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Abstract

In real case applications within the virtual prototyping process, it is not always possible
to reduce the complexity of the physical models and to obtain numerical models which can
be solved quickly. Usually, every single numerical simulation takes hours or even days.
Although the progresses in numerical methods and high performance computing, in such
cases, it is not possible to explore various model configurations, hence efficient surrogate
models are required.

Generally the available meta-model techniques show several advantages and disadvan-
tages depending on the investigated problem. In this paper we present an automatic ap-
proach for the selection of the optimal suitable meta-model for the actual problem. To-
gether with an automatic reduction of the variable space using advanced filter techniques
an efficient approximation is enabled also for high dimensional problems.
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Figure 1: Original model response function
z(x, y).

Figure 2: Polynomial least square approx-
imation of a given set of support points.
Quadratic approximation function ẑ(x, y) us-
ing quadratic regression.

1 Introduction
Meta-modeling is one of the most popular strategy for design exploration within nonlinear
optimization and stochastic analysis (see e.g. Booker et al. (1999); Giunta and Watson (1998);
Simpson et al. (2003)). Moreover, the engineer has to calculate the general trend of physical
phenomena or would like to re-use design experience on different projects. Due to the inherent
complexity of many engineering problems it is quite alluring to approximate the problem and
to solve other design configurations in a smooth sub-domain by applying a surrogate model
(Sacks et al. (1989); Simpson et al. (2001)). Starting from a reduced number of simulations, a
surrogate model of the original physical problem can be used to perform various possible design
configurations without computing any further analyses. In one of our previous publications
(Roos et al. (2007)) we investigated several meta-model types and variable reduction techniques
by means of several examples. In this previous paper we summarized that no universal approach
exists and the optimal filter configurations can not be chosen generally. Therefor we developed
an automatic approach for this purpose based on a library of available meta-models and tools
for variable reduction. This approach serve us based on a new measure for the approximation
quality the Meta-model of Optimal Prognosis.

This paper is constructed as follows: first we present several meta-model approaches which
are used later in our investigations. Then we introduce different filter techniques for variable
reduction. Afterwards we present the framework of the meta-model selection and we finish this
paper by validating the presented methodology by means of several numerical examples.

Weimar Optimization and Stochastic Days 5.0 – November 20–21, 2008

2



2 Meta-model approaches

2.1 Polynomial least square approximation
A commonly used approximation method of model responses, objectives, constraints and state
functions

y(x) 7→ ŷ(x)

is the regression analysis. Usually, the approximation function is a first or second order poly-
nomial (Box and Draper (1987); Myers (1971); Myers and Montgomery (1995)) as shown in
Figure 2. Based on the definition of the polynomial basis

pT (x) =
[
1 x1 x2 . . . x

2
1 x

2
2 . . . x1x2 . . .

]
(1)

the approximation function reads

y(x) ≈ ŷ(x) = pT (x)β̂. (2)

The approximate coefficients β̂ can be calculated as follows: using a defined number m of
function values

y = [y1 y2 . . . ym]T (3)

which can be approximated by the polynomial as

y = PT β̂ + ε (4)

where ε and P contain the approximation errors and the base polynomials of each support point,
respectively, with

ε = [ε1 ε2 . . . εm]T (5)

and
P = [p(x1) p(x2) . . . p(xm)] (6)

together with the least square postulate

S =
m∑
k=1

ε2
k = εTε→ min (7)

we obtain the following relation depending on the coefficients β̂

S(β̂) = (y −PT β̂)T (y −PT β̂)→ min . (8)

The solution of Eq. (8) yields to the well known formulation

β̂ = (PPT )−1Py. (9)

Of course the accuracy of the approximation compared to the real problem has to be checked
and verified. For reasonably smooth problems, the accuracy of response surface approximations
improves as the number of points increases. However, this effect decreases with the degree of
oversampling. An attractive advantage of the response surface methodology is the smoothing
by approximating the subproblem. Especially for noisy problems like crash analysis, for which
the catch of global trends is more important and the local noise may not be meaningful, a
smoothing of the problem may be advantageous. However, linear and quadratic functions are
possibly weak approximations near and far from certain support points. Using polynomials
of higher than second order may only result in higher local accuracy with many sub-optima.
Because of that in the last years, different advanced surrogate models have been developed to
improve the accuracy and predictability of surrogate models.
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2.2 Moving Least Squares approximation
The Moving Least Squares (MLS) approach was introduced by Lancaster and Salkauskas (1981)
and can be understood as an extension of the polynomial regression. Similarly the basis func-
tion can contain every type of function, but generally only linear and quadratic terms are used.
This basis function can be represented exactly by obtaining the best local fit for the actual inter-
polation point. The approximation function is defined as

ŷ(x) = pT (x)a(x) (10)

with changing (“moving”) coefficients a(x) in contrast to the global coefficients of the polyno-
mial regression.

Again the number of supporting points m exceeds the number of coefficients n, which leads
to an overdetermined system of equations. This kind of optimization problem is solved by using
the least squares approach

Pŷ(x) = PPTa(x). (11)

In order to obtain a local regression model in the MLS method distance depending weighting
functions w = w(s) have been introduced, where s is the standardized distance between the
interpolation point and the considered supporting point

si =
‖x− xi‖

D
(12)

and D is the influence radius, which is defined as a numerical parameter. All types of functions
can be used as weighting function w(s) which have their maximum in s = 0 and vanish outside
of the influence domain specified by s = 1. Mostly the well known Gaussian weighting function
is used

wexp(d) = exp

(
− s

2

α2

)
(13)

where the definition of the influence radius D influences directly the approximation error. A
suitable choice of this quantity enables an efficient smoothing of noisy data. In our work the
influence radius D is chosen automatically based on an additional test data set.

The final approximation scheme reads

ŷ(x) = pT (x)A−1(x)B(x)y (14)

with
A(x) = PW(x)PT

B(x) = PW(x)

W(x) = diag(w(d1), ..., w(dm))

(15)

In Figure 3 and 4 the approximation functions for deterministic and noisy data with automati-
cally determined D are shown.

In Most and Bucher (2005) a new weighting function was presented which enables the ful-
fillment of the MLS interpolation condition with high accuracy.

wR(si) =
w̃R(si)∑m
j=1 w̃R(sj)

(16)
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Figure 3: MLS approximation of determinis-
tic data (exponential weighting)

Figure 4: MLS approximation of noisy data
(exponential weighting)

Figure 5: MLS interpolation of deterministic
data (regularized weighting)

Figure 6: MLS interpolation of noisy data
(regularized weighting)

Weimar Optimization and Stochastic Days 5.0 – November 20–21, 2008

5



with
w̃R(s) = (s2 + ε)−2; ε� 1 (17)

The regularization parameter ε has to be chosen small enough to fulfill the support point values
with a certain accuracy. This approach is very suitable for problems where an interpolating
meta-model is required. For problems of noisy input data the noise is represented by the ap-
proximation function and thus the classical MLS approach with exponential weighting function
is more suitable. In Figure 5 and 6 the interpolating MLS results are given for comparison. The
main advantage of the MLS approach compared to the polynomial regression is the possibil-
ity to represent arbitrary complex nonlinear (but still continuous) functions. By increasing the
number of support points the approximation function will always converge to the exact formu-
lation.

2.3 Support Vector Machines
2.3.1 Classification

A very efficient tool for classification purposes are Support Vector Machines (SVM), which is a
method from the statistical learning theory. This method was firstly proposed by Vapnik and Chervonenkis
(1974) and became popular in the last decade. Fundamental publications from this period are
Cortes and Vapnik (1995), Vapnik (1995) and Schoelkopf and Smola (2001). The algorithmic
principle is to create a hyperplane, which separates the data into two classes by using the maxi-
mum margin principle.

The linear separator is a hyperplane which can be written as

f(x) = 〈w,x〉+ α0 (18)

where w is the parameter vector that defines the normal to the hyperplane and α0 is the thresh-
old. In Figure 7 a linear separation is shown for a set of points. The two classes are associated
with −1 and +1. The SVM principle is to maximize the distance between the hyperplane and
the two classes. This can be seen in Figure 7. This principle can be written as an optimization
problem

maxw,b mini{‖x− xi‖ : 〈w,x〉+ α0 = 0} (19)

where
mini{‖x− xi‖ : 〈w,x〉+ α0 = 0} (20)

is the minimum distance from the training points to the hyperplane. By assuming that the
minimal distance is equal to one

mini=1..n|〈w,xi〉+ α0| = 1 (21)

the margin width reads

∆ =
2|〈w,xi〉+ α0|

‖w‖ =
2

‖w‖ . (22)

By introducing Lagrange multipliers αi ≥ 0 we obtain the following unconstraint form of the
problem

w =
n∑
i=1

αiyixi with
n∑
i=1

αiyi = 0 (23)
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yi = +1

yi = −1

〈w,x〉 + b = +1

〈w,x〉 + b = −1

Figure 7: SVM: linear separation by a hyperplane

Figure 8: SVM: nonlinear projection into feature space

whereby only the training points for which the Lagrange multipliers are strictly positive αi > 0,
the so-called support vectors, are needed for the function evaluation

w =
s∑
j=1

αjyjxj; s < n. (24)

For nonlinear separable classes the training data are mapped nonlinearly into a higher-
dimensional feature space where again a linear separation can be constructed. This is illustrated
in Figure 8. The transformation ψ(x) which is realized as an inner product

f(x) =
s∑
i=1

αiyi〈ψ(xi), ψ(x)〉+ α0 (25)

which can be substituted by a kernel function

K(x,y) = 〈ψ(x), ψ(y)〉 (26)

which leads finally to the expression

f(x) =
s∑
i=1

αiyiK(xi,x) + α0 (27)
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where explicit knowledge of the nonlinear mapping itself is not needed. Often used kernel types
are the Gaussian kernel

K(x,y) = exp
(
−‖x− y‖

2D2

)
(28)

and the polynomial kernel
K(x,y) = (〈x,y〉+ θ)p. (29)

During the training of the support vector machines the Lagrange multiplier of the training
points have to be determined by minimizing the primal objective function obtained from Eq.(19)
which reads

Lp(ααα) =
1

2

s∑
i=1

s∑
j=1

yiyjαiαjK(xi,xj)−
∑
i=1

αi. (30)

Many algorithms can be found in literature, see Schoelkopf and Smola (2001). We use one of
the fastest methods, the sequential minimal optimization algorithm proposed by Platt (1998) for
this training. In this algorithm the Lagrange multipliers will be updated pair-wisely be solving
the linear constraint conditions.

2.3.2 Regression

Regression based on Support Vector Machines was introduced by Drucker et al. (1997). In
Smola and Schoelkopf (1998) and Smola and Schoelkopf (2004) a detailed introduction is pub-
lished. In the SVR approach an error tolerance function

Lε(y) =

{
0 |f(x)− y| < ε

|f(x)− y| − ε |f(x)− y| ≥ ε
(31)

which is called ε-insensitive loss function is defined. The optimization task is defined as

minimize
1

n

n∑
i=1

|f(xi,w)− yi|ε + ‖w‖2. (32)

The output of the Support Vector Regression reads

f(x) =
n∑
i=1

(α∗i − αi)K(xi,x) + α0 (33)

where α∗i and αi are the Lagrange multipliers. The primal form of the objective function reads

Lp(ααα
∗,ααα) =ε

n∑
i=1

(α∗i + αi)−
n∑
i=1

yi(α
∗
i − αi)

+
1

2

n∑
i=1

n∑
j=1

(α∗i − αi)(α∗j − αj)K(xi,xj)

(34)

subjected to the constraints

n∑
i=1

(α∗i − αi) = 0, 0 ≤ α∗i , αi. (35)
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Figure 9: SVR approximation of determinis-
tic data (ε = 0.001; D = 6.00)

Figure 10: SVR approximation of noisy data
with over-fitting (ε = 0.001; D = 1.81)

Figure 11: SVR approximation of noisy
data with automatic error tolerance (ε =
0.16; D = 6.50)
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Figure 13: Improvement of an approximation
function by the Box-Cox transformation

Again we use the sequential minimal optimization algorithm for the determination of the La-
grange multipliers.

For deterministic data point values the error tolerance ε is chosen very small to represent
these values with high accuracy. The kernel radius is taken as the maximum possible value
by fulfilling the specified error tolerance. If noisy data should be approximated a very small ε
would lead to a small maximum kernel radius and consequently to a strong over-fitting effect in
the approximation function. This is shown in the Figures 9 and 10. For an efficient application
for noisy data the optimal error tolerance has to be determined. This can be done by using
additional information about the noise level or, if these informations are not available, be an
additional test data set, where ε is modified in a given interval and the optimal value concerning
the test data error is taken. In Figure 11 the approximation function for such an optimal ε is
shown.

2.4 Box-Cox transformation
The approximation quality of the presented meta-model approaches can be generally improved
by a transformation of the response values which reduces nonlinear effects. A very suitable
transformation for this purpose is the Box-Cox transformation proposed by Box and Cox (1964)
which is a family of power transformations covering a wide range of transformation functions.
These transformation is defined based on a transformation parameter λ as

ŷBC(λ) =


ŷλ − 1

λ · ȳλ−1
λ 6= 0

ȳ lnŷ λ = 0

; ȳ =

(
m∏
i=1

ŷi

) 1
m

(36)

where the scaling with the geometrical mean ȳ of the m sample values is necessary to ob-
tain comparable error values for different values of λ. In Figure 12 different transformation
functions are shown. Based on the formulation in Eq. (36) we search for the optimal λ which
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minimizes the approximation error

E(λ) =
m∑
i=1

(yi − ŷBCi (λ))2 → min. (37)

The approximation function ŷ is carried out using polynomial regression on the whole data set.
For the MLS and SVR approaches the basis of this polynomial is assumed always as quadratic
without mixed terms. Once the optimal value λopt is obtained the support point values are
transformed and the meta-model can be build up. The approximations of the meta-model at the
interpolation points have to be back-transformed afterwards. This back-transformation reads

ŷ(x) =


(ŷBC(x) · λopt · ȳλopt−1 + 1)1/λopt λopt 6= 0

exp
(
ŷBC(x)

ȳ

)
λopt = 0

(38)

From Eq. (38) it can be seen, that for arbitrary λopt 6= 0 the back-transformation can only be
performed if

ŷBC(x) · λopt · ȳλopt−1 + 1 ≥ 0 (39)

which can not be assured for every type of meta-model and approximated function. Thus we
define the reciprocal of λ to be a natural number, then the back-transformation can always be
performed. This limits the set of possible values for λ to the following

λ ∈ [−1, −1

2
, −1

3
, −1

4
, −1

5
, ... 0, ...

1

5
,

1

4
,

1

3
,

1

2
, 1]. (40)

In Figure 13 the MLS and polynomial approximation functions are shown for a simple example.
The figure indicates that on the one hand the approximation error in the support points is reduced
due to the transformation and on the other hand the smoothness of the approximation function
is increased which is a quite useful property for a later analysis on the approximation function.

3 Variable reduction

3.1 Significance filter
Various statistical analysis procedures are available for the subsequent evaluation of correlation
of input parameters and the responses. For example, the coefficients of correlation ρik are
calculated from all pairwise combinations of both input variables and response according to:

ρij =
1

N − 1

N∑
k=1

(
x

(k)
i − µxi

)(
x

(k)
j − µxj

)
σxi
σxj

(41)

The quantity ρij , called the linear correlation coefficient, measures the strength and the direction
of a linear relationship between two variables. The linear correlation coefficient is sometimes
referred to as the Pearson product moment correlation coefficient. The quadratic coefficients of
correlation

ρij =
1

N − 1

N∑
k=1

(
ŷ(k)(xi)− µŷ(xi)

) (
x

(k)
j − µxj

)
σŷ(xi)σxj

(42)
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Figure 14: Matrix CXX of the linear correlation coefficients

is defined as the linear coefficient of correlation (see Equation (41)) between the least-squares
fit of a quadratic regression ŷ(xi) of and the variable xj on the samples x(k)

i , x
(k)
j . A correlation

greater than 0.7 is generally described as strong, whereas a correlation less than 0.3 is generally
described as weak. These values can vary based upon the type of data being examined. All
pairwise combinations (i, j), values can be assembled into a correlation matrix CXX , as shown
in Figure 14.

The computed correlation coefficients between the input variables vary from the assumed
values depending on the sample size. This deviation is used to judge in a first step, which
variables are significant concerning there influence on the output variables. We define an error
quantile which is chosen between 90% and 99% and compute the corresponding correlation
error in the input-input correlations. This is done for linear and quadratic correlations simulta-
neously. Based on these quantile values we assume only these input variables to be significant
concerning an output variable if there correlation values are above the given error values. For
the most practical cases this leads to a reduced number of input variables which is shown in
Figure 15. All values in gray are assumed to be insignificant.

3.2 Importance filter
Generally the remaining variable set still contains variable which are not needed for an approx-
imation. With the importance filter we identify the important variables for the approximation
model as described as follows: Based on a polynomial regression using the remaining variables
of the significance filter we estimate the quality of the model representation by the coefficient
of determination (CoD):

R2 =

∑N
k=1(ŷ(k)− µy)2∑N
k=1(y(k)− µy)2

. (43)

In order reduce the influence of an increasing number of variables the adjusted coefficient of
determination was introduced

R2
adj = 1− N − 1

N − p
(
1−R2

)
(44)
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Figure 15: Matrix CXX of the most significance linear correlation coefficients

where p is the number of coefficients used in the polynomial regression. Based on this quantity
the influence of each variable is studied by leaving this variable out of the regression model
and compute the modified CoD. The difference between the CoD of the full and the reduced
model is defined as the coefficient of importance introduced by Bucher (2007). This coefficient
of importance (CoI) reads for the variable i

CoIi = CoD(X1, . . . , Xn)− CoD(X1, . . . , Xi−1, Xi+1, . . . , Xn). (45)

Based on a given value of the minimum required CoImin only the variables having

CoIi ≥ CoImin (46)

are considered in the final approximation. Generally the value CoImin is taken between 1% and
9%.

4 Meta-model of Optimal Prognosis (MOP)

4.1 Coefficient of prognosis
The selection of the optimal filter configuration and the best suitable meta-model for a specific
problem is difficult as shown in Roos et al. (2007). In order to develop an automatic approach
we need to define a measure for the characterization of the approximation quality. For this
purpose we use the generalized coefficient of determination

R2 =

(
E[Y · Ŷ ]

σY σŶ

)2

=

(∑N
k=1

(
y(k) − µy

) (
ŷ(k) − µŷ

)
(N − 1)σyσŷ

)2

(47)

which results for the special case of pure polynomial regression in the formulation of Eq. (43).
The generalized CoD is applicable for all types of meta-models and is equivalent to the square
if the linear correlation coefficient between the true sample values and the model predictions.
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In order to judge the quality of an approximation we have to evaluate the prognosis quality. For
this purpose we use an additional test data set. The agreement between this real test data and
the meta-model estimates is measured by the so-called coefficient of prognosis CoP

CoP =

(
E[YTest · ŶTest]
σYTest

σŶTest

)2

; 0 ≤ CoP ≤ 1. (48)

The advantage of the CoP compared to other existing error measures, for example the mean
squared error, is the automatic scaling of the CoP , where we can derive that for example a CoP
equal to 0.8 is equivalent to a meta-model prediction quality of 80% for new data points.

4.2 Determination of the optimal meta-model
Based on the definition of the coefficient of prognosis we can derive the optimal meta-model
with corresponding variable space as follows: For each meta-model type we investigate all
possible significance and filter configurations by varying the significance quantile from 99%
down to a given minimal value. Then a polynomial regression is built up and the coefficients
of importance are calculated for each variable. The threshold CoImin is varied from 0.01 to a
given value and based on the remaining variables the meta-model is built up and the coefficient
of prognosis is computed. The configuration with the maximum CoP is finally taken as optimal
meta-model with corresponding variable space for each approximated response quantity. While
for the meta-model construction the training data set is used for the meta-model itself and the
test data set for the calculation of the CoP the correlations for the significance filter and the
regression for the importance filters are obtained by using the merge data set from training and
test data.

If no additional test data set is available the initial data set is split into training and test data.
The samples are selected in that way that in each data set the response ranges are represented
with maximum conformity to the entire data set.

5 Numerical examples

5.1 Weakly nonlinear problem
In this example we investigate a weakly nonlinear problem with 50 input variables. For our
procedure eight sets of 100 Latin Hypercube samples are available. We use 100, 200, 300 and
700 samples as training data and one 100 sample set as test data. For the cases of 100, 200, 300
training samples we use the still available 400 samples as verification data. From a number of
several response quantities we have chosen two representatives. In Figure 16 the anthill-plots
for both responses depending on the variable with the highest influence is shown. The figure
indicates, that for both response the influence is almost linear. In Table 1 the obtained results
for the optimal meta-model and variable space is given.

The results clearly indicate that an excellent prognosis quality can be obtained by the opti-
mal meta-model and the estimated prognosis from the CoP is close to this of the verification
data set. For the first response the variable space can be dramatically reduced and for the second
case the most variables remain in the final space. In this example the benefit of a sophisticated
meta-model as MLS is not huge compared to classical polynomial regression but still remark-
able. Another interesting result is that with increasing number of training samples the optimal

Weimar Optimization and Stochastic Days 5.0 – November 20–21, 2008

14



50

100

150

200

250

1.0 1.2 1.4 1.6 1.8 2.0

R
es

po
ns

e 
1

Variable 23

60

62

64

66

68

70

0.8 1.0 1.2 1.4 1.6 1.8
R

es
po

ns
e 

2

Variable 1

Figure 16: Anthill-plots for the weakly nonlinear problem

Figure 17: Training (blue) and test (red) data and MLS approximation (green) of the weakly
nonlinear problem for both responses depending on the two most significant variables
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Response 1 Response 2
Number of training samples Number of training samples

100 200 300 700 100 200 300 700
Polynomial
No. variables 4 5 3 3 25 31 32 38
Optimal basis linear quadr. quadr. quadr. linear linear quadr. quadr.
CoD Training 0.903 0.899 0.901 0.900 0.879 0.820 0.852 0.835
CoP Test 0.899 0.896 0.902 0.905 0.786 0.815 0.831 0.834
CoP Verification 0.894 0.892 0.897 - 0.691 0.738 0.765 -
MLS
No. variables 3 4 4 4 25 31 32 32
Optimal basis linear linear quadr. quadr. linear linear quadr. quadr.
CoD Training 0.970 0.977 0.996 0.989 0.879 0.918 0.886 0.917
CoP Test 0.920 0.929 0.956 0.969 0.786 0.818 0.832 0.841
CoP Verification 0.927 0.917 0.946 - 0.658 0.735 0.768 -
CoDfull 0.900 0.894 0.899 0.893 0.860 0.819 0.825 0.814

Table 1: Results for the weakly nonlinear example with 50 input variables

basis order increases. Furthermore we observe for the second response that the CoD of the
training data set may judge the approximation as a very good regression but the prognosis for
new data is of less quality. This indicates the requirement of a measure like the CoP for a
realistic assessment of the prognosis quality of the meta-model.

In Figure 17 a three-dimensional plot of both responses depending on the two most impor-
tant input variables is shown. A good agreement of approximation and training and test data
can be recognized for the first response due to the small number of remaining variables. For the
second response where the final variable number is much larger the subspace-plot does not pro-
vide very much information. However, the weakly nonlinear behavior of the response function
and the agreement of approximation and available samples is apparent.

5.2 High dimensional instability problem
In this example a high dimensional problem is investigated where the global trend is disturbed
by an instability. This problem has 100 input variables and three sets of 100 Latin Hypercube
sampling are available. Figure 18 shows the anthill-plots for the two most important variables.
The figure indicates that the response shows a strongly nonlinear behavior depending on vari-
able 99. We have applied our approach by using 200 samples as training data and the remaining
100 samples as test data. Based on a polynomial regression the CoD of the model used for
the importance filter is quite small as indicated in Figure 19. The CoP of the test data set
confirms this results which shows that this problem can not be represented sufficiently by a
classical polynomial. If more sophisticated meta-models are used the MOP approach results in
significant better results detecting two variables in final variable space. These results and the
belonging approximation function are given additionally in Figure 19. For this example it is
quite clear that more complex meta-models are not only necessary to improve the approxima-
tion quality but also to detect the important variables correctly.

Weimar Optimization and Stochastic Days 5.0 – November 20–21, 2008

16



60

80

100

120

140

-700 -690 -680 -670 -660

R
es

po
ns

e

Variable 98

60

80

100

120

140

-110 -100 -90 -80 -70

R
es

po
ns

e

Variable 99

Figure 18: Anthill-plots for the high dimensional instability problem

Polynomial MLS
No. variables 13 2
CoD Training 0.289 0.568
CoP Test 0.205 0.462
CoDfull 0.312 0.312

Figure 19: Three-dimensional plot of the training (blue) and test (red) data and MLS approxi-
mation (green) for the high dimensional instability problem and corresponding numerical results
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Figure 20: Anthill-plot of the response depending on the most important variable 19 with
corresponding optimal approximation for different sample splittings

Sample splitting 50/50 70/30 80/20
MLS No. variables 1 1 9

CoD Training 0.735 0.753 0.929
CoP Test 0.587 0.462 0.668

MLS No. variables 1 1 1
(rearranged samples) CoD Training 0.705 0.692 0.705

CoP Test 0.543 0.690 0.760
CoDfull 0.273 0.273 0.273

Table 2: Results for the low dimensional instability problem for different sample splittings from
two different arrangements of the entire data set

5.3 Low dimensional instability problem
This example is quite similar to the previous one but the investigated initial variable space
consists of 25 input variables which are much less as before. Again an instability leads to a
highly nonlinear dependence of the response on the input variables. For our investigation only
100 Latin Hypercube samples are available which are split into the training and test data set by
using 50/50, 70/30 and 80/20 percentage fractions.

The results are shown in Figure 20 and Figure 2. The figures indicate a similar approx-
imation function for the two investigated sample arrangements with 50/50 and 70/30 sample
splitting. For the first arrangement with 80/20 splitting the test data are not suitable to lead
to the optimal approximation model. The CoP values shown significant deviations for almost
similar approximation functions as shown in Figure 20. This is also a result of the small number
of test samples. This clarifies that a certain amount of test samples is require for a stable ap-
plication of the MOP approach. Nevertheless for this example the approach serves a very good
approximation of the nonlinear problem.
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Figure 21: Anthill-plot for the very high dimensional problem

Response 1 Response 2 Response 3
Polynomial No. variables 33 11 26

CoD Training 0.872 0.888 0.872
CoP Test 0.642 0.831 0.791

MLS No. variables 33 11 26
CoD Training 0.872 0.927 0.984
CoP Test 0.642 0.836 0.811
CoDfull 0.819 0.895 0.904

Table 3: Results for the very high dimensional problem

5.4 Very high dimensional problem
In the final example we investigate a very high dimensional problem with 500 input variables.
500 Latin Hypercube samples are used with a 80/20 splitting for the training and test data. Three
different responses are investigated with the MOP approach. In Figure 21 the second response is
shown depending on the most important variable. The MOP approach leads for all responses to
a remarkable reduction of the variable space and a good prognosis of the optimal meta-model.
The results in Table 3 show only a small difference between the optimal polynomial and MLS
approximations which indicates a weak nonlinearity in the response functions.

6 Conclusion
In this paper we presented an approach for an automatic selection of the optimal meta-model
for the investigated problem. We introduced the coefficient of prognosis which enables an
objective assessment of the meta-model prognosis based on an additional test data set. We
could verify the approach for several weakly and highly nonlinear examples with low and high
dimensional input variable spaces. The approach can identify the required variables efficiently
and the obtained optimal meta-model can be used afterwards for a fast robustness evaluation or
optimization. The only restriction is a required minimum number of test samples to represent
the variable space sufficiently. In our future work we will include cross correlation techniques
to become independent of these test data.
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