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Abstract

The presented approach utilizing thePrincipal Component Analysis(PCA ) shows a
multivariate analysis method to detect correlations of input parameters onto a complete
structural Finite-Element-Model. The advantage of the approach is, that it permits to incor-
porate all nodes or elements in the analysis of an output parameter like total displacement
or plastic strain. This avoids to miss important input parameters or to overestimate unim-
portant input parameters, because all information of the model is used and no previous
knowledge like choice of a certain node for displacement is necessary. After a theoretical
development of the approach and an historical application of the method, the feasibility of
the presented approach for crash applications is examined on a comprehensible U-structure.
It shows that the Principal Component Analysis reduces the amount of data to a manageable
size and therefore offers the user a perfect alternative for further insights into the model.
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1 Introduction

In many engineering applications nonlinear Finite ElementAnalysis is used to calculate the
time-dependent behaviour of dynamically loaded structures. The employed models often have
dozens of input parameters to describe the physical properties of the investigated structure.
Whereas some of these parameters do not show significant influence on the output of the model,
others have great impact on the results. It is essentially toidentify the most important input pa-
rameters. This procedure is often referred to as sensitivity analysis.
Usually in sensitivity analyses scalar input parameters are compared with scalar output param-
eters of the structural model. As output parameters often the deflection of a single node or the
plastic strain of a single finite element are analysed. For simple structures and load cases the
choice of the most significant node to observe i.e. for deflection is quite simple. The situation
is more difficult for complex structures combined with complex loading conditions: In this case
it is hard to completely guarantee that the chosen node is really significant.
An alternative would be to observe all nodes and to detect thecorrelations between the input
parameters and the nodal deflections. However, this is no more feasible for large models. A
solution can be found in the application of a data reduction technique such as the Principal
Component Analysis (PCA),Marinell (1995). This method reduces the variation of the out-
put values to a low number of few important correlation rates, which explain a major part of
variation of the model output (i.e. more than 95% or more than99%). In this way, the global
behaviour of the structure can be described with a marginal number of parameters. For each
input parameter a correlation rate for the reduced number ofoutput parameters can be formed.
Whereas the first section of this text gives a short introduction and explains the motivation
for the presented approach, the second section originally explains the method mathematically,
continues with a simple example and ends with the proposed algorithm implementing a soft-
ware tool for the automatic PCA of time-dependent output datafrom a nonlinear FEM solver.
The third section shows some applications and their results. Conclusions are drawn in the last
section.

2 Main Part

2.1 Numerical background of PCA

The PCA starts with base data described by an × p matrix X,

X = (xij)1≤i≤n, 1≤j≤p
(1)

wheren is the number of samples andp the number of different measured features. So each line
of the matrix stands for one sample with its measured properties and each row of the matrix gives
the different measured values for one feature. In a more mathematical sense this matrix gives a
discrete set ofn data items in ap-dimensional space. Thus utilizing the Principal Component
Analysis the data items are projected in aq-dimensional subspaceRq (q < p) therefore the
information loss becomes preferably low.
Technically the approach of the PCA is a principal axis transformation, which minimizes the
correlation of (Gaussian-)multivariate variables by the conversion to a vector space with a new
basis. The principal axis transformation can be specified byan orthogonal matrix, which is
established by eigenvectors of the covariance matrix (respectively correlation matrix) of the
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samples and each feature. For this reason the PCA is always problem-related, in the sense that
already a single different sample or an additional sample will produce more or less different
results for PCA.
Before performing the principal axis transformation initially the correlations of the different
features have to be calculated using theempirical Coefficient of Correlationaccording to Eq.
(2)

r = rXY =

∑n

i=1
(xi − x) (yi − y)

√

∑n

i=1
(xi − x)2

∑n

i=1
(yi − y)2

(2)

This equation often also is referred to asBravais-Pearson Coefficient of Correlation. The
numerator of the equation describes the empirical covariance and the denominator stands for
standardization. Furtherx andy express the arithmetical means ofx andy respectively.
The Coefficient of Correlation gives information about the qualitative relationship of two pa-
rameters. Unlike to a full regression analysis it establishes for instance no quantitative rela-
tionship of the formf(x) = y = ax + b. For the empirical Coefficient of Correlation holds
rxy ∈ [−1, 1]. Thus a straight line with positive gradient results inrxy = 1, whereas a negative
gradient will producerxy = −1. For non-optimal relations of two parameters the Correlation
Coefficient is somewhere betweenrxy ∈ ]−1, 1[. The restriction of this kind of measuring the
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Figure 1: different correlations of two features

relationship of two parameters is the lack of the Coefficient of Correlation to detect only links
of linear kind. Additionally certain special linear relationships of parameters are not perceived,
Fahrmeir et al.(2002).
The Coefficient of Correlation is composed for all combinations of featuresp of matrix X ac-
cording to Eq. (1). This yields a correlation matrixK of dimensiondim(K) = p × p, which
contains the normalized relations of all items.
For detecting the fundamental characteristics of the correlation matrixK a special eigenvalue
problem, according to Eq. (3) is solved.

(K − λE)x = 0 (3)

Each resulting eigenvector forms a linear combination withits components. The larger an eigen-
value the more variance of the model is explained by the associated eigenvector. Thus starting
with the highest eigenvalue, the respective eigenvector explains the maximum possible amount
of the variance of the matrix values. With the second largesteigenvalue respectively its linear
combination, the maximum possible amount of the datas remaining variance is explained. The
same holds for all subsequent eigenvalues and eigenvectors. All linear combinations together
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explain the complete variance of the matrix data.
The rate of overall varianceσ2, which comprises a linear combination of an eigenvectori is
described by Eq.4.

σ2

i =
λi

∑p

j=1
λj

(4)

For the overall variance, which is declared by eigenvalues[λr, λs] and its associated eigenvec-
tors, holds Eq.5.

s
∑

i=r

σ2

i =

∑s

i=r λi
∑p

j=1
λj

(5)

To achieve data reduction, a restriction to the most important respectively highest eigenvalues
and its linear combinations is necessary. Important is a reasonable rate of data reduction, to
explain a suitable amount of variation. Consequently the number of eigenvectors to incorporate
has to be determined. The chosen, most important eigenvectors are denoted asPrincipal Com-
ponents(PC ).
For the identification of the number of Principal Components there exist numerous approaches.
The most prevalent one is the Eigenvalue Criterion,Marinell (1995) according to Eq.6, which
is also referred to as Kaiser-(Guttmann)-Criterion,Guttman(1954).

PC = {λ1, λ2, ..., λk} ∀ λi > R with R = 1 (6)

A modification of this is the Joliffe-Criterion, which setsR = 0.7. Background of Eq.6 is to
retain only linear combinations, which explain more variance than the original variables. This
holds only for eigenvaluesλi with λi > 1. Alternatively a kind of coefficient of determina-
tion according to Eq.5 can be utilized to explain a defined rate of total variance, i.e. 99%,
Abonyi and Feil(2007). Also the number of eigenvalues can be fixed, or the maximum number
of Principal Components is capped by the numbern of the samples. This corresponds with
information theory and its applications in image processing. Furthermore the so-calledElbow-
Criterion , often referred to as Scree-Plot, can be applied. Best is to combine several criteria.
Typically, before application of PCA a statistical test is necessary to ascertain, if a data re-
duction of the assessed correlation matrix is reasonable and even possible, seeBackhaus et al.
(2005), Marinell (1995). For meaningful applications in the area of uncertain model parameters
in Finite-Element-Structural-Analysis this seems to be needless.
After realization of PCA the new variables for each sample arecalculated from the linear com-
binations of the old, original variables. Again utilizing Eq. 2 the correlations of the considered
variables are estimated. Hence the number of necessary correlations to examine reduces to
|Corr| = |PC| · n.

2.2 Out of ordinary topic, but original applications

Like many statistical methods the Principal Component Analysis was originally used primarily
in the field of sociology and psychology until powerful and fast computer technology emerged.
A very similar approach is the Factor Analysis,Backhaus et al.(2005). With this method the
psychologist Charles Spearman showed in 1904 that the results of intelligence tests with dif-
ferent variables can be expressed by a single one-dimensional character item of a person. This
established the general factor of intelligence.
The principal procedure of the PCA can be described pretty easily by means of an example of
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sociology/market research, a modified version of the example is stated inMarinell (1995).
172 Children were examined regarding 8 emotional behavioural patterns (xi ∀ i ∈ [1, ..., 8]).
With Eq. 2 the correlation matrix in tab.1 yields.

X1 X2 X3 X4 X5 X6 X7 X8
X1 1.0 0.59 0.35 0.34 0.63 0.4 0.28 0.20
X2 1.0 0.42 0.51 0.49 0.52 0.31 0.36
X3 1.0 0.38 0.19 0.36 0.73 0.24
X4 1.0 0.29 0.46 0.27 0.39
X5 1.0 0.34 0.17 0.23
X6 1.0 0.32 0.33
X7 1.0 0.24
x8 1.0

Table 1: Correlation matrix with 8 emotional behavioural patterns

From this data eight eigenvalues result:

λ1 = 3.625 λ2 = 1.241 λ3 = 0.953 λ4 = 0.655
λ5 = 0.536 λ6 = 0.418 λ7 = 0.325 λ8 = 0.245

Utilizing the Eigenvalue Criterion according to Eq.6 produces 2 Principal Components. The
corresponding eigenvectors show the following linear combinations:

eT
1

= 0.379x1 + 0.422x2 + 0.358x3 + 0.358x4 + 0.328x5 + 0.369x6 + 0.318x7 + 0.277x8 (7)

eT
2

= −0.331x1−0.189x2 +0.529x3−0.007x4−0.477x5−0.048x6 +0.587x7 +0.022x8 (8)

With Eq. 5 the first two Principal Components explain (3.625 + 1.241)/8 accordingly to 60.82 %
of the total variance. Often a low number of Principal Components explains much higher rates
of the total variance. Thus 5 - 10 Principal Components define up to 90% of total variance of
models described originally by hundreds of parameters.

2.3 Implementation

A software implementation of PCA for automatized analysis ofresult data of an explicit FEM
solver like PAMCRASH 2G,ESI GROUP(2006) offers additional potentials. Thus the corre-
lations of Principal Components at variable times of the simulated period can be checked. Also
possible is a visualisation of the Principal Components in proportions of incorporated nodes or
elements for items like displacement or plastic strain. Another interesting option in this context
is the analysis of different structural subassemblies as well as an outlier detection for the sam-
ples, which correspond to the different solver runs. The course of the software implementation
is as follows:

1. Definition of analysis items (i.e. node displacements)
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2. Definition of output point in time to analyse the node respectively element output param-
eters

3. Definition of nodes respectively elements to analyse through individual selection or choice
of complete subassemblies

4. Choice of further analysis sets (i.e. element strains at a different output time) back to 1.)
, else continue

5. Determination of correlation matrix

6. Calculation of eigenvalues and eigenvectors of correlation matrix

7. Estimation of number of Principal Components

8. For more than one analysis set, repeat 5.) - 8.) for relevant times

9. Calculation of new variables with the help of linear combinations

10. Estimation of new correlations by Eq.2 between all input parameters and all new Princi-
pal Components

11. Output of correlation matrix

12. Visual evaluation by user, meaning: scatter plots, visual presentation of linear combina-
tions

13. Outlier detection by cluster analysis or adjustment with reference sample

3 Application

3.1 Academic U-structure

The feasibility of the presented approach was evaluated with a comprehensible, academic ex-
ample: A U-structure modeled with shell elements (Fig.2) . The pillars of the structure are
fixed at the floor in all degrees of freedom and a mass is fallingonto the crossbar with a given
velocity. The shape of the falling mass consists of four rigid shell elements. All elements con-
tribute to a total sum of nodes of 134.
The evaluation was performed for 24 input parameters and thevariations of these parameters.
For this, 30 calls of the FEM Solver PAMCRASH 2G were conducted with varying input pa-
rameters predetermined by an algorithm for Latin HypercubeSampling. Hence the distribution
of input parameters for this 30 solver runs was nearly uncorrelated by Eq.2, Will (2007b, a).
Additionally a solver run with nominal parameters was conducted.

The analysis was performed for the node parameters total displacement (length of summed
vector of x,y,z-deflection) and displacement in y direction. Utilizing Eq. 6 for choice of num-
ber of Principal Components, each eigenvalueλi with λi > 1 and its associated eigenvector
contributes for evaluation. In complete for the chosen example and the investigated param-
eters result 4 Principal Components for total displacement and 7 Principal Components for
y-displacement. These linear combinations declared 98.5%respectively 98.8% of the total
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Figure 2: Original shape Figure 3: Deflected shape
∑s

i=1
σ2

i 98.5 98.8
λ1 53.631 50.242
λ2 36.205 33.579
λ3 4.8791 6.0063
λ4 3.8259 3.5128
λ5 - 2.4038
λ6 - 1.7545
λ7 - 1.3721

Table 2: Defined total variance

variance of original model output values. As Table2 shows, the largest share of total variance
of both output items is actually already explained by the first two principal components.

A graphical depiction of the correlation of the 24 input parameters (x-axis) and the Prin-
cipal Components (y-axis) shows the correlation matrix in Fig. 4. Though the last four lines
correspond to the correlations of the input parameters and the Principal Components of the total
node displacements, whereas the first seven lines show correlations of the input parameters and
the Principal Components of y-axis node displacements. Accordingly to the definition of the
Coefficient of Correlation, the values of the correlation matrix range in the interval of[−1, 1].
More blackened fields in Fig.4 show high either negative or positive correlations betweenan
input parameter and a Principal Component as output parameter.
Evaluating the matrix it is always important to have a look onto the participation of the particu-
lar Principal Component, which is described through its contribution to the declaration of total
variance according to Eq.4.

Thus in the example the sixth Principal Component of y-displacement has only share of
1.75% for the degree of declaration of total variance, however the correlation of the 24th input
parameter shows a particular strong correlation with this Principal Component. Due to the low
value for the degree of declaration the information about importance of the 24th input value on
the whole model should be considered critical.
However the input values 1, 2 and 18 are very important. Inputparameter 1 and 2 correspond
to the thickness of the crossbar and the pillars, whereas input parameter 18 stands for the mass
of the falling rigid 4-shell-plate. Furthermore a mid-strong correlation of the input variables 6,
11 and the already mentioned variable 24 seems to exist. Parameters 6 and 11 relate to yield
strength of the materials and parameter 24 is the initial velocity of the falling mass.

Coming from engineering knowledge, all previously stated and as important labeled vari-
ables make sense. For all other fields of the correlation matrix, differing a little from the clear
green color the following questions are recommended to be checked:
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Figure 4: correlation matrix: 24 input parameters vs. 13 PrincipalComponents

• What is the contribution of the particular Principal Component to the degree of declaration
formed by Eq.4 ?

• Which are the nodes contributing particularly strong to the respective Principal Compo-
nent (= have large coefficients in the particular linear combination) and where are these
nodes located ?

• Check the scatter plot of the respective Principal Component and the respective input
variable, if any abnormalities (outlier, nonlinear relations) are to detect, so that this could
have distorted the value for the Coefficient of Correlation according to Eq.2.

• Check the variation range of the input parameters ? Is the variation too broad or too
narrow ?

A comparison to the simple observation of a single node deflection is given in Figs.5 and
6. The observed single item is one of the nodes at the exact middle of the horizontal bar in the
structure depicted in Fig. (2). Whereas the left illustration shows a clear relation between an
increase of the thickness of the horizontal beam, no significant relation between an increase of
Poissons ratio of the beam and the deflection of the observed node is to detect.
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Figure 5: rXY ≈ −0.63
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Figure 6: rXY ≈ −0.03

The determination of the most significant node for deflectionobservation of this compre-
hensive example is quite clear. The results for important correlations between the deflection of
this node and an exemplary input parameter coincide with theresults derived for the application
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of the data reduction technique of Principal Component Analysis. For each other important
input parameter determined by application of PCA the resultsare easy to follow by engineering
knowledge.

input parameter attribution minimum nominal maximum
1 shell thickness pillars 4.5409 5.0455 5.55
2 shell thickness horizontal beam 4.8682 5.4091 5.95
3 shell thickness four rigid shells 4.5 5 5.5
4 material density pillars 2.43e-006 2.7e-006 2.97e-006
5 Youngs modulus material pillars 65.045 72.273 79.5
6 yield strength material pillars 0.16528 0.18364 0.202
7 Poissons ratio material pillars 0.27 0.3 0.33
8 material damping pillars 0.18 0.2 0.22
9 material density crossbeam 2.43e-006 2.7e-006 2.97e-006
10 Youngs modulus material crossbeam 65.045 72.273 79.5
11 yield strength material crossbeam 0.18 0.2 0.22
12 Poissons ratio material crossbeam 0.27 0.3 0.33
13 material damping crossbeam 0.18 0.2 0.22
14 contact thickness 0.36 0.4 0.44
15 nonlinear contact stiffness 0 0 200
16 contact friction 0 0 0.3
17 contact damping 0.09 0.1 0.11
18 mass of four rigid shells 0.98181 1.0909 1.2
19 1st deviatoric moment of rigid shells 0.9 1 1.1
20 2nd deviatoric moment of rigid shells 0.9 1 1.1
21 3rd deviatoric moment of rigid shells 0.9 1 1.1
22 initial velocity of rigid shells, 1st direction -0.1 0 0.1
23 initial velocity of rigid shells, 2nd direction -0.1 0 0.1
24 initial velocity of rigid shells, 3rd direction -10.473 -11.636 -12.8

Table 3: Varied input parameters

4 Conclusions

The presented approach utilizing thePrincipal Component Analysis(PCA) shows a multivari-
ate analysis method to detect correlations of input parameters onto a complete structural Finite-
Element-Model. The advantage of the approach is, that it permits to incorporate all nodes or
elements in the analysis of an output parameter like total displacement or plastic strain. This
avoids to miss important input parameters or to overestimate unimportant input parameters, be-
cause all information of the model is used and no previous knowledge like choice of a certain
node for displacement is necessary. The Principal ComponentAnalysis reduces the amount of
data to a manageable size and therefore offers the user a perfect alternative for further insights
into the model.

The authors wish to express their appreciation and thanks toESI GmbH in Eschborn, Germany for software and support.
Finite Element simulation has been executed using PAM-CRASH 2G 2007. Result analysis and pre-, postprocessing was
supported using the graphical simulation environment Visual-Environment v4.5.
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