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1. Introduction 

The automotive industry is one of the drivers of CAE-based virtual product development. 
Due to a highly competitive market, the development cycles of increasingly complex 
structures have to be constantly reduced while the demand regarding performance, cost and 
safety is constantly increasing. The development of innovative, high quality products 
within a short time which are able to succeed in the international car producer competition 
is only possible by using virtual prototyping. One of the greatest challenges is the 
increase of numerical simulation of large test and analysis programs including CAE-based 
optimization and CAE-based stochastic analysis while reducing the number of hardware 
tests. It is important to note that increased application of virtual prototyping itself increases 
the necessity to perform robustness evaluation. If the number of hardware tests has to be 
reduced, it is essential to implement the scatter, which is always present in those tests (such 
as loads, material, geometry), into the computational model. The increasing application of 
structural optimization also requires the robustness analysis of “optimized” designs. In 
many cases, the optimization of cost, performance and weight may lead to highly sensitive 
designs which can lead to substantial robustness defects especially in nonlinear systems. It 
is no surprise that the increase of virtual prototyping in conjunction with the reduction of 
hardware tests and development times combined with a very high innovation speed of new 
materials or electronic components do have some risks. This can be seen in the statistics of 
product recall which have increased significantly in the last time [5]. Therefore, the topic 
of robustness evaluation assuring serviceability, safety and reliability should be taken into 
account in virtual prototyping as early as possible. Here, robustness characterizes the 
sensitivity of the system response in respect of unavoidable scatter in the environmental 
conditions. Consequently, probabilistic methods using CAE-based stochastic analysis have 
to be utilized in order to quantify robustness, safety and serviceability.  
 
Dependent on the robustness evaluation criteria, variance-based robustness evaluation 
(usually called robustness evaluation) or probability based robustness evaluation (usually 
called reliability analysis) have to be utilized [3]. In variance-based robustness evaluation 
procedures, usually a sample set of possible realizations of input variables is generated by 
stochastic methods. The scatter of the input variables is described by probability 
distribution functions and correlation structures of scattering inputs. The scatter in the 
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system responses and their significance are investigated by statistical methods with respect 
to their properties regarding correlation and variation. In probability-based robustness 
evaluations usually small event probabilities are determined using gradient (FORM) or 
sampling based (ISPUD, adaptive sampling, and others) stochastic analysis methodology 
[7].  
 
From our experience the success key at integration of robustness evaluation in the virtual 
product development cycles is the balance between the properly introduction of physical 
scatter, between reliability of stochastic analysis methodology and the reliability of the 
statistical post processing. If we miss the balance of one of the three, the results of the 
stochastic analysis most likely are useless. For example if we miss the most important 
input scatter the variation prognosis is useless, if we use the wrong sampling (like 100 
Monte Carlo Sample) the reliability of correlation measurements is very low or if we test 
linear correlation only we may miss the most important correlation between input and 
output scatter.  
 
That is very much in contrast to the introduction of CAE-based optimization. Here, “black 
box” algorithms can be used and the designer can limit his design space for optimization 
almost without the risk of producing useless results. In the optimization task, this would 
“only” result in pure or missing design improvement. That fact is one of the reasons that 
practical applications of CAE-based robustness evaluation are still rare compared to CAE-
bases optimization.  

2. Variance-based Robustness Evaluation 

Based on a reference simulation with a deterministic set of input variables, which for 
example corresponds to the mean values of the uncertain variables, a robustness evaluation 
creates a set of possible realizations of the design regarding the naturally given input 
scatter. To generate the sample set, stochastic analysis methodology is used.  
 
Because in the discussed automotive application it is not necessary to account small event 
probabilities, robustness evaluations using Latin Hypercube sampling [13] are the 
methodology of choice. The primary goal of robustness evaluations is the determination of 
a variation range of significant response variables and their evaluation by using definitions 
of system robustness. The secondary goal of robustness evaluations is the identification of 
correlations between input and response scatter as well as a quantification of ”physical” 
and “numerical” scatter of result variables. 
 
The definition of the uncertainties forms the base the stochastic generation of the sampling 
set. Because robustness evaluation ask for the influence of input scatter the proper 
definition of them is essential. Furthermore as closer we look to response variation and 
correlation as more detailed knowledge we need in terms of input distribution information 
and in terms of correlation between scattering input variables. This simple principles may 
be obvious but often we are forced to start with rough assumptions about input scatter and 

Weimarer Optimierungs- und Stochastiktage 4.0 – 29./30. November 2007 2 
 



we strongly recommend to validate results from robustness evaluation against that 
principles frequently.  
 
In practical applications, the existing knowledge of scatter is translated into a suitable 
distribution function. Thereby, the bandwidth reaches from detailed data from quality 
control of material properties to raw estimates of scatter and uncertainties. The software 
used for the robustness evaluation should be able to consider the available knowledge 
regarding the input information completely. This requires that suitable distribution 
functions (normal distribution, truncated normal distribution, log normal distribution, 
Weibull distribution or uniform distribution) can be used. Beside distribution information 
of single stochastic variables significant correlation between variables or significant spatial 
correlated stochastic behavior called stochastic fields has to be taken into account.  
 

 
Figure 1: Normal versus Lognormal distribution, the figure visualizes that both 

distributions may have the same mean and standard variation but very differ probability in 
the tails 

 

 
Figure 2: Example of correlations, left: correlation of scattering material parameter right: 

random field of initial stresses after forming process 
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Of course the significance of scattering variables or the significance of correlations 
between variables is often not known before, therefore we like to define 10 scattering 
variables or correlations more instead of one important missing.  
 
We strongly recommend to use as much as available measurement data of uncertainties 
and to spend sufficient effort for proper translation of all available information into 
distribution and correlation assumptions. Furthermore ensuring conservative estimations of 
variation we recommend moderate increase of observed input scatter if the knowledge base 
of variation is low. 
 
At this point, it shall be explicitly stated that the reliability of statistical measures of the 
result variables depends on the quality of the input information on scattering input 
variables. Therefore, if only rough assumptions can be made about the input scatter, then 
the statistical measures should only be evaluated as a trend. The estimation of statistical 
measures from a sample of possible realizations is naturally afflicted with an error. To 
keep this error as small as possible, Latin Hypercube Sampling methods are to be 
preferably used when creating samples. Research, regarding the estimation of linear 
correlation coefficients [13], shows that for the same expected statistical error optimized 
Latin Hypercube Samplings are more than ten times more efficient than Monte Carlo 
samplings.  

 
Figure 3: Histogram for Robustness evaluation, the red part of the histogram violates the 

Robustness constraint with violation probability of 34% 
 
Statistical measures from the histogram form the base for the estimation of response 
variability. Other important measures of variation are coefficient of variation, standard 
deviation, min/max values. In practical applications, the robustness of result values is often 
determined by examining if certain boundaries are exceeded. The boundary values thereby 
are often compared with the min/max values. If the scatter of output variables is not 
tolerable, it is searched for apparent correlations between the variation of individual input 
variables and the variation of individual output variables. Correlation coefficients, 
determined from linear and quadratic correlation hypothesis, describe a measure of 
correlation. The correlation coefficients in return form the base of measures of 
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determination. Measures of coefficients of determination (CoD) are percent wise estimates, 
which ratio of variation of an output variable to the variation of individual input variables 
can be explained by using the correlation hypothesis. 
 

 
Figure 4: Coefficient of Determination of Femur Force, shows that 90 % can be explained 

with identified linear correlations, the variation of vertical seat position (H_POINT_Z) 
result in 42% of total variation of femur force 

 
When doing robustness evaluations of forming or crashworthiness simulations, the 
necessity may arise to visualize the statistic measures on the FE-structure. For correlation 
analysis on discretization level a high number of correlation coefficients need to be 
estimated. The required amount of computations for securing a certain confidence interval 
on correlation coefficients depends on the total amount of scattering input variables plus 
the total amount of estimated output variables. In other words, the probability rises that the 
maximum error of single correlation coefficients increases with an increasing amount of 
output variables. Than projection methods [10] are used to suppress the “noise” of the 
statistical errors in the estimations of correlation measurements and help to identify 
important correlations. 
 
Introducing robustness evaluation into regular virtual product development cycles needs an 
automatic and standardized post processing process. The enormous amount of statistical 
data has to be reduced to some significant result values which answer the primary 
questions. Of course the post processing procedure may differ for the different application 
areas. Here an example from passive safety illustrates the procedure. First the primary 
result of robustness evaluation the variation is summarized in one graph. The range of 
scatter is normalized to legal limit values and different colors show exceedance of internal 
or legal limits. From the base of this summary the engineer can look closer to single result 
values by evaluation of coefficient of determination and the correlation structure between 
this response and input scatter. That information forms the base to point out necessary 
modifications of the system or to point out necessary improvements of numerical modeling 
or result extraction. 
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3.  NVH Applications 

Dynardo started in 2002 with the integration of robustness evaluation for NVH 
applications [10]. The main motivation was to investigate how tire, body in white and 
suspension system scatter influence the NVH performance. Therefore considering of 
stiffness scatter (sheet metal thickness, suspension system stiffness scatter, tire stiffness 
scatter) is state of the art. The evaluation of variation as well as linear and quadratic 
correlation coefficients mainly solved the task of robustness evaluation of driving comfort 
criteria. Because for the numerical simulation implicit FEM is used numerical noise does 
have no influence on the statistical measurements. Since 2003 we are in the productive 
level of FE-based NVH application.  
 

 
Figure 5: The Robustness of NVH performance of new C-Class was investigated for 

several NVH load cases 
 
The challenge at NVH applications is “only” the number of scattering variables which 
continuously increases until today up to 600 scattering variables. Therefore we developed 
significance filter for output correlations using the confidence intervals of the known 
correlation coefficients of the sampling. Only variables with higher correlations than the 
99% confidence interval are introduced to calculate coefficients of determination. That 
procedure allows to calculate the CoD even if the number of sample points are much less 
than the number of scattering input variables. Of course the user has to evaluate the 
convergence of the statistical measurements and has to ensure that the CoD is high enough 
and most significant correlations are identified. 
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Figure 6: Convergence plot of quadratic correlation coefficients, the convergence show 

that after 100 simulations the main three quadratic correlations are identified 
 
Beside plots of variation and correlation of single peaks usually extracted from windows in 
the frequency or time domain important post processing capabilities are plots of the scatter 
bands in the frequency and time domain. From that plots the user can extract information at 
which frequencies engineering tasks at suspension or body in white will significantly 
influence the NVH performance. 
 

 
 
Figure 7: Plot of scatter bands in the frequency domain, Blue: reference design; red: scatter 

due to sheet metal uncertainties; green: scatter due to suspension system uncertainties 
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4. Crashworthiness and Passive Safety Applications 

3.1 Numerical Robustness of Crashworthiness and Passive Safety Applications 
 
The inspection of numerical robustness of FE-modeling of crash-test computation results 
from the experience that the variation of numerical parameters of the approximation 
method or the variation of demonstrable insignificant physical parameters can lead to large 
scattering of the result variables or respectively lead to obviously unfeasible results. If n-
designs are to be computed and their variation is to be evaluated statistically, the question 
arises which proportion of the resulting variation results from numerical noise. 
 
In the beginning of robustness evaluations at passive safety in 2004 we performed in 
parallel “physical” robustness evaluations of physically scattering parameters (scattering in 
reality) and “numerical” robustness evaluations regarding variation of numerical 
parameters. We stated a model as numerically robust, if the variation caused by the 
numerical robustness evaluation was small compared to the scatter caused by physical 
robustness evaluation. But of course, that statement was very much depended on the 
variation interval of numerical parameters and we could not repeat numerical robustness 
evaluations at every point in the physical robustness space. Therefore, a process was 
needed to estimate the quantity of the numerical noised within a physical robustness 
evaluation. At the end, we quantified the influence of numerical noise on the result variable 
by using the coefficients of determination [13]. Including linear and quadratic correlation 
between input and output variation as well as excluding cluster or other identifiable 
nonlinear correlations the measurement of determination should be high. If the measure of 
determination of the robustness evaluation is high, only a small proportion of unexplained 
variation, which could be caused by numerical noise, is left. In order to use the measure of 
determination of result variables as a quantitative measure for the numerical model 
robustness, the proportion of determination of the found correlations has to be estimated 
with sufficient statistical security. This formulates the standards for the sampling method, 
the number of computations and the statistical algorithms for the evaluation of measures of 
determination. After positive experience of evaluating the influence of numerical noise via 
measures of determination from robustness evaluation, this method is used for the serial 
production of BMW since 2006 [14]). From our experience, we selected the role of thumb 
that for “numerically” robust models, measures of determination, considering linear and 
quadratic correlations and after elimination of outliers and clustering of over 80%, should 
be determined. If the measures of determination in practical applications decreased 
significantly below 80%, it was usually indicated that the corresponding result variable 
shows a significant amount of numerical noise. A reason therefore may be insufficiencies 
in the result extraction or more frequently insufficiencies of the modeling interacting with 
the approximation methods. After repairing the modeling, the measure of determination 
usually increased up to over 80%. 
 
It shall be stated that in theory it is impossible to determine without a doubt the proportion 
of numerical noise. This diagnosis of course excludes systematical errors or the inability to 
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actually map significant physical effects in the numerical models. The fundamental 
prognosis ability of the numerical models has to be verified by using experimental data. 
Beside numerical noise an important motivation of aiming at high coefficients of 
determination for robust designs is that the correlations between input variation and output 
variation should be identifiable. These correlations finally show the possibilities of 
influencing the result scatter. In order to improve robustness, it is possible for example to 
move the mean value of important scattering input variables in the linear correlation case 
or for quadratic correlations to reduce input scatter or alternatively to change the 
transmission behavior between input and output scatter.  
 
The subject of bifurcation points is surely to be discussed separately. For the purpose of 
robust designs, one would want to vastly avoid systems with bifurcation points which can 
be traversed in multiple ways within the scatter range of input variables and then lead to 
significantly different system responses. As a matter of principle, one would have to be 
able to find correlations between indicators of bifurcation or results heavily influenced by 
bifurcation and the input scatter. Otherwise the bifurcation occurs randomly which implies 
that we are dealing with a very sensitive dynamic system.  

3.2 Passive Safety Applications 
 
In 2004, we started with the integration of robustness evaluation into passive safety 
applications [11]. The main motivation was to investigate and improve the robustness of 
the restraint systems of fulfilling consumer ratings and legal regulations at the crash tests. 
Therefore considering of material, load parameters as well as test condition scatter and 
evaluation of variation of the main performance criteria is state of the art. 
 

 
 
Figure 8: For passive safety applications multi body as well finite element models are used 

in robustness evaluations 
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Figure 9: Visualization of improvement of robustness of passive safety performance, upper 

diagram shows the scatter at milestone 1, lower diagram shows the scatter at mile stone 
three of the virtual product development process 

 
In passive safety applications using hybrid MKS/FE-models, the quantification of 
numerical noise became an important part of robustness evaluation. With other word by 
checking the quantity of numerical noise we check the model quality. By developing a 
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quantitative estimation of numerical noise via coefficients of determination [13], 
robustness evaluation of passive safety applications became accepted for regular 
procedures in virtual prototyping [14]. Since the beginning of 2006, computational 
robustness evaluations using optiSLang [6] are a defined milestone of the serial production 
at the BMW AG, executed for all relevant load cases for dimensioning of passive safety 
systems [14]. In 2005, we started robustness evaluations of FE-based crash analysis for 
passive safety applications. Here, the estimation of the amount of possible numerical 
scatter became a key feature for the investigation of scatter sources. Today at productive 
level of FE-based passive safety application (side crash, head impact) we reduce the 
number of necessary solver runs as much as possible using significance filtering based on 
coefficient of determination. 
 
Consideration of the test setup (dummy positioning, crash puls), airbag (mass flow, 
venting, permeability), sensors (TTF), belt system, door/interior stiffness and scatter of 
friction is state of the art in robustness evaluation of passive safety. 
Beside consideration of the influence of dummy scatter and consideration of the influence 
of geometric scatter of the body in white will be topics of further improvements. 
 
Automation of post processing was a key feature for productive serial use. Starting from 
one variation overview the engineer can identify the critical response values regarding 
variation (fig 10). Using plots of scatter bands in the time domain the characteristic of the 
response scatter is evaluated (fig 11). Using the coefficients of determination of the 
extracted performance values possible influence of bifurcation, numerical noise or 
extraction problems is investigated and quantified (fig 12). 
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Figure 10: Summary of variation of all important responses for load case FMVSS 214 

 
Figure 11: Scatter band of output signal pelvis force Y-direction 

 
Figure 12: Coefficient of determination of the Maxima of the pelvis force signal 
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Figure 13: Uncertainties in head impactor position of test FMVSS 201 
 
Until 2007, more than 100 robustness evaluations were performed at the BMW virtual 
prototyping for passive safety systems. In the third year of the serial use of stochastic 
analysis, the following added value could be obtained concerning the dimensioning and 
increase of the robustness of restraint systems: 
• Development of a better understanding of the transmission mechanisms of input scatter 

on significant performance variables 
• Identification of the significant scattering input parameters and securing of knowledge 

about their scattering 
• Identification of model weaknesses and reduction of numerical noise of significant 

vehicle performance variables. Thereby, increasing the model robustness/stability and 
of the quality of prognosis of crash-test computations 

• Recognizing robustness problems of the restraint systems and in cases of high 
exceeding, of limits with the consequence of re-design of components.  

 

Weimarer Optimierungs- und Stochastiktage 4.0 – 29./30. November 2007 13 
 



3.3 Crashworthiness Applications 
 
The robustness of a crash simulation in deterministic analysis is already a task which has to 
be investigated while evaluating the crash test results. To limit problems with scatter of 
performance values resulting from numerical approximations of the crash FE-solvers, often 
quality regulations of modelling, software versions and hardware platforms exist. From the 
viewpoint of stochastic analysis, this evaluation of “numerical noise” needs additional 
quantification in relation to the physical scatter which occurs in reality to the performance 
values. To illustrate that, an injury criteria is scattering in physical test about 50%, then 5% 
scatter coming from numerical approximation solution are usually tolerable. Because we 
assume that the numerical scatter overlays the physical scatter and results in a larger 
variation between minimum and maximum, the 5% can be handled with a larger safety 
distance from critical performance values. But of course, if physical scatter and numerical 
noise have the same quantity, the reliability of deterministic or stochastic simulation results 
is questionable. 
In 2005, we started robustness evaluations of FE-based crashworthiness applications. Here, 
the estimation of the amount of possible numerical scatter became a key feature for the 
evaluation of numerical robustness. Also, the projection and visualization of statistical 
measurements on FE-meshes became very important for the investigation of scatter 
sources. Because of the complexity of the FE-models, the high amount of non-linearity and 
the high CPU requirements it is still necessary to optimize all components of the 
robustness evaluation procedure. Consideration of the test setup (barrier position, velocity), 
stiffness scattering (sheet metal thickness) and plastic behavior (yield stress, failure) and 
scatter of friction is state of the art in robustness evaluation of crashworthiness. At some 
load cases it became necessary to integrate the scatter from forming simulation to 
reproduce test results. Therefore the identification and introduction of spatial correlated 
scatter of forming parts using random fields is an important research topic. Today, we are 
in the productive level of FE-based low speed application (insurance crash). High speed 
front crash loading still remains a challenge. [15] 

5. Forming Applications 

The robustness of the forming processes is becoming more and more focused on recently. 
In fact, robustness is an additional demand on optimized forming processes. Typical 
scattering input variables of forming simulations are for example material parameters like 
yield strength, tensile strength, R-values, friction values, sheet-thickness or position of 
blank and tool. As a result, the scatter of important forming results and their correlation to 
the input scatter can be investigated. The robustness evaluation generates the information 
how large a safety distance from critical forming results needs to be to generate a robust 
product. Of course, a robust product can be achieved by deterministic optimization with 
applying safety factors, but in practice applying “safe” safety factors often leads to very 
conservative designs and it may contradict the optimization idea. Therefore, introduction 
of stochastic analysis to quantify robustness will become necessary. In forming 
simulations, the definition of robust processes is often based on bounds representing 3-
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sigma values. A so called 3-sigma-value is actually a value with a probability of 
exceedance of 0.0013. When doing robustness evaluation, sigma-values can generally be 
estimated from the sample set or under assumption of distribution hypothesis computed 
from mean value and standard deviation. When doing robustness evaluation, one can 
assume that for estimations from the sample set to a few existing supporting points, a 
determination of the fractal values via normalized distribution functions is to be preferred 
[13]. 
A visualization of statistical measures on the FE-mesh facilitates considerably the 
engineering evaluation of robustness evaluation since the result values of a forming 
simulation, which are to evaluate, are generally spatial correlated values. The statistical 
measures on the FE structures serve as discussion basis for the identification of critical 
areas and as a basis for evaluating the robustness. In addition, this type of visualization 
leads to a high acceptance of the results in the production departments. Therefore, it is 
important to visualize the statistic measures directly on the component and respectively on 
the corresponding reference mesh and to communicate them in the design process. Mean 
value, variation coefficient, standard deviation and min/max values should be determined 
in the FE discretization and displayed on the FE structure [10]. Beginning with the linear 
correlation hypotheses and its measures of coefficients of determination as well as 
measures of variation, represented on the FE-structure, a first evaluation of robustness is 
performed. The found “hot” spots are then statistically secured on local level. Should small 
measures of coefficient of determination be found in areas of decisive scatter on the FE-
structure, further statistic measures (quadratic correlation hypotheses and anthill-plots for 
nonlinearities in the transmission behavior) become necessary. If robustness cannot be 
reached with adjustments in the reliability domain like reducing input scatter or moving 
mean values for material parameters, a new constraint for the optimization is born. 
Usually, a larger safety distance against critical results has to be achieved by an 
optimization step. The following pictures of visualization of variation and correlation of 
important response values are taken from a robust design optimization of a BMW body 
part [16]. 

 
Figure 14: Maxima per element FLD_crack value 
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Figure 15: Coefficient of determination linear base, projected via subspace 

 

 
Figure 16: 3-sigma-value per element FLD_cracking value 

 
Two years after starting with robustness evaluations for forming simulation at BMW, we 
are still in the process of automation and standardization to prepare the process for serial 
use. Especially the handling of different forming solvers, difficulties of extracting reliable 
and unique criteria of the quality of the forming goods as well as the necessary effort to 
develop and integrate a statistical FE-based post processor into the CAE-process are 
important boundary conditions for a successful integration of robustness evaluation into 
forming simulation. 
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6. Requirements for the Successful Integration of Robustness 
Evaluations into the Virtual Product Development Process 

From our experience in the implementation of variance based robustness evaluation in 
automotive applications, following boundary conditions have to be met: 
 
• Numerical model and simulation methods have to posses the fundamental ability of 

prognosis and therefore have to be able to show all significant physical phenomena and 
compare them to experience or experimental data.  

• Simulation processes often need to be improved regarding parametric, automatic 
repeatability and automatic result extraction to be ready for process integration in 
optiSLang.  

• The existing knowledge on input scatter and uncertainties for example in boundary 
conditions, material values or load characteristics are properly to be transferred to an 
appropriate statistical description. The know-how about the uncertainties needs to be 
continuously collected, updated and validated. 

• A stochastic sampling method has to be used for robustness evaluations which make 
sure that the errors within the estimation of the statistical characteristics are small 
enough and therefore that the results can be used as reliable foundation of a robustness 
evaluation.  

• The statistical post processing needs to be standardized and automated. Standardization 
of robustness evaluation is very important and needs to be established at a care producer 
as well as at a component supplier virtual prototyping process. 

 
Furthermore, one can assume that a consequence introduction of stochastic computation 
methods can be divided into two phases. 
 
Phase 1: Scatter and uncertainties of input variables are estimated from a few 
measurements and empirical values: 
• Transfer of existing knowledge on input scatter and uncertainties of testing conditions 

in distribution functions 
• Inspection of model robustness/stability using coefficients of determination 
• Robustness evaluation of most important load cases, estimation of the variance of 

important performance variables, inspection if limit values are exceeded by the 
variation of the performance variables 

• Extraction of most significant correlations between scattering input variables and 
important performance variables as well as the matching of these mechanisms with 
expectations and knowledge based on the experiments 

 
Within, and respectively as result of, phase 1, the following questions have to be discussed 
and arranged: 
• At which point in time in the virtual development process, the robustness evaluations of 

components, modules or whole vehicles are performed? 
• For which input scatter the assumptions about the scatter have to be verified? 
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• How can the scatter of critical performance variables be reduced or relocated? 
• Which exceeding probabilities are tolerable for the performance variables? 
 
Phase 2: sensitive scattering input variables are known and the assumptions about their 
scatter are verified: 
• With secured knowledge about the input scatter, robustness evaluations are performed 

at predefined milestones of the virtual product process. 
• Assuming that all important input scatter was considered close to reality and that the 

numerical models show acceptable amount of numerical noise, then the estimate of the 
scatter of important input variables is trustworthy. 

7. Summary and Outlook 

A systematic approach was developed for determining the robustness of important 
performance criteria of automotive applications qualitatively and quantitatively. Primary 
result of the robustness evaluation is the estimation of the scatter of important result 
variables. Furthermore, sensitive scattering input variables can be identified and the 
determination of result variables can be examined. Assumptions concerning activated 
nonlinear correlations (clustering/outliers/bifurcation) caused by input scatter can be 
verified. 
 
By using measures of determination, the quantitative influence of numerical noise on the 
variation of result variables can be estimated and thereby, an important contribution to the 
reliability of prognosis and quality of the crash test computations can be given. 
 
The breakthrough in practical application and the acceptance of stochastic analysis for 
robustness evaluations was achieved by using linear/quadratic correlations and the 
corresponding measures of determination, by using projection of statistical measures on the 
finite element structure as well as by standardization and automation of robustness 
evaluation procedure. 
 
The quantitative estimation of the measures of determination and the securing of large 
measures of determination are not only meaningful in robustness evaluations of final 
designs. If crash tests are an integral part of multi-disciplinary optimization tasks [4], the 
measures of determination should also be secured for the result values. Here, the measures 
of determination in the design space of optimization can be used as quality criteria for the 
applicability of the results in constraints or objective functions [2]. 
 
The productive use of stochastic analysis in virtual prototyping is associated with high 
requirements on CPU, on the parametric of the models and on the automation of CAE-
process as well as evaluation processes. From those requirements, an allocation of CPU-
power is often the smallest problem. Also the automation of the CAE process is normally 
not a real problem. The definition and the automatic extraction of appropriate response 
values for robustness evaluation are usually one of the main work packages of the engineer 
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who is performing the robustness simulation. The automation of post processing of 
robustness evaluation including the offer of a filter of variable importance is one of the 
main topics of the current optiSLang software development and will be available to the 
public soon.  
 
Sometimes costly problems occur, if the parametric of the models needs to be improved for 
stochastic simulation. For example for passive safety applications, it became very 
important to reposition automatically the dummy after the perturbation of the design and 
dummy parameters are introduced. Therefore, we developed a multi body dummy 
positioner [6] and are facing the problem of automatic reposition of FE-dummies.  
 
Further research and code development is needed, if spatial correlated phenomena have to 
be taken into account. For example, geometric scatter or the consideration of scatter from 
forming parts in crashworthiness applications will need to extend the stochastic model of 
scatter definition to stochastic fields [1].  

References 

[1] Bayer, V.; Roos, D.: Non-parametric Structural Reliability Analysis using Random Fields and 
Robustness Evaluation, Proceedings Weimarer Optimierungs- und Stochastiktage 3.0, 2006, 
Weimar, Germany (www.dynardo.de) 

[2] Blum, S.; Will, J.: Combining Robustness Evaluation with Current Automotive MDO Application, 
Proceedings Weimarer Optimierungs- und Stochastiktage 3.0, 2006, Weimar, Germany 
(www.dynardo.de) 

[3] Bucher, C.: Basic concepts dor robustness evaluation using stochastic analysis; Proceedings 
EUROMECH colloquium Efficient Methods of Robust Design and Optimization, September 2007, 
London (www.dynardo.de) 

[4] Duddeck, F.: Multidisziplinäre Optimierung im Produktentwicklungsprozess der 
Automobilindustrie; Proceedings Weimarer Optimierung- und Stochastiktage 2.0, 2005, Weimar, 
Germany (www.dynardo.de) 

[5] http://www.ard.de/ratgeber/auto-verkehr/autokauf-und-autotest/auto-rueckruf-wenn-die-werkstatt-
ruft/-/id=305632/nid=305632/did=263130/1penr9b/index.html 

[6] optiSLang - the Optimizing Structural Language, Version 2.1, DYNARDO, Weimar, 2006, 
www.dynardo.de 

[7] Roos, D.; Adam, U.; Bucher, C.: Robust Design Optimization; Proceedings. Weimarer 
Optimierung- und Stochastiktage 3.0, 2006, Weimar, Germany (www.dynardo.de) 

[8] SoS - Statistics_on_Structure, Version 1.0, DYNARDO 2007, Weimar, www.dynardo.de 

[9] Will, J.; Möller, J-St.; Bauer, E.: Robustness evaluations of the NVH comfort using full vehicle 
models by means of stochastic analysis, VDI-Berichte Nr.1846, 2004, S.505-527  

[10] Will, J.; Bucher, C.; Ganser, M.; Grossenbacher, K.: Computation and visualization of statistical 
measures on Finite Element structures for forming simulations; Proceedings Weimarer 
Optimierung- und Stochastiktage 2.0, 2005, Weimar, Germany (www.dynardo.de) 

  

Weimarer Optimierungs- und Stochastiktage 4.0 – 29./30. November 2007 19 
 

http://www.dynardo.de/


Weimarer Optimierungs- und Stochastiktage 4.0 – 29./30. November 2007 20 
 

[11] Will, J.; Baldauf, H.: Robustness evaluations concerning virtual dimensioning of passive vehicle 
safety; Proceedings Weimarer Optimierungs- und Stochastiktage 2.0, 2005, Weimar, Germany 
(www.dynardo.de) 

[12] Will, J: Introduction of robustness evaluation in CAE-based virtual prototyping processes of 
automotive applications; Proceedings EUROMECH colloquium Efficient Methods of Robust 
Design and Optimization, September 2007, London (www.dynardo.de) 

[13] Will, J.: Bucher, C.: Statistical Measures for the CAE-based Robustness Evaluation, Proceedings 
Weimarer Optimierungs- und Stochastiktage 3.0, 2006, Weimar, Germany (www.dynardo.de) 

[14] Will, J.; Baldauf, H.: Integration of Computational Robustness Evaluations in Virtual Dimensioning 
of Passive Passenger Safety at the BMW AG , VDI-Berichte Nr. 1976, Berechnung und Simulation 
im Fahrzeugbau, 2006, Seite 851-873 

[15] Will, J.; Stelzmann, U.: Robustness Evaluation of Crashworthiness using LS-DYNA and 
optiSLang; Proceedings 25. ANSYS Conference & 25. CAD-FEM Users Meeting October 2007, 
Dresden, Chapter 1., Germany (www.dynardo.de) 

[16] Will, J; Grossenbacher, K.: Robust Design Optimization of forming process simulation using LS-
DYNA and optiSLang; Proceedings 25. ANSYS Conference & 25. CAD-FEM Users Meeting 
October 2007, Dresden, Chapter 1., Germany (www.dynardo.de) 

 


	1. Introduction
	2. Variance-based Robustness Evaluation
	3.  NVH Applications
	4. Crashworthiness and Passive Safety Applications
	3.1 Numerical Robustness of Crashworthiness and Passive Safety Applications
	3.2 Passive Safety Applications
	3.3 Crashworthiness Applications

	5. Forming Applications
	6. Requirements for the Successful Integration of Robustness Evaluations into the Virtual Product Development Process
	7. Summary and Outlook
	References



