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Abstract 

The objective of the paper is to present methods for efficient statistical, 
sensitivity and reliability assessment. The attention is given to the techniques 
which are developed for an analysis of computationally intensive problems which 
is typical for a nonlinear FEM analysis. The paper shows the possibility of 
"randomization" of computationally intensive problems in the sense of the Monte 
Carlo type simulation. Latin hypercube sampling is used, in order to keep the 
number of required simulations at an acceptable level. The technique is used for 
both random variables and random fields levels. Sensitivity analysis is based on 
nonparametric rank-order correlation coefficients. Statistical correlation is 
imposed by the stochastic optimization technique – the simulated annealing. The 
simulation can be used for preparation of virtual training set for artificial neural 
network used in inverse analysis. The multipurpose software FReET is briefly 
described. 
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1 Introduction 

A large number of efficient stochastic analysis methods have been developed 
during last years. In spite of many theoretical achievements the acceptability and a 
routine application in industry is still rare. Two main categories of stochastic 
approaches can be distinguished: Approaches focused on the calculation of 
statistical moments of response quantities, like estimation of means, variances etc. 
and approaches aiming at the calculation of estimation of theoretical probability 
of failure. There are many different methods developed by reliability researchers 
covering both the approaches. The common feature of all the methods is the fact 
that they require a repetitive evaluation (simulations) of the response or limit state 
function. The development of reliability methods is from the historical perspective 
a struggle to decrease an excessive number of simulations. Some small-sample 
simulation methods utilized by author and implemented in probabilistic software 
FReET are described: 
- Small-sample simulation of Monte Carlo type Latin hypercube sampling for 

both random variables and random fields  
- Imposing statistical correlation using the simulated annealing approach  
- Small number of random variables to represent random fields based on 

spectral decomposition of covariance matrix 
- Sensitivity analysis based on nonparametric rank-order statistical correlation 
The methods were integrated within the complex software system SARA (Pukl et 
al. 2003ab, Novák at al. 2002, Bergmeister at al. 2004). The system represents a 
combination of statistical simulation package FReET (Novák et al. 2003, 2006) 
and nonlinear mechanics software ATENA (Červenka and Pukl 2005, Červenka 
2003). The most interesting applications are referenced. 
 

2 Small-sample simulation of Monte Carlo type – Latin 
hypercube sampling 

For time-intensive calculations, the small-sample simulation techniques based on 
stratified sampling of Monte Carlo type represent a rational compromise between 
feasibility and accuracy. Therefore Latin hypercube sampling (LHS) was selected 
as a key fundamental technique. 
The method belongs to the category of stratified simulation methods (e.g. Mc Kay 
and Conover 1979, Novák et. al 1998). It is a special type of the Monte Carlo 
simulation which uses the stratification of the theoretical probability distribution 
function of input random variables. It requires a relatively small number of 
simulations to estimate statistics of response – repetitive calculations of the 
structural response (tens or hundreds).   
The basic feature of LHS is that the probability distribution functions for all 
random variables are divided into NSim equivalent intervals (NSim is a number of 
simulations); the values from the intervals are then used in the simulation process 
(random selection, middle of interval or mean value). This means that the range of 
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the probability distribution function of each 
random variable is divided into intervals of 
equal probability. The samples are chosen 
directly from the distribution function based 
on an inverse transformation of distribution 
function. The representative parameters of 
variables are selected randomly, being 
based on random permutations of integers 
1, 2, ..., j, NSim.   
 
 
 

 
 
Figure 1: Illustration of LHS. 
 
Every interval of each variable must be used only once during the simulation. 
Being based on this precondition, a table of random permutations can be used 
conveniently, each row of such a table belongs to a specific simulation and the 
column corresponds to one of the input random variables. 
It has been proved that best LHS strategy, which simulates the means and 
variances very well, is the approach suggested by Keramat and Kielbasa (1997) 
and Huntington and Lyrintzis (1998). The mean of each interval should be chosen 
as (Fig. 1): 
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where fi is the probability density function of variable Xi, and the integration limits 
are: 
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The estimated mean value is achieved accurately and the variance of the sample 
set is much closer to the target one. For some probability density functions 
(inclusive e.g. Gaussian, Exponential, Laplace, Rayleigh, Logistic, Pareto, etc.) 
the integral (1) can be solved analytically Vořechovský and Novák (2003).  
  

3 Imposing statistical correlation 

Once samples are generated, the correlation structure according to the target 
correlation matrix must be taken into account. There are generally two problems 
related to the statistical correlation: First, during sampling an undesired 
correlation can occur between the random variables. For example, instead of the 
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correlation coefficient zero for the uncorrelated random variables, i.e. an 
undesired correlation, can be generated. It can happen especially in a case of a 
very small number of simulations (tens), where the number of interval 
combination is rather limited. The second task is to introduce the prescribed 
statistical correlation between the random variables defined by the correlation 
matrix. The columns in LHS simulation plan should be rearranged in such a way 
that they may fulfill the following two requirements: to diminish the undesired 
random correlation and to introduce the prescribed correlation. It can be done by 
using different techniques published in literature on LHS (e.g. Huntington and 
Lyrintzis 1998, Iman and Conover, 1982) but we found some serious limitations 
while using them.  
A robust technique to impose statistical correlation based on the stochastic 
method of optimization called simulated annealing has been proposed recently by 
Vořechovský and Novák (2003). The imposition of the prescribed correlation 
matrix into the sampling scheme can be understood as an optimization problem: 
The difference between the prescribed K and the generated S correlation matrices 
should be as small as possible. A suitable measure of quality of the overall 
statistical properties can be introduced: 
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The norm E has to be minimized from the point of view of the definition of the 
optimization problem using simulated annealing optimization approach, Nv 
random variables realizations are related to the ordering in the sampling scheme.  
 

4 Simulation of random fields 

A higher level of uncertainties modelling may be in the consideration of the 
spatial variability of mechanical and geometrical properties of a system and 
intensity of load. Such quantities should be represented by means of random 
fields. Because of the discrete nature of the finite element formulation, the random 
field must also be discretized into random variables. This process is commonly 
known as random field discretization. The computational effort in reliability 
problem generally increases with the number of random variables. Therefore it is 
desirable to use small number of random variables to represent a random field. To 
achieve this goal, the transformation of the original random variables into a set of 
uncorrelated random variables can be performed through a well-known 
eigenvalue orthogonalization procedure. A few of these uncorrelated variables 
with largest eigenvalues are sufficient for the accurate representation of the field.  
Let us consider the fluctuating components of the homogenous random field, 
which is assumed to model the material property variation around its expected 
value. Correlation characteristics can be specified in terms of the covariance 
matrix Caa constructed by discretization using autocorrelation function and 
geometry of FEM mesh. An eigenvalue orthogonalization procedure will 
transform variables into uncorrelated space: 
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        (4) T
XX ΦΛΦC =

 
The covariance matrix in the uncorrelated space Y is a diagonal matrix Λ=Cyy. 
The vector of uncorrelated Gaussian random variables Y can be simulated in the 
traditional way (Monte Carlo simulation). The transformation back into correlated 
space yields the vector X (discretized random field) using eigenvectors Φ: 
 

          (5) ΦX = Y
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Figure 2: Comparison of convergence to target fields statistics of crude Monte 
Carlo Sampling and Latin Hypercube Sampling with number of simulations: a) 
average, b) dispersion of mean value estimation, c) sample standard deviation, d) 
dispersion of sample standard deviation. 
 
The utilization of LHS method for simulation of Gaussian uncorrelated variables 
is the new simple idea of improvement of random field simulation using 
orthogonal transformation of covariance matrix suggested e.g. by Novák et al. 
(2000). The superiority of this stratified technique remains here also for accurate 
representation of random field, thus leading to the decrease of number of 
simulations needed. This was proved numerically by Vořechovský and Novák 
(2005). In particular, it has been shown that the ability to simulate mean value of 
random field is excellent in case of LHS, see Figs. 2a) and b). This ability is rather 
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poor in case of MCS, average value of mean fluctuates and standard deviation of 
mean is high in comparison to LHS. With regard to the second statistical moment, 
the ability to simulate standard deviation of random field is documented in figures 
2c) and d). Again, capturing of this statistics is “random” in case of MCS, 
standard deviation of sample standard deviation is high in comparison to LHS. In 
the same study, it has been shown the impact of having the random vector Y 
perfectly uncorrelated. If an attention is paid to spurious correlation between 
marginals of Y (this correlation diminished by a suitable technique) the resulting 
estimated autocorrelation structure of the field after orthogonal transformation 
matches perfectly the desired one. Note that the algorithm described briefly in 
section 3 has proved itself to be very efficient in this regard. 
 

5 Sensitivity and reliability analyses 

An important task in the structural reliability analysis is to determine the 
significance of random variables. With respect to the small-sample simulation 
techniques described above the straightforward and simple approach uses the non-
parametric rank-order statistical correlation between the basic random variables 
and the structural response variable (Iman and Conover 1980, Novák et al. 2004). 
The sensitivity analysis is obtained as an additional result of LHS, and no 
additional computational effort is necessary. 
The relative effect of each basic variable on the structural response can be 
measured using the partial correlation coefficient between each basic input 
variable and the response variable. The method is based on the assumption that 
the random variable which influences the response variable most considerably 
(either in a positive or negative sense) will have a higher correlation coefficient 
than the other variables. Because the model for the structural response is generally 
nonlinear, a non-parametric rank-order correlation is used by means of the 
Spearman correlation coefficient or Kendall tau.  
In cases when we are constrained by small number of simulations (tens, hundreds) 
it can be difficult to estimate the failure probability. The following approaches are 
therefore utilized here; they are approximately ordered from elementary 
(extremely small number of simulations, inaccurate) to more advanced 
techniques: 
• Cornell´s reliability index - the calculation of reliability index from the 

estimation of the statistical characteristics of the safety margin  
• The curve fitting approach - based on the selection of the most suitable 

probability distribution of the safety margin. 
• FORM approximation (Hasofer-Lind´s index) 
• Importance sampling techniques 
• Response surface methods 
These approaches are well known in reliability literature and also providing all 
details is beyond the aim of this paper. In spite of the fact that the calculation of 
the failure probability (or/and reliability index) using some of these techniques 
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does not always belong to the category of very accurate reliability techniques 
(first three in the list), they represent a feasible alternative in many practical cases.  
 

6 Inverse analysis 

The inverse analysis technique is based on the combination of the statistical 
simulation method of the Monte Carlo type and the artificial neural network 
(ANN), Novák and Lehký (2006). The emphasis is mainly on: (1) the efficiency 
of the training set preparation for the neural network training using small numbers 
of simulations based on the stochastic technique Latin hypercube sampling; (2) 
the multipurpose character of the methodology relatively easy to apply. The whole 
procedure is conceptually simple and can be itemized as follows: 

1) The computational model of a particular problem has to be first developed 
using e.g. the appropriate FEM software. The model has to be calibrated 
by trial-and-error procedure using model parameters (IP); initial 
calculation uses a set of the initial computational model parameters 
resulting in a rough agreement with the experimentally measured data 
(MD). Note, that an initial guess of IP has to be done based on testing, 
engineering judgement and virtual computational simulation. Parameters 
are estimated only roughly and therefore next identification can and should 
follow. Without any idea about the values of IP proposed methodology 
cannot guarantee good results. Fortunately, this is not case happening in 
engineering computational mechanics as there is usually a rough idea on 
values of parameters. 

2) IP of the computational model are considered as random variables 
described by a probability distribution; the rectangular distribution is a 
“natural choice” as the lower and upper limits represent the bounded range 
of the physical existence of IP. However, also other distributions can be 
used, e.g. the Gaussian one. IP are simulated randomly based on the Monte 
Carlo type simulation, the small-sample simulation LHS is recommended. 
The results are random realizations of IP (vector y). A statistical 
correlation between some parameters may be taken into account too. If 
correlation is known, then it can help to the inverse analysis in consequent 
stochastic training – keeping the consistency of computational parameters 
in a computational model. 

3) A multiple calculation (simulation) of the deterministic computational 
model using random realizations y of IP is performed, a statistical set of 
the virtual response p is obtained. Note, that the selection of appropriate 
number of simulations is driven by many factors, mainly by complexity of 
the problem (computational demand), structure of neural network and 
variability of IP. No general rule can be therefore suggested. 

4) Random realizations y (outputs of ANN) and the random responses from 
the computational model p (inputs of ANN) serve as the basis for the 
training of an appropriate artificial neural network. This key point of the 
whole procedure is illustratively sketched in Fig. 3 (here for the FEM 
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model response in the form of a nonlinear load-deflection curve including 
both pre-peak and post-peak behaviour). 

5) The trained neural network is ready to give an answer to the key task: To 
select the best parameters IP so that the calculation may result in the best 
agreement with MD, which is performed by means of the network 
simulation using MD as an input. This results in an optimal set of 
parameters yopt. 

6) The last step is the results verification – the calculation of the 
computational model using optimal parameters yopt. A comparison with 
MD will show to what extent the inverse analysis was successful. 

Note that the importance of the training sample preparation has be emphasized 
and tested by Tong and Liu (2004), including LHS scheme. In spite of the fact 
that these authors concluded that the number-theoretic methods appear as the most 
efficient, LHS scheme also provided very good results. Moreover, our focus to 
LHS is also determined by the general applicability of this small-sample 
simulation technique for practical statistical, sensitivity and reliability analyses in 
many fields of engineering. 

 
 

Figure 3: A scheme of stochastic training of the neural network. 
 

7 Software FREET 

The multipurpose probabilistic software for statistical, sensitivity and reliability 
analysis of engineering problems FREET (Novák, et al., 2003, Novák, et al., 
2006) is based on efficient reliability techniques described above. There are three 
basic parts in present version: 
The window “Random Variables” (Fig. 4) allows the user-friendly input of basic 
random variables of analyzed problem. Uncertainties are modeled as random 
variables described by their probability density functions (PDF). The user can 
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choose from the set of selected theoretical models like normal, lognormal, 
Weibull, rectangular, etc. Random variables are described by statistical 
characteristics (statistical moments): Mean value, standard deviation (or 
coefficient of variation) and coefficient of skewness, respectively. 
The window “Statistical Correlation” serves for the input of correlation matrix, 
Fig. 5. The user can work at the level of a subset of correlation matrices (each 
related to a group of random variables) or at the global level (all random variables 
resulting to a large correlation matrix). The level of correlation during interactive 
input is highlighted, the positive definiteness is checked. Note, that the Simulated 
Annealing applied consequently does not require this strong requirement.  
Random input parameters are generated according to their PDF using LHS 
sampling. Samples are reordered by Simulated Annealing approach in order to 
match required correlation matrix as close as possible, Fig. 6. Generated 
realizations of random parameters are used as inputs for analyzed function 
(computational model). The solution is performed N times and results (structural 
response) are saved. At the end of the whole simulation process the resulting set 
of structural responses is statistically evaluated. The results are: estimations of the 
mean value, variance, coefficient of skewness and kurtosis, empirical cumulative 
probability density function estimated by empirical histogram structural response. 
This basic statistical assessment is visualized through the window Histograms. 
Such a basic statistical analysis is followed by reliability analysis based on several 
approximation techniques: (i) basic estimation of reliability by the Cornell safety 
index, (ii) curve fitting approach applied to the computed empirical histogram of 
response variable and (iii) simple estimation of probability of failure based on the 
ratio of failed trials over the total number of simulations, see Fig. 7. 
Additional information to the problem solved is the sensitivity analysis of each 
response function based on its rank-order correlation coefficient. Even though this 
is actually a byproduct of the simulation not requiring special additional effort, it 
provides very useful information in many cases. If the correlation coefficient 
between a certain input and output variables is close to zero, we can conclude that 
the input variable has (in its simulated range) a small or even negligible effect on 
the output. This can sometimes help to decrease the probabilistic dimension of the 
problem because such an input can be considered deterministic. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Window “Random variables”. Figure 5: Window “Statistical  
      correlation”. 

  Weimarer Optimierungs- und Stochastiktage 3.0 –  November 23-24, 2006 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Window showing the 
progress of imposing the statistical 
correlation by Simulated Annealing 
algorithm. 

Figure 7: Window “Reliability” with 
empirical histogram, Curve fitting, 
Cornell safety index and Monte 
Carlo sampling estimation. 

  

8 List of selected applications 

The applications of software FReET within the framework of complex system 
SARA belong to the most successful and interesting ones. Dominating topics with 
published results are listed as follows:  
 
Probabilistic analyses of concrete structures 
The presented approach has been used for statistical and probabilistic nonlinear 
analysis of concrete structures. The main interest is focused on probabilistic 
bridge assessments, including degradation and retrofitting modeling. References: 
Pukl and Bergmeister (2005), Bergmeister et al. (2005), Pukl et al. (2005), 
Bergmeister et al. (2004), Pukl et al. (2003ab), Novák et al. (2002). 
Statistical size effect studies 
The probabilistic simulation approach was used to capture the statistical size 
effect obtained from experiments. The probabilistic treatment of nonlinear 
fracture mechanics in the sense of extreme value statistics has been recently 
applied for two crack initiation problems which exhibits the Weibull-type 
statistical size effect. References: Bažant et al. (2005), Vořechovský et al. (2004, 
2005), Bažant at al. (2004), Novák et al. (2003), Lehký and Novák (2002). 
Identification of computational model parameters 
The recently proposed inverse analysis is based on a coupling of the stochastic 
nonlinear fracture mechanics analysis and the artificial neural network. Such 
inverse analysis utilizes SARA package. References: Novák and Lehký (2005), 
Lehký and Novák (2005), Červenka et al. (2005), Strauss et al. (2004ab), Lehký 
and Novák (2004), Novák and Lehký (2004). 

  Weimarer Optimierungs- und Stochastiktage 3.0 –  November 23-24, 2006 



9 Conclusions 

The paper briefly describes the small-sample simulation techniques for statistical, 
sensitivity and reliability analyses of computationally intensive problems 
implemented in FREET software. Efficient techniques of stochastic simulation 
methods were combined in order to offer an advanced tool for the probabilistic 
assessment of the complex problems, like those of nonlinear fracture mechanics 
modeling (SARA, ATENA). A wide range of applicability both practical and 
theoretical gives an opportunity for further intensive development – bridging first 
theory and praxis, and second, reliability and nonlinear computation. 
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