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Introduction
What is a Random Field NOT?

Random variation of single parameters (CAD, material, load, ...)
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Introduction
Random Field: 

• Random variation of a property (geometry, material, load, ...) over space. 
• Spatial domain defined by the observed structure.
• A property takes random values at each point on the structure.

Values at different locations may be correlated.

•
•
•
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Introduction
Application of Random Fields: e.g., robustness analysis
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[Will, Bucher, Ganser, Grossenbacher: Computation and visualization of 
statistical measures on Finite Element structures for forming simulations. 
WOST 2.0, 2005 ]
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Case I: Given Random Field
Random field data are given
• from simulation of a production process (e.g. sheet metal forming)
• from measurements
and post-processed on the structure or re-imported to optiSLang

5
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Data Reduction
Modal decomposition of covariance matrix:

Transformation of data into sub-space:

… where statistical evaluations are performed.

Plan: use covariance matrix of data to identify important imperfection 
shapes.
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Introduction
Theoretical Background

Application: Cylindrical Shell
Conclusions

Modelling of Imperfections by Random Fields
Robustness Evaluation

Simulation.

For simulation, independent variables are needed
Eigenvalue decomposition of covariance matrix:

ΨΨΨTCXXΨΨΨ = diag{λi}

Independent variables Yi ∼ N(0;
√

λi)
Transformation

Y = ΨΨΨTX ⇔ X = ΨΨΨY
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Expansion of random field by random amplitudes and mode shapes.
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X = Y1 +  Y2 +  Y3 + …



Data reduction and smoothing via mesh coarsening
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Data Reduction
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Smoothing effect by mesh coarsening
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Data Reduction
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Original data Coarse mesh

Result
(original mesh)

Coarsening,
data extraction

Subspace
reduction,
statistics

back-transformation



Random imperfection measured at discrete points:
grid of data is coarser than structure model.
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Case II: Measured Random Data
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Data are mapped onto the entire structure by suitable interpolation
(Shepard Interpolation, Moving Least Squares, Kriging, …).
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Case III: Simulation of a Random Field
Stochastic properties given either by measured or computed data,
or assumed.

Random field is modelled by mean vector and covariance matrix
and simulated by series expansion: random amplitudes times mode shapes.
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Shrinkage Estimator of Covariance Matrix
The covariance matrix has to be estimated from given data 
• maintaining positive definiteness
• obtaining high confidence. 
One way to get this is the Shrinkage estimator:
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Grauber, Schmidt & Proske: Proceedings of the 6th International Probabilistic Workshop, Darmstadt 2008

where the vector X−l is of a dimension one less than X with the variable Xl left out. This
yields a relative influence (importance) of the lth input variable on the variance of the re-
sponse.

It is proposed to use the CoI as criterion for the choice of random variables. It will be shown
in section 7, that it leads to another set of considered variables which is more suitable for the
subsequent reliability analysis. As opposed to the the input oriented criterion based on the
variability fraction, eq. (9), the input variables are now weighted by their influence on the
structural performance. Thus the choice of variables based on the CoI yields a good repre-
sentation of the variability of the structural response, which is actually the desired criterion.

4 Estimation of Covariances

Positive semi-definiteness is a necessary condition of a matrix for being a covariance matrix.
For modelling an artificial random field, a correlation function, cf. eq. (2), is assumed. Most
common are the linear and exponential functions. These are purely positive, which is not al-
ways realistic, since negative correlations between different locations on a structure may ex-
ist. More sophisticated correlation functions have in common the positive semi-definiteness
for the infinite domain. However, with the domain limited by the structures borders and par-
ticular in three-dimensional space, a covariance matrix defined with help of these functions
is most often not positive definite.

In the other typical case of application, when a random field is derived from measurements,
the problem occurs that the amount of data is far too low for an accurate estimation of the co-
variance matrix regarding the high number of parameters. The commonly used least squares
estimator, also called empirical estimator, may yield an estimate of the covariance matrix
which is not positive definite. The so-called shrinkage estimator, which can cope with low
number of data and enforces a positive definite matrix, is introduced in this section.

The task at hand is to estimate a large set of parameters (all members cij of the covariance
matrix). In the empirical approach, each parameter is estimated independently from the
others. Also the error terms are regarded as independent, yet identically distributed. The
shrinkage approach simultaneously estimates all parameters. It cannot improve each single
estimate, but improves the total error expressed as the Frobenius norm of the difference
between the original covariance matrix and its estimate.

Let C̄ be the well-known least squares estimator, which has large error for a sample size too
low, and Γ a distorted estimator, which is easier to obtain. The shrinkage estimator is a linear
convex combination of both, as

C̃ = λC̄ + (1− λ)Γ , λ ∈ [0; 1] (13)

λ has to be chosen such, that the distance between the estimate and the original covariance
matrix by means of the Frobenius norm becomes minimal. There exist several choices for
the distorted estimator Γ. For example, if Γ is a diagonal matrix with constant or empirical
variance, the estimate C̃ will always be positive definite.

In the procedure adapted from [20, 24], two shrinkage estimators, separately for the variance
vector and the correlation matrix, are applied, the covariance matrix is then assembled from
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l(λ) = ‖C̃−C‖2 → min

         N=10    N=50       N=500   true covariance



Harmonic analysis of an oil pan with geometric imperfections 
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Example 2
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Model dimensions: 300x450x56 mm, thickness 1.5mm,
~76000 nodes, 10-node tetraeder elements,
harmonic analysis in ANSYS.



Random geometric deviations 
at nodes selected by mesh coarsening.

Mapping of random field realisations 
by Shepard 3D-interpolation.

Performance criterion for lowest 
eigenfrequency

After a pilot simulation by LHS, 
7 relevant mode shapes were selected
which influence most the lowest 
frequency.

Then, reliability is computed by ARSM
using just 94 structural evaluations.

Random field modelling in          ,
Simulation, statistical evaluation in 
                .

Bayer, Roos: Efficient Modelling and Simulation of Random Fields

as stresses or strains. It is not sufficient to treat the coordinate deviations in the x, y and
z-directions independently. This causes spurious artefacts, particular near corners or high
curvatures. Instead, the interpolated deviation vectors [∆x, ∆y, ∆z]T are normalized, and
the vector length ‖∆x2 + ∆y2 + ∆z2‖ is introduced as additional variable for interpolation
which couples the three components.

7 Example

For the demonstration of the random field modelling and data reduction techniques, a sample
oil pan is studied. This is a typical part from sheet metal forming, which is prone to geomet-
rical tolerances. The dimensions of the oil pan are 300×450×56 mm with a sheet thickness
of 1.5 mm, the material is steel. The geometrical deviations are modelled as homogeneous
isotropic random fields, independently for the x, y and z-directions. The standard deviation
is taken as σ = 1.5 mm, the correlation function is of exponential type with a correlation
length of 100 mm.

The oil pan is subjected to excitation from an engine at 400 Hz. In order to warrant ride
comfort and avoid damage due to resonances, the lowest eigenfrequency of the system shall
be significantly higher than the excitation frequency. The acceptable probability of the lowest
eigenvalue being at or below 400 Hz is Pf = P [f0 ≤ 400 Hz] = 10−4.

The ANSYSTM model with roughly 76000 nodes and 37000 SOLID187 elements (10 node
tetraeder with quadratic shape functions) is shown in fig. 1. Each node coordinate may be
taken as random variable, but then it would be impossible to process the covariance matrix.
Thus a set of 1000 nodes is equally spread over the structure by the method explained in sect.
5. The support nodes are shown in fig. 1 as red dots.

From the selected random field supports and the assumptions above, the covariance matrix
is built. When the random field id modelled my Karhunen-Loève expansion, sect. 2.3, it is
found that taking the sum of the first 100 eigenvalues yields variability fraction Q > 0.999,
cf. eq. (9). Hence a random field model using random amplitudes with variances given by the
first 100 eigenvalues (for each direction) and the respective eigenvectors as shape functions
is put into a robustness assessment by optiSLang. For this purpose, 100 samples of the set
of random variables are generated by Latin Hypercube sampling [12, 16, 17], from which
random fields were obtained by means of eq. (8) and mapped onto the structure by Shepard
interpolation (sect. 6). For each imperfect structure, an eigenvalue analysis was performed in
ANSYSTM. optiSLang generates the random variables, controls all analysis processes and
does the statistical post-processing.

The robustness analysis yields a total Coefficient of Determination of 75% for the first eigen-
value, which indicates that the assumption of a linear dependency between the random vari-
ables and the eigenvalue is acceptable. The mean first eigenfrequency is 575 Hz, its standard
deviation 33.3 Hz.
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Example 2
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INPUT: amp_Y_7
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INPUT: amp_Y_4

     6 %
INPUT: amp_Y_12

     6 %
INPUT: amp_Y_11

     5 %
INPUT: amp_Y_5
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INPUT: amp_Z_3

     1 %
INPUT: amp_Y_8
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INPUT: amp_Y_94

     0 %
INPUT: amp_Y_93

     0 %
INPUT: amp_Y_92

Coefficient of Importance (linear)
full model: adjusted R² =    75 %
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Example 2
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Random field shapes
used for 

reliability analysis
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Conclusions

15

Data,
FE-model

Random Field
Modeling

Random Field
Postprocessing

SoS will develop from a random field analyzer
to be a random field modeler and simulator as well.
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Conclusions
Means of data reduction maintaining meaningful and interpretable results
is a major topic in future developments:
•   mesh coarsening,
•   efficient modal decomposition,
•   choice of relevant mode shapes,
•   data interpolation,
•   error measures.

For simulation, random field modelling is a key issue:
•   estimation of correlations / covariance matrix,
•   random field modelling between coarsely spread supports

Interfacing to optiSLang is planned
in order to make use of parametrisation and post-processing.

16


