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Abstract

The presented approach utilizing tReincipal Component Analysi?CA ) shows a
multivariate analysis method to detect correlations of input parameters onto a complete
structural Finite-Element-Model. The advantage of the approach is, that it permits to incor-
porate all nodes or elements in the analysis of an output parameter like total displacement
or plastic strain. This avoids to miss important input parameters or to overestimate unim-
portant input parameters, because all information of the model is used and no previous
knowledge like choice of a certain node for displacement is necessary. After a theoretical
development of the approach and an historical application of the method, the feasibility of
the presented approach for crash applications is examined on a comprehensible U-structure.
It shows that the Principal Component Analysis reduces the amount of data to a manageable
size and therefore offers the user a perfect alternative for further insights into the model.
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1 Introduction

In many engineering applications nonlinear Finite Elem@&@nalysis is used to calculate the
time-dependent behaviour of dynamically loaded strustuige employed models often have
dozens of input parameters to describe the physical piepest the investigated structure.
Whereas some of these parameters do not show significantioéws the output of the model,
others have great impact on the results. It is essentialtyetatify the most important input pa-
rameters. This procedure is often referred to as sengitvialysis.

Usually in sensitivity analyses scalar input parametegscampared with scalar output param-
eters of the structural model. As output parameters ofterdéilection of a single node or the
plastic strain of a single finite element are analysed. Fapk structures and load cases the
choice of the most significant node to observe i.e. for defieds quite simple. The situation
is more difficult for complex structures combined with comploading conditions: In this case
it is hard to completely guarantee that the chosen node lig segnificant.

An alternative would be to observe all nodes and to detectdheslations between the input
parameters and the nodal deflections. However, this is ne feasible for large models. A
solution can be found in the application of a data reductexrhnique such as the Principal
Component Analysis (PCA)ylarinell (19959. This method reduces the variation of the out-
put values to a low number of few important correlation ratsich explain a major part of
variation of the model output (i.e. more than 95% or more ®@%). In this way, the global
behaviour of the structure can be described with a marginadber of parameters. For each
input parameter a correlation rate for the reduced numbeutpiut parameters can be formed.
Whereas the first section of this text gives a short introdacéind explains the motivation
for the presented approach, the second section origingtilams the method mathematically,
continues with a simple example and ends with the proposgatitim implementing a soft-
ware tool for the automatic PCA of time-dependent output fdata a nonlinear FEM solver.
The third section shows some applications and their resGiisiclusions are drawn in the last
section.

2 Main Part

2.1 Numerical background of PCA
The PCA starts with base data described by & p matrix X,

X = (37ij)1gi§n, 1<j<p (1)
wheren is the number of samples apdhe number of different measured features. So each line
of the matrix stands for one sample with its measured prigseand each row of the matrix gives
the different measured values for one feature. In a moreenadkical sense this matrix gives a
discrete set ofi data items in @-dimensional space. Thus utilizing the Principal Component
Analysis the data items are projected ig-dimensional subspack, (¢ < p) therefore the
information loss becomes preferably low.

Technically the approach of the PCA is a principal axis tramsftion, which minimizes the
correlation of (Gaussian-)multivariate variables by tbawersion to a vector space with a new
basis. The principal axis transformation can be specifie@arbprthogonal matrix, which is
established by eigenvectors of the covariance matrix @&sgly correlation matrix) of the
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samples and each feature. For this reason the PCA is alwaylepraelated, in the sense that
already a single different sample or an additional samplepsoduce more or less different
results for PCA.

Before performing the principal axis transformation irllyighe correlations of the different

features have to be calculated using #mepirical Coefficient of Correlatioaccording to Eq.

2)
Z?:l (z; =) (y; — Y)
VI -1 Y (- 9)°

This equation often also is referred to Bevais-Pearson Coefficient of Correlation The
numerator of the equation describes the empirical covegiaamd the denominator stands for
standardization. Furtharandy express the arithmetical meansiodndy respectively.

The Coefficient of Correlation gives information about thelgatve relationship of two pa-
rameters. Unlike to a full regression analysis it estalbsfor instance no quantitative rela-
tionship of the formf(z) = y = az + b. For the empirical Coefficient of Correlation holds
Ty € [—1,1]. Thus a straight line with positive gradient results-jp = 1, whereas a negative
gradient will produce,, = —1. For non-optimal relations of two parameters the Corretatio
Coefficient is somewhere betweey), € |—1, 1. The restriction of this kind of measuring the

(@)
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feature y
feature y
[

feature x feature x feature x

Tay =~ 1 Tay = -1 Tay = +0
Figure 1: different correlations of two features

relationship of two parameters is the lack of the Coefficidr€@arrelation to detect only links
of linear kind. Additionally certain special linear relatiships of parameters are not perceived,
Fahrmeir et al(2002.

The Coefficient of Correlation is composed for all combinadiofh features of matrix X ac-
cording to Eq. {). This yields a correlation matrik” of dimensiondim(K) = p x p, which
contains the normalized relations of all items.

For detecting the fundamental characteristics of the tairom matrix X' a special eigenvalue
problem, according to Eq3J is solved.

(K —\E)z =0 (3)

Each resulting eigenvector forms a linear combination wéthomponents. The larger an eigen-
value the more variance of the model is explained by the &g®alceigenvector. Thus starting
with the highest eigenvalue, the respective eigenvectoliags the maximum possible amount
of the variance of the matrix values. With the second largegnvalue respectively its linear
combination, the maximum possible amount of the datas m@ntavariance is explained. The
same holds for all subsequent eigenvalues and eigenvea&brgear combinations together
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explain the complete variance of the matrix data.
The rate of overall variance?, which comprises a linear combination of an eigenvectisr
described by E4.
s
2 7
JZ p )‘j ( )

j=1
For the overall variance, which is declared by eigenvalies\,] and its associated eigenvec-
tors, holds Eq5.

s zs: /\Z
ol = &i=r 5

;;Z =1 ©

To achieve data reduction, a restriction to the most impbmaspectively highest eigenvalues

and its linear combinations is necessary. Important is soreble rate of data reduction, to

explain a suitable amount of variation. Consequently thebmrof eigenvectors to incorporate

has to be determined. The chosen, most important eigemgeant® denoted &rincipal Com-

ponentgPC).

For the identification of the number of Principal Componehsé exist numerous approaches.

The most prevalent one is the Eigenvalue Criteridayinell (1995 according to Eq6, which

is also referred to as Kaiser-(Guttmann)-CriteriGniitman(1954).

PC={\, Ao,s M} VN>R with R =1 (6)

A modification of this is the Joliffe-Criterion, which sets = 0.7. Background of Eq6 is to
retain only linear combinations, which explain more vacathan the original variables. This
holds only for eigenvalues; with \; > 1. Alternatively a kind of coefficient of determina-
tion according to Eq.5 can be utilized to explain a defined rate of total varianae, 89%,
Abonyi and Feill(2007). Also the number of eigenvalues can be fixed, or the maximumiber
of Principal Components is capped by the numbesf the samples. This corresponds with
information theory and its applications in image procegskurthermore the so-calldtibow-
Criterion, often referred to as Scree-Plot, can be applied. Best istde several criteria.
Typically, before application of PCA a statistical test ix@egsary to ascertain, if a data re-
duction of the assessed correlation matrix is reasonalle@aen possible, seeackhaus et al.
(2009, Marinell (1999. For meaningful applications in the area of uncertain rhpdeameters
in Finite-Element-Structural-Analysis this seems to bediess.

After realization of PCA the new variables for each samplecateulated from the linear com-
binations of the old, original variables. Again utilizing|E2 the correlations of the considered
variables are estimated. Hence the number of necessamiatans to examine reduces to
|Corr| = |PC| - n.

2.2 Out of ordinary topic, but original applications

Like many statistical methods the Principal Component Asialwas originally used primarily
in the field of sociology and psychology until powerful andtfaomputer technology emerged.
A very similar approach is the Factor Analysisickhaus et al(2005. With this method the
psychologist Charles Spearman showed in 1904 that the sesulbtelligence tests with dif-
ferent variables can be expressed by a single one-dimeaisibaracter item of a person. This
established the general factor of intelligence.

The principal procedure of the PCA can be described prettijydasmeans of an example of
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sociology/market research, a modified version of the examg@dtated inviarinell (1999.
172 Children were examined regarding 8 emotional behavipatéerns ¢; Vi € [1, ...
With Eg. 2 the correlation matrix in tald yields.

X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8
X1(10|059]0.35|0.34|0.63|0.4 | 0.28| 0.20
X2 1.0 [ 0.42|0.51|0.49|0.52| 0.31| 0.36
X3 1.0 | 0.38]|0.19|0.36| 0.73| 0.24
X4 1.0 [ 0.29|0.46]| 0.27| 0.39
X5 1.0 | 0.34| 0.17| 0.23
X6 1.0 | 0.32| 0.33
X7 1.0 | 0.24
x8 1.0

) 8])'

Table 1: Correlation matrix with 8 emotional behavioural patterns

From this data eight eigenvalues result:

A=
A5 =

3.625 | Ay =
0.536 | ¢ =

1241 [ N3 =
0.418 | \; =

0.953 | \y =
0.325 | A\g =

0.655
0.245

Utilizing the Eigenvalue Criterion according to E§produces 2 Principal Components. The
corresponding eigenvectors show the following linear cioiatons:

el = 0.379z; +0.422x5 + 0.358z3 + 0.35874 + 0.328z5 + 0.369x6 + 0.318z7 + 0.277z5 (7)

el = —0.3312; —0.18925 4+ 0.52925 — 0.00724 — 0.47725 — 0.0482¢ + 0.58 727 4+ 0.02225 (8)

With Eq. 5 the first two Principal Components explain (3.625 + 1.2413adingly to 60.82 %
of the total variance. Often a low number of Principal Compasexplains much higher rates
of the total variance. Thus 5 - 10 Principal Components defm®1©0% of total variance of
models described originally by hundreds of parameters.

2.3

A software implementation of PCA for automatized analysisesult data of an explicit FEM
solver like PAMCRASH 2GESI GROUP(2006 offers additional potentials. Thus the corre-
lations of Principal Components at variable times of the $atead period can be checked. Also
possible is a visualisation of the Principal Components apprtions of incorporated nodes or
elements for items like displacement or plastic strain. theointeresting option in this context
is the analysis of different structural subassemblies dsasean outlier detection for the sam-
ples, which correspond to the different solver runs. Thes®of the software implementation
is as follows:

| mplementation

1. Definition of analysis items (i.e. node displacements)
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2. Definition of output point in time to analyse the node respely element output param-
eters

3. Definition of nodes respectively elements to analyseuinandividual selection or choice
of complete subassemblies

4. Choice of further analysis sets (i.e. element strains #fexeht output time) back to 1.)
, else continue

Determination of correlation matrix
Calculation of eigenvalues and eigenvectors of coraiatatrix
Estimation of number of Principal Components

For more than one analysis set, repeat 5.) - 8.) for retdirans

© © N o O

Calculation of new variables with the help of linear conaltions

10. Estimation of new correlations by Egbetween all input parameters and all new Princi-
pal Components

11. Output of correlation matrix

12. Visual evaluation by user, meaning: scatter plots,alipuesentation of linear combina-
tions

13. Outlier detection by cluster analysis or adjustmenihneference sample

3 Application

3.1 Academic U-structure

The feasibility of the presented approach was evaluated avdomprehensible, academic ex-
ample: A U-structure modeled with shell elements (F&y.. The pillars of the structure are
fixed at the floor in all degrees of freedom and a mass is fatlimg the crossbar with a given
velocity. The shape of the falling mass consists of fourdrghell elements. All elements con-
tribute to a total sum of nodes of 134.

The evaluation was performed for 24 input parameters angahations of these parameters.
For this, 30 calls of the FEM Solver PAMCRASH 2G were conductéith warying input pa-
rameters predetermined by an algorithm for Latin Hypercs@epling. Hence the distribution
of input parameters for this 30 solver runs was nearly ustated by Eq.2, Will (20074 a).
Additionally a solver run with nominal parameters was cartdd.

The analysis was performed for the node parameters tofabdesment (length of summed
vector of x,y,z-deflection) and displacement in y directithilizing Eq. 6 for choice of num-
ber of Principal Components, each eigenvalyavith \; > 1 and its associated eigenvector
contributes for evaluation. In complete for the chosen ganand the investigated param-
eters result 4 Principal Components for total displacemadt & Principal Components for
y-displacement. These linear combinations declared 98é$pectively 98.8% of the total
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Figure 2: Original shape Figure 3: Deflected shape

S, 02]985 [988

A 53.631| 50.242
Ao 36.205| 33.579
s 4.8791| 6.0063
N 3.8259| 3.5128
s : 2.4038
Y : 1.7545
A . 13721

Table 2: Defined total variance

variance of original model output values. As TaBlshows, the largest share of total variance
of both output items is actually already explained by the fiw® principal components.

A graphical depiction of the correlation of the 24 input paeders (x-axis) and the Prin-
cipal Components (y-axis) shows the correlation matrix ig. Fi. Though the last four lines
correspond to the correlations of the input parameterstanBtincipal Components of the total
node displacements, whereas the first seven lines showatans of the input parameters and
the Principal Components of y-axis node displacements. waegly to the definition of the
Coefficient of Correlation, the values of the correlation iatange in the interval of—1, 1].
More blackened fields in Figd show high either negative or positive correlations betwaen
input parameter and a Principal Component as output paramete
Evaluating the matrix it is always important to have a lookodthe participation of the particu-
lar Principal Component, which is described through its Gbation to the declaration of total
variance according to Ed.

Thus in the example the sixth Principal Component of y-disgtaent has only share of
1.75% for the degree of declaration of total variance, h@wéve correlation of the 24th input
parameter shows a particular strong correlation with thisdipal Component. Due to the low
value for the degree of declaration the information aboyttartance of the 24th input value on
the whole model should be considered critical.

However the input values 1, 2 and 18 are very important. Ipauameter 1 and 2 correspond
to the thickness of the crossbar and the pillars, whereag pgrameter 18 stands for the mass
of the falling rigid 4-shell-plate. Furthermore a mid-stgocorrelation of the input variables 6,
11 and the already mentioned variable 24 seems to existmieééges 6 and 11 relate to yield
strength of the materials and parameter 24 is the initiadarg} of the falling mass.

Coming from engineering knowledge, all previously stated as important labeled vari-
ables make sense. For all other fields of the correlationixpaliffering a little from the clear
green color the following questions are recommended to bekad:
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5 10 15 20

Figure 4: correlation matrix: 24 input parameters vs. 13 Princ(pamponents

e Whatis the contribution of the particular Principal Compdrterthe degree of declaration
formed by Eq4 ?

e Which are the nodes contributing particularly strong to gmgpective Principal Compo-
nent (= have large coefficients in the particular linear coration) and where are these
nodes located ?

e Check the scatter plot of the respective Principal Componedttie respective input
variable, if any abnormalities (outlier, nonlinear reteus) are to detect, so that this could
have distorted the value for the Coefficient of Correlatioroading to Eq.2.

e Check the variation range of the input parameters ? Is thati@mi too broad or too
narrow ?

A comparison to the simple observation of a single node dé&flecs given in Figs.5 and
6. The observed single item is one of the nodes at the exactenididhe horizontal bar in the
structure depicted in Fig.2]. Whereas the left illustration shows a clear relation betwan
increase of the thickness of the horizontal beam, no sigmficelation between an increase of
Poissons ratio of the beam and the deflection of the obseeelis to detect.

5 52 5.4 56 5.8 6 6.2 0.27 0.28 0.29 0.3 031 0.32 0.33
PART_2_h matl02_id1_NUE

Figure5: rxy ~ —0.63 Figure6: rxy ~ —0.03

The determination of the most significant node for deflectbeervation of this compre-
hensive example is quite clear. The results for importanetations between the deflection of
this node and an exemplary input parameter coincide withebgts derived for the application
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of the data reduction technique of Principal Component Agialy For each other important
input parameter determined by application of PCA the resui®asy to follow by engineering
knowledge.

input parameter attribution minimum | nominal | maximum
1 shell thickness pillars 4.5409 5.0455 | 5.55

2 shell thickness horizontal beam 4.8682 5.4091 | 5.95

3 shell thickness four rigid shells 4.5 5 55

4 material density pillars 2.43e-006| 2.7e-006| 2.97e-006
5 Youngs modulus material pillars 65.045 72.273 | 79.5

6 yield strength material pillars 0.16528 | 0.18364 | 0.202

7 Poissons ratio material pillars 0.27 0.3 0.33

8 material damping pillars 0.18 0.2 0.22

9 material density crossbeam 2.43e-006| 2.7e-006| 2.97e-006
10 Youngs modulus material crossbeam 65.045 72.273 | 79.5

11 yield strength material crossbeam 0.18 0.2 0.22

12 Poissons ratio material crossbeam 0.27 0.3 0.33

13 material damping crossbeam 0.18 0.2 0.22

14 contact thickness 0.36 0.4 0.44

15 nonlinear contact stiffness 0 0 200

16 contact friction 0 0 0.3

17 contact damping 0.09 0.1 0.11

18 mass of four rigid shells 0.98181 | 1.0909 | 1.2

19 1st deviatoric moment of rigid shells 0.9 1 1.1

20 2nd deviatoric moment of rigid shells 0.9 1 1.1

21 3rd deviatoric moment of rigid shells 0.9 1 1.1

22 initial velocity of rigid shells, 1st direction| -0.1 0 0.1

23 initial velocity of rigid shells, 2nd direction -0.1 0 0.1

24 initial velocity of rigid shells, 3rd direction| -10.473 -11.636 | -12.8

Table 3: Varied input parameters

4 Conclusions

The presented approach utilizing tRancipal Component Analysi®CA) shows a multivari-
ate analysis method to detect correlations of input pararsento a complete structural Finite-
Element-Model. The advantage of the approach is, that imjerto incorporate all nodes or
elements in the analysis of an output parameter like tosgldcement or plastic strain. This
avoids to miss important input parameters or to overesémaimportant input parameters, be-
cause all information of the model is used and no previousvieaige like choice of a certain
node for displacement is necessary. The Principal CompaXeady/sis reduces the amount of
data to a manageable size and therefore offers the userexpalternative for further insights
into the model.

The authors wish to express their appreciation and thankSt&smbH in Eschborn, Germany for software and support.
Finite Element simulation has been executed using PAM-CRASR@07. Result analysis and pre-, postprocessing was
supported using the graphical simulation environment Viéirlironment v4.5.

Weimar Optimization and Stochastic Da@sO — November 20-21, 2008

9



References

J. Abonyi and B. FeilCluster Analysis for Data Mining and System IdentificatiBirkhaeuser
Basel, 1 edition, 8 2007. ISBN 9783764379872.

K. Backhaus, B. Erichson, W. Plinke, and R. Weib&dultivariate Analysemethoden: Eine
anwendungsorientierte Einfuehrung (Springer-Lehrbu@pringer, 11., berarb. aufl. edition,
10 2005. ISBN 9783540278702.

ESI GROUP. PAM-CRASH(TM) PAM-SAFE(TM), 2006, Solver Reference Manuabl
GROUP, 2006.

L. Fahrmeir, R. Kuenstler, I. Pigeot, and G. Tustatistik. Der Weg zur Datenanalysspringer,
Berlin, 9 2002. ISBN 9783540440000.

L. Guttman. Some necessary conditions for common-factalyais. Psychometrikal9(2):
149-161, 1954.

G. Marinell. Multivariate Verfahren Oldenbourg Verlag Muenchen, Wien, 1995. ISBN
3486233025.

J. Will. optiSLang - the optimizing Structural Language,al. www.dynardo.dg2007a.

J. Will. Introduction of robustness evaluation in CAE-bas@tlal prototyping processes of
automotive application&£UROMECH Colloquium, Londgr2007b.

Weimar Optimization and Stochastic Da@sO — November 20-21, 2008

10



	Introduction
	Main Part
	Numerical background of PCA
	Out of ordinary topic, but original applications
	Implementation

	Application
	Academic U-structure

	Conclusions

