

Robust Design Optimization in forming simulation using adaptive response surface methodology

dynando

Johannes Will, dynardo GmbH

dynamic software & engineering GmbH

www.dynardo.de

Iterative RDO procedure

It is absolutely necessary to understand booth domains:

- the design space of optimization
- as well as the robustness/reliability space

to be able to formulate a successive RDO problem.

• starting with a consecutively approach of using sensitivity analysis, robustness evaluation and deterministic optimization for achieving a robust optimal design is recommended.

Example Application forming simulation of a small BMW car body part

Optimization domain

- 12 beads forces (0-350 N)
- tool binder force (50-300 KN)

Name	Value	Lower Bound	Upper Bound	Type	Active
bead1	350.00	0.0	350.0	continuous	
bead2	350.00	0.0	350.0	continuous	
bead3	350.00	0.0	350.0	continuous	
bead4	350.00	0.0	350.0	continuous	2
bead5	350.00	0.0	350.0	continuous	×
bead6	350.00	0.0	350.0	continuous	
bead7	350.00	0.0	350.0	continuous	
bead8	350.00	0.0	350.0	continuous	
bead9	350.00	0.0	350.0	continuous	×
bead10	350.00	0.0	350.0	continuous	2
bead11	350.00	0.0	350.0	continuous	
bead12	350.00	0.0	350.0	continuous	
tool_binder	300000.00	50000.0	300000.0	continuous	~

Sensitivity Analysis with Reference Simulation

Which design parameter, result values and objectives are sensitive ?

•100 optiSLang Latin Hypercube Sampling

Sensitivity Study

only two design are admissible regarding the FLD_Crack value

20 60 80 Relative Size to Bounds [%]

Sensitivity – Correlation

7

dynando

Robustness Evaluation using 100 LHS Sampling

Robustness domain

- Scatter of all 12 beads forces
- Scatter of tool binder force
- Scatter of friction (normal
- Scatter of Sheet metal thickness
- Scatter yield stress and plasticity value (R-value)

(normal distribution, CoV_0.05)

Robustness evaluation for the best_Design of the Sensitivity study (max. FLD_crack=0.73)

Does the safety distance ensure Robustness ??

Robustness Evaluation

- 6% failure (maximum FLD_crack > 1.0)
- high coefficients of determination (93% linear correlation base)
- clear ranking (only scatter of yield stress, bead 6 force and friction has important correlation to FLD_crack scatter)

Deterministic Optimization

- design improvement from two admissible sensitivity study designs
- increase if safety distance (max. FLD_crack<0.70)
- weighted objective

N	ame: obj :tive: 🗹	iective		
Name		Function	Weight	
racking	summ	_cracking		1000.0
hinning	summ	_thinning		1.0
ardening	summ	_hardening		1.0

• optiSLang Default setting of evolutionary design improvement

Evolutionary optimization

- stop after 80 design evaluations
- max. FLD_crack value =0.68

Design Number: 68

Relative Size to Bounds [%]

Robustness Check

Robustness evaluation for the Design 78_68 (max. FLD_crack=0.68)

Does the safety distance ensure Robustness ??

- no failure within 50 design realizations
- max. FLD_crack value =0.80
- max. 3-Sigma FLD_crack value = 0.88

Example Iterative RDO procedure (300 solver runs)

dynando

How robust is the iterative RDO procedure?

Design	maximum	Robustness evaluation
	FLD_crack optima	FLD_crack value
	candidate	
78_sensitivity	0.73	6 % failure
78_68_EA	0.68	no failure at 50 designs
		max. FLD_crack=0.80
		max. 3Sigma value=0.88
78_179_EA	0.70	19 % failure
78_200_ARSM	0.64	23 % failure
54_58_EA	0.685	50% failure

- effect is highly nonlinear
- no "constant" safety distance

(simultaneously) RDO methodology

Because of the highly nonlinear robustness behaviour an automatic Robust Design Optimization procedure with simultaneously dealing with optimization and reliability domain is the final dream.

Because RDO simultaneously deals with optimization and robustness analysis computational effort becomes very high. Therefore the challenge in applying RDO is to find a payable balance between effort and reliability of the robustness measurements.

Co-simulation of optimization and reliability analysis like doing a Latin Hypercube Sampling for every optimization design is possible, but the effort multiplies.

RDO (EA/LHS)

Spending 330 runs using EA/LHS

- That approach try to automate the manual iterative process
- RDO using evolutionary alrorithm in the optimization domain and Latin Hypercube Sampling in Robustness is used.
- Robustness within the optimization is introduced using a 3-sigma-bound at the max. crack value. The 3sigma bound is checked with estimation of standard variation using 10 LHS samplings.
- Start Design of optiSLang evolutionary Design Improvement is Design_78_Sensitivity

(6 Generations = 6*5*11 LHS=330)

RDO (EA/LHS)

After 6 generations the objective is improved from 59.6 auf 58.08 with a deterministic max. cracking value of 0.656 and a estimated 3-sigma-value of 0.90.

Robustness Check

Robustness evaluation for the Design 78_RDO_233 (max. FLD_crack=0.68)

- two failure within 50 design realizations (4% failure)
- max. FLD_crack value > 1.00

INPUT: yield_stres 39 %

adjusted CoI [%] of OUTPUT: max_cracking

30

20

10

40

50

RDO (adaptive RSM/LHS)

Spending 300 runs using ARSM/LHS

- Using the experience from the sensitivity study and the deterministic optimization we reduce the design space of optimization to 5 variables (4 beads and the tool binder).
- RDO using adaptive (local) RSM in optimization domain and Latin Hypercube Sampling in Robustness is used.
- Robustness within the optimization is introduced using a 3-sigma-bound at the max. crack value. The 3sigma bound is checked with estimation of standard variation using 10 LHS samplings.

With that strategy 3 RSM Iterations are possible!

(3 Iterations*10 optimal DOE *11 LHS=330)

RDO (adaptive RSM/LHS)

After three iterations the objective is increased from 59.6 auf 62.15 with a deterministic max. cracking value of 0.62 and a estimated 3-sigma-value of 0.73.

Robustness Check

Robustness evaluation for the Design 78_RDO_233 (max. FLD_crack=0.68)

- no failure within 50 design realizations
- max. FLD_crack value = 0.83
- max. 3-Sigma FLD_crack value = 0.99
- scatter of process forces insignificant for FID scatter
- highest FLD-values now at different locations

OUTPUT: max_cracking

12

2

۳°8

ŝ

4

 \sim 0

0.6

0.65

Min: Max:

cv:

Mean: Sigma

Skewness:

Kurtosis:

Omega:

mu:

95%

0.7

OUTPUT: max cracking Coefficient of Importance (linear) full model: adjusted R² =

sigma:

0.5885

0.8259 0.6489

0.04644

0.07157

1 387

0.5885 -3.039

0.6814

0.6041

79 %

0.8

5.75

Lognormal

0.75

How robust is the automatic RDO procedure?

Design	Deterministic	Summ	3-	Failure at	Number					
	max.	Hardening	Sigma-	Robustness	of Solver					
	FLD_crack	_	Bound	Check	Runs					
				using 50						
				LHS						
Sensitivity Analysis										
Design_78_Sensitivität	0.73	59.6		6 %	200					
iterative RDO procedure using safety distance										
Design_68_EA	0.68	58.62	0.88	0 %	320					
Design_179_EA	0.70	52.29		19 %	430					
Design_200_ARSM	0.64	53.68		23 %	450					
automatic RDO procedure using 3-sigma-bounds										
Design_RDO_223_ARSM_LHS	0.68	62.15	0.99	0 %	530					
Design_RDO_277_EA_LHS	0.656	58.08	0.92	4 %	530					

- robustness evaluation of final designs very important
- the 3-sigma-bound (estimated with 11 LHS) was not sufficient
- challenge of RDO is the balancing of improvement (optimization) and level of reliability (robustness)

Summary

- Sensitivity Study and Robustness evaluation are very helpful to define and run a iterative or simultaneously RDO
- In practical applications the design space and robustness space are different with some overlap
- Effort for iterative RDO high (300-500 runs)
- Effort for simultaneously RDO higher effort >500
- Improvement of RDO algorithms regarding number of runs and reliability/robustness measurements still necessary
- Balance of most efficient optimization algorithms in reduced design spaces combined with sufficient robustness measurements promising
- Robustness evaluation of the final design absolutely necessary

