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SOME ASPECTS OF OPTIMIZATION 
IN NON LINEAR DYNAMICS

Abstract
On the basis of a very simple example of crash simulation, 
different issues concerning optimization in non linear dynamics 
are reviewed, such as robustness, convergence and choice of 
the best formulation and/or optimization technique within those 
available through optiSlang. Robust optimization (RDO) is also 
performed on the example problem.
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Introduction: a crash course in crash

Crash performance of a structure amounts to the 
ability to dissipate a given amount of energy while:

• Limiting the injuries to weak users

• Sustaining reasonably little damage

• Minimizing the cost (mass for a given material and 
technology)

In today’ automotive industry, crash performance is 
measured by standardized tests, imposed by 
government bodies or de facto regulators (NTHS, 
EURONCAP, insurance companies).

These tests may vary widely, but they have some 
common features …
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demonstrate the ability to :

The trade-off between these two conflicting 
requirements leads naturally to a constrained 
optimization problem.

•Dissipate (relatively) small amount of energies with 
little aggressiveness and/or local damage. 
•Dissipate (relatively) large amount of energy 
avoiding catastrophic effects.
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For automotive crash, we require:

•Limited (repairable) damage for 
insurance tests

•Absence of occupant injuries for 
65 Km/h test

For pedestrian head impact, the 
same requirement (HIC) amounts 
to:

•A very flexible structure for 
child head impact

•A relatively stiff structure for 
adult head impact

For road barrier crash, we 
require:

•Low acceleration for light 
vehicle impact

•High restraining capability for 
truck/bus impact
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to sustain these impacts are 
very complex and diverse.

However, many such structures 
can be modeled as a sequence 
of structural elements with 
increasing stiffness and energy 
dissipation capabilities.

In the following, we call it 
a multi-stage structure.
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M, vM, vM, vM, v

A multi-stage system is modeled 
with 2 non-linear springs.

Each spring may have different 
failure modes.

The rest of the vehicle is 
modeled by a lumped mass at an 
initial speed.

For the simplified modeling we 
use a in-house application, 
developed using ENKIDOU, a 
SimTech –proprietary library of
Java components for the
development of vertical 
applications.

Simplified multi-stage structure



C
o
p
y
r
i
g
h
t


S
i
m
T
e
c
h
 
2
0
0
7
 
A
l
l
 
r
i
g
h
t
s
 
r
e
s
e
r
v
e
d

The impact parameters are the mass 
and initial speed of the impacting 
vehicle (impactor).

The multi-stage structure can be 
composed of any number of elements 
with different characteristics.

For the present 
study, we consider a 
two-stage structure 
made out of linear 
spring failing at a 
given deformation 
(length).

Non linearity comes 
from failure.
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This simple model captures some of the main features of 
the impact phenomena under investigation. 

At low speed (5 m/sec) we 
have a one long event, where 
the first spring dissipate 
energy with low acceleration.

At high speed (20 m/sec) we 
have two events. 
First, the soft spring is 
crushed. 
The stiff spring dissipate the 
energy with high 
acceleration.
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FAILURE MODE 
ANALYSIS

If we put more non linearity, we get more 
complex behavior. In particular, this simple 
model may represent bifurcations (different 
failure modes)
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Some other examples of ENKIDOU vertical applications
An environment for the virtual 

testing of road barriersA specialized (pre-) and post-processor 
for VR&D GENESIS

A generator of optimal super-
elements
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optiSlang SET-UP
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Optimization problem set-up

Element «danner»: 
low speed crash
(5 m/sec)

Element «bfd»: 
high speed crash 
(20 m/sec).

The simulation process for our problem involves
two crash simulation:
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M, vM, vM, vM, v

This specific set-up is 
proper to an automotive 
crash design problem.

Hence, we call element 1 

“crash box”

and element 2

“rail”
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Each element has input and response parameters 
defined from the xml I/O file of the application …

input parameters for 
“danner”

response parameters 
for “danner”
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Design variables:

•crash box length

•crash box stiffness

•rail length

•rail stiffness

crash 
box

rail

Objective function:

•Mass ~ length1*stiffness1 + length2*stiffness2
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Constraints:

•Total length (architecture)

•Rail deformation in high speed crash (residual space for 
engine)

•Rail deformation in low speed crash (no damage)

•Crash box deformation in low speed crash (no crushing)

•Maximum acceleration in high speed crash
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PRELIMINARY CLOUD 
ANALYSIS
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Prior to the actual optimization, we run a (relatively) huge 
random sampling of the design space. The resulting cloud has 
been analyzed with our in-house tools.

Total number of shots is 23300.

This looks like a lot of 
points, but in practice 
it means 1 point every:

12 mm of crash box 
length

218 N/mm of crash 
box stiffness
30 mm of rail length
645 N/mm of rail 
stiffness
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ADMISSIBLE BOX : 
1338 POINTS FROM 23300

PARETO SURFACE: 
1085 POINTS

In order to get a 
visual information 
about the admissible 
domain, we apply the 
following 
transformations:

•Selection of 
admissible shots

•Identification of the 
Pareto surface of the 
admissible shots

PARETO 
FRONTS
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For the exploration of the Pareto surface, we use 
the correlation analysis and other basic statistics.
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From the analysis of our Pareto surface, we can obtain 
some prior knowledge about our optimization problem.

First, we can be reasonably sure that there is a global 
minimum and where it is approximately.

mass vs. CB length

mass vs. CB stiffness mass vs. rail stiffness

mass vs. rail length

area around 
global 

minimum
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We can also foresee which will be the active 
constraints. In our case, all but the maximum 
acceleration in the high speed test.
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Statistical analysis using 
optiSlang

linear correlations

quadratic correlations
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Danner Rail Displacement
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ANT-HILL plots

(scatter plots)

distribution 
functions
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principal 
component analysis
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OPTIMIZATION USING 
DIFFERENT ALGOS OF 

optiSlang

Gradient based

Response surface

Adaptative response surface

Evolutionary optimization
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Optimization using gradient method 
(NLPQLP)

For the first optimization, 
we start from a “nice”
point, where constraint 
violation is not important.

Results are excellent for a 
total of 160 design points.

initial value final value
CB LENGTH 300 381
CB STIFFNESS 1000 304
RAIL LENGTH 700 718
RAIL STIFFNESS 5000 2283
MASS 11.4 5.27
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Robustness of the gradient 
based optimizer
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We have run the 
optimization with four 
more different starting 
point, at the corners of 
the design space

NLPQLP converges 
very rapidly towards 
the same optimal 
value
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d RSM optimization

Starting point: 9-point 
DOE

Convergence is achieved 
in 150 points

CB LENGTH 400
CB STIFFNESS 300
RAIL LENGTH 700
RAIL STIFFNESS 2483
MASS 5.57
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d ARSM optimization

CB LENGTH 382
CB STIFFNESS 304
RAIL LENGTH 718
RAIL STIFFNESS 2281
MASS 5.26

Convergence is 
achieved in 155 
points
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Convergence of RS based 
methods

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000

rail stiffness

m
as

s

approximation of admissible domain

RSM

ARSM

optimal point



C
o
p
y
r
i
g
h
t


S
i
m
T
e
c
h
 
2
0
0
7
 
A
l
l
 
r
i
g
h
t
s
 
r
e
s
e
r
v
e
d

Evolutionary algorithm
1. Global search

CB LENGTH 334
CB STIFFNESS 409
RAIL LENGTH 609
RAIL STIFFNESS 3308
MASS 6.45
N° ITER 2000
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Evolutionary algorithm
2. Design Improvement

CB LENGTH 383
CB STIFFNESS 300
RAIL LENGTH 695
RAIL STIFFNESS 2438
MASS 5.42
N° ITER 2380
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with optiSlang

Plain MonteCarlo

Latin Hypercube Sampling
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Robustness problem overview
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Response variability:

Variance, pdf, etc …

Variance analysis:

Which input factor contributes 
to the variability of which 
output ?



C
o
p
y
r
i
g
h
t


S
i
m
T
e
c
h
 
2
0
0
7
 
A
l
l
 
r
i
g
h
t
s
 
r
e
s
e
r
v
e
d

Robustness analysis: PMC vs. LHS

PMC LHS 

B
FD

 r
ai

l d
is

pl
.

D
an

ne
r 

st
ro

ke

0

10

20

30

40

50

60

70

80

stDeviation coeffDet impactSpeed coeffDet vehicleMass

100
1000

0

10

20

30

40

50

60

70

80

stDeviation coeffDet impactSpeed coeffDet vehicleMass

100
1000

0

10

20

30

40

50

60

70

80

stDeviation coeffDet impactSpeed coeffDet vehicleMass

100
1000

0

10

20

30

40

50

60

70

80

stDeviation coeffDet impactSpeed coeffDet vehicleMass

100
1000

LHS converges faster than PMC …
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ROBUST OPTIMIZATION
motivation

rail stiffness

C
B

 st
iff

ne
ss

deterministic 
optimal design

failure CB Danner

fa
ilu

re
 ra

il 
BF

D

safe 
region

unsafe 
region

When we take into account 
uncertainties, the optimal design 
point is not robust.

We all use safety factors to deal 
with this problem.

How can we find them properly ?

stiffness 
CoV

failure 
probability

10% 80%
5% 80%

… …
N.B.: failure probability is 
independent of the variance 
of the design variables
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ROBUST OPTIMIZATION
definition of safety factors

1. Find active constraints

2. From reliability analysis, 
find the values of the 
responses such that 
PoFresp = PoFtarget

3. Change constraint value and 
run a new (deterministic) 
optimization

4. Repeat if necessary

… in our case:
Active constraints: 
• Danner CB failure
• CFB and Danner rail failure

rail stiffness

C
B

 st
iff

ne
ss safe 

region

unsafe 
region
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ROBUST OPTIMIZATION
definition of safety factors

Under the hypothesis that active constraints are 
independent, the safety factors can be found by 
elementary probability:

No failure == (q1 > 0) && (q2 > 0) … && (qn > 0) 

or

P(no failure) = P(q1 > 0)*P(q2 > 0) … *P(qn > 0)

One (engineering) solution is thus that the new 
constraint value is such that 

P(qi > 0) = [P(no failure) ]1/n
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ROBUST OPTIMIZATION
robust solution

Data scatter:

CoV on element stiffness = 10%

Global PoFtarget = 3%

There are 3 active constraints:

•Danner max stroke, 

•Danner rail displacement, 

•BFD rail displacement

For each of the constraint, PoFtarget = 1%
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ROBUST OPTIMIZATION
robust solution

The procedure converges in 4 iterations
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POF (log scale)

target PoF

Significant 
increase of mass 
and rail stiffness

Little change in 
lengths and CB 
stiffness
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• The analysis of simplified models is 
interesting for the formulation of 
optimization problems

• optiSlang optimization performs well on 
non-linear, dynamic problems. ARSM is 
particularly fast and accurate. 
Evolutionary algorithms are predictably 
slow in convergence.

• Approximate robust optimization is 
possible with using the present features 
of optiSlang (with a little more pdf
analysis …)


