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Abstract

Deterministic optimization does not consider uncertainties. This may lead to designs
which are not robust or reliable. The use of safety factors is the common approach to cope
with this problem. The main weaknesses of the achieved results are overdesign (too ex-
pensive) or underdesign (unreliable) because safety factors do not necessarily consider the
special problem. Therefore robust design optimization uses stochastic values as constraint
and/or objective to obtain a robust and reliable optimal design. In classical approaches the
effort required for stochastic analysis multiplies with the complexity of the optimization al-
gorithm. The suggested approach shows that it is possible to reduce this effort enormously
by recycling previously obtained data. In a simple example, it will be shown that this is
possible without loss of accuracy.
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1 Robust Design Optimization
The cost of a product includes more than the development, production and management costs.
There are also costs that are related to the quality of the product e.g. scrap, re-work or recalling
costs. The quality of a product is related to uncertainties in the production process, in compo-
nent parts, etc. According to the PIMS-study (first introduced in Buzzell and Gale (1987)),
providing the corresponding quality is clearly seen as one of the most essential competition
advantage in international business rivalry.

A classical optimization produces a design that does not consider uncertainties. Without
taking this into account (and without additional safety factors) nearly 50% of the products will
fail. One point that causes this problem is that in many cases the optimal point lies near a
constraint, i.e. at the boundary of the feasible domain. To avoid such high failure rates, classical
approaches minimize internal strength, and (or) maximize external forces via safety factors.
Because of the very general assumptions in these factors 4 things can happen.

1. Overdesign, (too safe, too expensive)

2. Underdesign, (not safe enough, more re-work and scrap)

3. Oversensitivity, (very sensitive with respect to small changes)

4. Cross independence, (interactions between inputs are neglected)

According to Boehm’s cost of change curve, the earlier one starts with improvements in pro-
duction process, the lower the costs of these improvements are. Drawing a conclusion avoiding
errors early in development phase is much more cheaper than repairing them later. It is necces-
sary to spend every possible attention in the research and design phase. Otherwise, once made
savings in early development phases may have to be payed 100 times in the production phase.
For this reason companies start Robust Design Optimization to aim at “built-in quality”.

One widely known approach is Design for Six Sigma. It has its roots in Crosby’s approach
on self paying quality Crosby (1979) “Zero Defects”. At this point “Zero” should mean “very
low”. A proof for this assertion is Pareto’s 80/20 law which postulates infinite costs for perfect
systems. But only the wanted quality is paid for by a customer. Therefore more information is
needed, and another definition for quality is needed. Six sigma quality should be the target that
will not be reached at the first time practising the method. So it has to be used in a Kaizen (way
to the better) - process .

1.1 Deterministic, random and total space
An RDO problem has variables that can be controlled, the deterministic design parameters

d = [d1, d2, ...dnd
] (1)

They can be used for optimization. There also exist parameters that have inherent uncertainties,
the random parameters

p = [p1, p2, . . . pnr ] (2)

Design parameters that also have uncertainties are called mixed variables. They can be found in
p and d. Now we can define a problem with two spaces. First there is the deterministic space
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which is defined by d(Fig. 1). And second, there is the random space which is defined by p
(Fig. 2). Random and deterministic space are building the total space. Therein the responses

Y = [y1, y2, . . . yn] (3)

are calculated as a function of all parameters.

yi = fi (p ∪ d) (4)

In real problems, this function can be a complex FE-model. So solving it can take minutes,
hours or even days.
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Figure 1: optimization space
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Figure 2: stochastic space
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Figure 3: total space

Double loop approach Classical approaches solve the RDO-problem in a double loop method
(fig.4). This means that the optimization takes place in deterministic space (outer loop) and for
every deterministic design a value of robustness δq(d, p) is computed. Therefore robustness
analysis (such as sampling, reliability) is executed in random space (inner loop). In fig. 3 it can
be seen that in a projection of the results to the deterministic space a (hyper-)line appears for
each optimization design. The number of evaluations for optimization Ndet multiplies with that
of stochastic analysis Nsto. So complexity is growing rapidly with the size of the problem. In
most practical applications one evaluation(FE-solver run) can take a lot of time. For that reason
methods are needed to reduce the effort.

A lot of approaches exist to reduce this effort some of them are shortly mentioned here.
E.g.Egorov et al. (2002) describes a method which adapts the methods while progressing. This
approach uses mathematical models with varying accuracy (from the lowest to the highest)
during the solution process. The usage of meta models is one possibility to work more effi-
ciently. Improving by expanding the sampling strategy for stochastic dimensions according to
the assumed probability level is suggested in Youn and Choi (2004). A comparison of different
approaches for obtaining reliability measures and their convergence in deterministic space can
be found in Youn et al. (2003).

Decoupled loop approach Another option is to work iteratively. Optimization loop and
stochastic loop are decoupled. Depending to the result of a stochastic analysis a shift in op-
timization space is accomplished. In Chen et al. (2003) a method is presented which shifts the
design itself with respect to the expected distance to a security level.
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Figure 5: decoupled loop

Single loop approach Using the distance to the most probable point of failure (MPP) as part
of the objective in optimization is presented in Kharmanda et al. (2002). But this very efficient
method can only be applied to small and smooth problems.

Orthogonal arrays and other DOE should be shortly mentioned here. They are widely used,
but their use is in very controversial discussion. Reasons are the weaknesses of hard simulated

4



samplings, neglecting interactions and so on. Advantages are a small effort of evaluations, an
easy to implement method and a historically grown symphathy and understanding Otto and
Antonsson (1993).

Critcism Most of the methods as mentioned are directly related to the kind of robustness
value which is evaluated. Reliability methods often use FORM or other β/MPP based methods.
Linearization and other (over-)simplifications inhibit their usage for large real problems with
dynamic or nonlinear results. Additional a grouping in two fields of interest, reliability based
design optimization (RBDO) and (variance based) robust design optimization (RDO), inhibits
coupled analysis of failure modes (small probability) with a description of the robustness close
to the mean design (higher probability).

2 Values of Robustness
The aim of RDO is to consider uncertainties during optimization. To do this it is neccessary
to measure the robustness of an optimization design. These values are used in constraints or
in objectives. Measuring robustness is a quantification of quality. Many, more or less suitable,
definitions of quality were given in the past:

• “fitness for use”(Juran, Joseph M.)

• “loss to society” or “uniformity around a target value”(Taguchi G.)

• “conformance to requirements”(Crosby P.)

• “degree to which a set of inherent characteristic fulfills requirements.” (ISO 9000)

It is possible to formulate 5 groups of problems:

Weighting the outputs with a loss function f(x)

δq =
∑
N

f(xi)
1

N
(5)

E.g. Taguchi Loss Functions Byrne and Taguchi (1987); Phadke (1989)
Target the Best (µ . . . target mean value):

f(x) = k(x− µ)2 (6)

The more one output differs from the target, the higher is its loss.
Maximum the Best:

f(x) = k(x)2 (7)

The higher all values are, the lower is its loss.
Minimum the Best:

f(x) = k
1

x2
(8)

It should be mentioned here, that Taguchi’s approach is based on a Taylor series expansion.
The three described functions above are well known, but only examples for a usage. They can
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be used if there is no additional data about the real loss function. Whenever it is possible,
a better suiting loss function should be developed. Applications can be found in Fathi and
Poonthanomsook (2007); Teeravaraprug (2002). A survey on cost of quality models is given in
Schiffauerova and Thomson (2006).

Rating the probability of occurence p(x) or density function
For discrete pdf’s

δq =
∑

f(p(xi)) (9)

For continous pdf’s

δq =

∫
f(p(xi)) (10)

E.g. Shannon entropy Shannon (1948) (target: regular system/lowering standard deviation)

δq = H = −K
∑
i

p(xi)log (p(xi)) (11)

Appraisal of a assumed function How good does the obtained distribution function fulfill
the presumption? E.g. PRESS-value for response surfaces or chi-square test for distributions

Parameters of the distribution function E.g. mean, standard deviation

Exceeding or fall below limits or performance measure E.g. reliability index, process ca-
pability indices, probability of failure

The values of robustness are used in RDO as objective

minimize : δq(d, p)

subject to : dL ≤ d ≤ dU (12)

or as constraint

minimize : Cost(d)

subject to : δq(d, p) ≥ Cδq
dL ≤ d ≤ dU (13)

for the outer loop optimization. Methods for obtaining these values differ depending on the
probability level and the desired accuracy. Mostly these values are only estimates. The outer
loop has to cope with this fact. E.g. it is not useful to have a convergence criterion that is more
stringent than the error in the estimation. The choice of the applied δq belongs to the field of
application. In Thornton (2001) suggestions which description to use, according to the field of
application are made. Combining all data in one cost of quality function may make it possible
that no constraints are needed. The only objective for the optimization would then be the cost
of quality for the design. Multiobjective problems can be reduced to an easier single objective
function.
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3 Sample Recycling
As it can be seen in fig.3 the more the optimization converges into one subspace the closer to
each other the hyperlines are getting. The basic idea of this recycling approach is to decide
whether it is neccessary to actually analyze a design or it is possible to use the previously
analyzed designs that are nearby. Recycling of data is made in total space. The decision criterion
whether recycling is possible (fig.6) or not is based (fig.7) on the quality of the meta model in
the region of interest. There exist several methods to determine the quality of a response surface.

Y(x
1
) from
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C

Meta Model

x
1

Solved Designs

Figure 6: good approximation

Y(x
1
) from
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x
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Solved Designs

Figure 7: bad approximation

It can easily be defined e.g. by distances between the support points (offline quality). Offline
quality means that a calculation of the responses is not neccessary. More complex methods use
online quality therefore the responses are considered. Splitting the sample set in training and
test data or cross-validation are examples for this kind Queipo et al. (2005); Li (2007). With the
help of these methods an error estimate êP of the meta model for every point P in total space
can be obtained.

In the proposed method the computed error is used to calculate a measure of quality for
every point ever demanded in space. Depending on its value, it is decided whether the result
can be taken from the meta model or a real calculation has to be done. The calculation of new
support points will be only necessary in certain subregions, i.e. in those subregions where the
quality is bad. In areas where the available data set can fully represent the calculation model
no additional solver run is needed. Whenever a calculation is made its data is pushed back in
a database and so it can be used as support point for the following steps. So the quality in this
region grows. The entire functionality of the approach can be seen in fig.9.

Especially in RDO-problems this leads to massive reduction of the number of required
solver runs. The main reason is that the outer looped optimization converges in a small area
of the total space. In this region the meta model is refined until the needed quality is achieved.
Subsequently, calculations are only neccessary if the optimizer finds new subregions of interest.
Starting with low quality demands and increasing them with every iteration of the outer loop
shows additional potential to reduce the number of solver runs.
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Figure 8: Algorithm for sample recycling

4 Example
As example a beam under dynamic load is choosen. The example was first introduced in Bucher
(2005). The objective is to minimize the mass with a constraint on the probability of exceeding
a maximum displacement. Since it was first introduced various methods were tested with it and
a lot of improvement was achieved. Width d and height h are controllable (design) parameters.
The parameters of the harmonic load F0 (meanvalue = 20000), ω (meanvalue = 60) are
random variables with a coefficient of variation of 0.1. Constant values are young’s modulus
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Figure 9: beam design principle

E = 3E10, poisson ratio ν = 0.2, mass density ρ = 2500 and the length of the beam L = 10.
The problem is defined as:

min(d · h) (14)

subject to

0 ≤ d ≤ 1

0 ≤ h ≤ 1

P [wd < 0.005] ≤ 0.01 (15)

For the reason of a fair comparison with respect to Roos et al. (2006) the problem is solved
with ARSM for outer loop and ARSM for inner loop Roos and Bucher (2003). Starting at
the deterministic optimum d = 0.06 / h = 1.00 it takes 1060 solver runs with the classical
approach. The robust optimum lies at d = 0.08/h = 1.00. The estimated probability of failure
is 0.01. Compared with the analytical solution this is the real optimal solution.

Figure 10: classical approach(1060samples) Figure 11: sample recycling(79samples)

The sample recycling is used for the same algorithm settings with ARSM on ARSM in 2
steps of quality criteria. Starting with a lower quality criteria the RDO needed 61 real calcula-
tions. This means that approximately 1000 designs could be calculated on the response surface.
Using the calculated design with a higher quality level, it was necessary to perform 18 addi-
tional calculations to find the same optimal point as the classical approach did. The effort was

9



reduced by more than 90% without any loss of accuracy. The differences of effort between
classical and suggested approach can be seen in fig.10 and fig.11.

To show that the approach works also for small probabilities the same example as above is
used but now with a much smaller demanded probability of failure.

min(d ∗ h) (16)

with respect to

0 ≤ d ≤ 1

0 ≤ h ≤ 1

P [wd < 0.005] ≤ 3.4E − 6 (17)

Therefore the same 2 step evaluation as mentioned before was used. For the first step 63 solver
runs were required. The calculated optimum was at (0.20/1.0). In the second step 18 addi-
tional solver runs were needed. The resulting optimum was calculated at (0.185/1.0) with the
demanded probability of failure. That is the same point as the classical approach found with
4094 solver runs. This example shows that there is no loss of accuracy. Also, the number of
neccessary solver runs is increased only by a small amount. Hence, the suggested approach is
applicable for small probabilities of failure.

5 Conclusion
Providing the required quality is seen by far as the most essential advantage in international
business competition. Because of the widely known cost of change curve “built-in” quality
should be aimed at. One approach for doing that is using RDO. However, in classical approaches
of RDO the effort of stochastic analysis multiplies with the complexity of the optimization
algorithm. The suggested approach for sample recycling shows that it is possible to reduce the
expenditure enormously by re-using previously obtained results. In a first example it has been
shown that this is possible without loss of accuracy. More examples are needed to prove the
applicability of this promising approach to practical problems.
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