cross sectional area was 0.26 which is considerably larger than in the
value of 0.06 obtained in the deterministic case but the robust design optimization leads
to more robust and safety design. So the user can adjust the design parameter to hit the
target performance and to minimize the effect of variations and to minimize the failure
probability.

3.3 Adaptive response surfaces

The approximation of the Heavyside function using MLS is possible in the abstract but
the approximation accuracy can be improved using the objective function

f(d, h) = h · d
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Figure 15: Adaptive modification of the
design variable d and parameter bounds
during the optimization.
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Figure 17: Adaptive design of experiment
of design variable d and h during the op-
timization. The best robust design: d =
0.925, h = 0.220 with a failure probability
0.98% < 1%.

Figure 18: Approximation of the condi-
tional probability of violating constraint
depending on h and d by using ARSM.
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and an additional stochastic constraint

P (F : wd ≤ 5 mm)− 0.01 ≤ 0

instead equation 26. During the optimization procedure ARSM moves and shrinks the
design parameter bounds, as shown in Fig. 15 and 16. Fig. 17 illustrates this adaptive
design of experiments. In order to calculate the failure probability for each individual
design using the ARSM proposed in Roos et al. (2006) additional 18 design evaluations on
the space of the random variables F0 and ω are necessary. So, in total N = 64 · 18 = 1152
design evaluations to receive a design with minimal cross sectional area 0.20 and an
acceptable failure probability of 0.0098% < 1%.

4 Concluding Remarks

Within the robust design optimization the design parameters can be random variables
themselves and in addition the objective and the constraint functions can be random
types. In case of the objective function includes the variances or other statistical data
and the design variables are random one we obtain designs with minimal variance. Using
the robust design optimization we obtain robust optimized designs such that they are
insensitive to uncertainties within a safety level of two sigma. The reliability-based opti-
mization includes the failure probability as constraint condition or as term of the objective
function themselves. So we obtain design with minimal failure probability applicable for
all safety levels up to 6 sigma.

Robust design optimization can provide multiple benefits. It permits the identification
of those design parameters that are critical for the achievement of a certain performance
characteristic. A proper adjustment of the thus identified parameters to hit the target
performance is supported. This can significantly reduce product costs.

The effect of variations on the product behaviour and performance can be quanti-
fied. Moreover, robust design optimization can lead to a deeper understanding of the
potential sources of variations. Hence, a minimization of the effect of variations (noise) is
made possible, and appropriate steps to desensitize the design to these variations can be
determined. Consequently, more robust and affordable product designs can be achieved.

The proposed evolutionary optimization combined with FORM is distinguished suit-
able for non-differentiable objectives and constraints and for searching for feasible design
islands with a high number of design variables (nd > 100). The point on the limit state
function with the smallest distance to the origin is the most probable failure point or
design point and can be found by gradient-based optimization. So the number of random
variables should be lesser than nr < 50. The gradient based optimization requires differ-
entiable state functions and limit state functions but these cannot be presumed in general
situations.

The introduced adaptive response surface method is suitable in cases of non-differentiable
objectives and constraints and non-differentiable state functions and limit state functions.
In contrast to a classical ARSM using ow level trial functions (e.g. linear and quadratic
polynomial functions) the approximation is improved using additional support points
within the MLS approximation. This approach is very efficient with D–optimal and lin-
ear DOE for a moderate number of design parameters nd ≤ 20 and random parameters
nr ≤ 20.
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