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Abstract

We consider the solution of technical optimization problems involving highly time-
consuming calculations. Usually, these possibly multiobjective optimization problems come
along with almost no knowledge about the behaviour of the objective functions and many
local optima. In most cases, the problems are not sufficiently solvable by traditional gradient-
based optimization methods. Instead, surrogate-based heuristics provide a bundle of effec-
tive techniques to find the global optimum of black-box functions. The benefit of these al-
gorithms is the fast convergence towards the global optimum at a minimal number of func-
tion evaluations, whereas a drawback originates from the significant overhead produced by
the algorithm itself. In this paper, we present EMMOA, a surrogate-based optimization
method for multiobjective optimization of black-box functions. The iteration process starts
with some points generated by a Latin hypercube approach. Repeatedly, a model is trained
to fit the existing data and exploited to find new points which are likely to yield better re-
sults. Several models are used for multiobjective optimization. The way new points are
chosen from the models is of crucial importance for the convergence of the algorithm: the
exploitation of the model and the investigation of unexplored regions of the feasible set
have to be balanced. We examine the performance of EMMOA at a real-world problem.
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1 Introduction
We would like to solve multiobjective constraint optimization problems which emerge from
technical settings. A function F (x) : RN 7→ RM has to be minimized with respect to some
(possibly nonlinear) constraints. If M is greater than one the solution of this optimization
problem is a discrete approximation of the set of optimal trade-offs called the Pareto set. This
set can help to identify relationships among the objectives and represents the basis for the choice
of an optimal design.

In a technical framework a function evaluation F (~x) corresponds to the calculation of a
complex simulation process (e. g. the solution of a large set of differential equations). Thus the
time to compute values of the objective functions for a given ~x ∈ RN may be considerable (e. g.
the time to calculate chain forces is about half an hour in our example in Section 5) and so the
number of points at which function F can be evaluated is limited (a reasonable number is 300
evaluations).

Naturally, there are many methods to solve such problems; popular methods are genetic
algorithms which work very well with nonlinear constraints and more than one objective. Other
optimization strategies transfer the problem to an single-criteria problem (e. g. by weighted sum
approach) and use single-objective optimization to find a solution.

The mentioned algorithms have something in common: the time the optimization algorithm
needs itself is negligible. But if the evaluation of the objective function is time-consuming the
optimization algorithm can need some time itself. This leads us to the family of surrogate-based
optimization algorithms.

We use a stochastic model to construct M surrogate functions corresponding to the M ob-
jective functions. These models are used in the next step to find new points which are likely to
yield better objective values. This iteration process is continued until the algorithm converges –
or, in practice, if the time given to the optimization is over.

The model which is used to describe the objective function is of particular importance. Since
the objective functions are considered as black-box, meaning there is no knowledge about their
behaviour, it has to be able to capture linear and nonlinear tendencies.

2 Kriging model
The Kriging approximation Jones et al. (1998) is a popular method used as a surrogate model
for optimization. It is able to model real valued functions f : RN 7→ R. Let us assume we have
a set of variables {~x1, ~x2, . . . , ~xk}, ~xi ∈ RN , i = 1, . . . , k and corresponding objective values
~y = (y1, y2, . . . , yk)τ , yi = f(~xi) ∈ R.

We construct a model as a surrogate for f which is fast to compute. It describes the function
value at an unknown point ~̂x of the feasible set as a combination of the known function values:
ŷ = f̂(~̂x) =

∑k
i=1 λ

iyi.
For that the correlation between the given points ~xi has to be measured: corr(~xi, ~xj) =

exp(−
∑N

n=1 θn|~xin − ~xjn|pn). The parameters θn, pn (θ, p ∈ RN) stand for the range of in-
fluence of each point and the smoothness of the model in dimension n respectively. These
parameters need to be tuned to the available data by maximizing the following maximum like-
lihood estimate:

L(µ, σ2, θ,p) =
1

(2πσ2)
k
2

√
det(C)

exp

[
−(~y −~1µ)τC−1(~y −~1µ)

2σ2

]
.
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We use the following constraints for the parameters: 0 < θn, 0 < pn ≤ 2. Matrix C
contains the correlation of all points (C = corr(~xi, ~xj)ki,j=1) and ~1 = (1, 1, . . . , 1)τ . The

parameters µ and σ can be approximated by a maximum-likelihood-estimate: µ̂ =
~1τC−1~y
~1τC−1~1

,

σ̂ = (~y−~1µ)τC−1(~y−~1µ)
k

.
If the model is trained an estimation of the function value at an untried point ~̂x of the feasible

set is obtained by
f̂(~̂x) = µ̂+ rC−1(~y −~1µ̂).

Vector r ∈ Rk stands for the the correlation of ~̂x with all existing points: ri = corr(~xi, ~̂x). The
reliability of the estimation f̂(~̂x) is evaluated by

ŝ2(~̂x) = σ̂2

[
1− rτ C−1r +

(1−~1τC−1r)2

~1τC−1~1

]
.

We have ŝ2(~̂x) = 0 if ~̂x is already contained in the set of data points. So, a value of ŝ2(~̂x) close
to 0 implies an accurate model in the neighbourhood of ~̂x. In contrast, if ŝ2(~̂x) tends to the value
of σ̂2 the estimation might be bad.

3 Surrogate-Based Global Optimization
For a one dimensional optimization problem (M = 1) the optimization process starts with
the choice of some arbitrary points of the feasible set. The corresponding objective values are
computed and a Kriging model f̂ as a surrogate of the objective is constructed. Subsequently,
one or more new points ~xi are sampled from the surrogate model and F1(~x

i) is calculated The
sampled points have to meet two requirements:

1. At first, the surrogate model maps only strong tendencies of the objectives. Thus, the
model has to be improved at locations where it is inaccurate (exploration).

2. Secondly, we need to find regions of the feasible set that produce optimal values of the
objectives. This task is called the exploitation of the model.

To solve 1 and 2 we employ the Weighted Expected Improvement criterion (WEI) which as-
sesses the potential of every point in the feasible set:

WEI(~x) = w (f − f̂(~x)) Φ

(
f − f̂(~x)

ŝ(~x)

)
+ (1− w) ŝ(~x) φ

(
f − f̂(~x)

ŝ(~x)

)
.

Here f stands for the best objective value that occurred so far, φ(~x) and Φ(~x) denote the standard
normal density and distribution function respectively. The estimation of the objective value is
represented by f̂(~x), whereas ŝ(~x) measures the reliability of the estimation.

The criterion balances the exploration and the exploitation of the surrogate model. Param-
eter w ∈ [0, 1] weighs the probability for an improvement by point ~x and the reliability of the
model in the neighbourhood of ~x. In practice we advise to start with a value around 0 for w
(that is to sample points which improve the model) and to increase w in each iteration, meaning
to prefer points which are likely to yield better function values.

After selecting points from the model it can be updated by the new data and the next iteration
cycle is started. Finally, we stop the iteration process if there is no further improvement of the
objective values.
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4 Enhanced Multiobjective Metamodel Optimization Algo-
rithm

In Knowles (2006) J. Knowles proposes the use of surrogate-based algorithms for multiobjective
optimization problems. A single surrogate model is constructed from the weighted sum of the
values of all objectives. The parameters of the weighted sum approach are alternated to produce
an approximation of the Pareto set. We extend the ParEGO algorithm of J. Knowles by the use
of several surrogate models which turned out to be beneficial for optimization problems with a
high number of objectives as well as for highly time-consuming applications.

Following Knowles (2006) we choose 11N − 1 evenly distributed points from the feasible
set by a Latin Hypercube method. A Kriging model is constructed from the initial point set.
It is trained by maximizing the likelihood function presented in Section 2. We apply a genetic
algorithm, but one can use any optimizer for nonlinear optimization problems. To avoid numer-
ical problems and to accelerate the training process only a subset of the data points is used to
train the surrogate models: in practice a number of 100 data points is enough. Since the model
should be accurate in the neighbourhood of the Pareto set we choose training points which are
close to that set. An appropriate selection criterion is the ranking-crowding scheme used in the
multiobjective genetic algorithm NSGA-II (see Deb et al. (2000)).

In a first phase called depth-first search we look for the point with the highest value of WEI
for each model separately:

max
~x

WEIm(~x), m = 1, 2, . . . ,M.

Afterwards, the objectives of M points are computed in each step of the depth-first search. This
produces a high model accuracy in the neighbourhood of the Pareto front of the optimization
problem. In addition, it allows a parallelized computation of some function values.

In the second stage, the breadth-first search, points with high values of Weighted Expected
Improvement are searched over all models, thus solving a multiobjective optimization problem:

max
~x

(WEI1,WEI2, . . . ,WEIM)τ .

This procedure supports the convergence towards the true Pareto front. To select points for
sampling from the solution of the optimization problem a criterion for an even approximation
of the Pareto set is used.

5 Optimization of a Chain Drive
We apply the optimization algorithm EMMOA to an optimization of a chain drive in a combus-
tion engine. A chain drive powers the cam shaft and ancillary components. On the one hand
we need to tighten the chain to prevent the loosening of the chain. Therefore a hydraulic tight-
ener and two tensioner blades are enforced. On the other hand the chain has to be as loose as
possible (to decrease the chain forces in all parts that have no contact to a structural element).
Excitations from the crankshaft and the camshafts cause dynamic stresses. To decrease these
forces we use two noncircular gears.
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Figure 1: chain forces for several speeds before and after optimization

We intend to minimize the dynamic stress within the chain. This yields the following three
objectives for the optimization:

• the minimization of the maximal chain forces over several speeds,

• the minimization of the difference of torsion between inlet and outtake camshaft and

• the minimization of the difference of the amplitudes of inlet and outtake camshaft.

We consider the use of two identical noncircular gears. The last objective ensures that some
of the trade-offs in the Pareto set generate two gears with the same amplitude. The following
variables with interval constraints are used for optimization:

• the gap size of the tightener,

• the tightener force,

• the amplitudes and

• the phase angles of the noncircular gears.

In addition, each variant has to satisfy the following restriction: the minimal chain force for
each speed must not drop below a defined threshold, which guarantees that the chain does not
become too loose.

The results obtained in comparison to other multiobjective optimization algorithms are very
promising. In particular the low number of evaluations of the objective functions to reach the
Pareto front should be mentioned. In Figure 1 the chain forces for several speeds are plotted on
the chaindrive. The forces before optimization show high peaks in the area of the tighteners.
After the optimization the forces are generally lower and more homogenous. Figure 2 depicts
the distribution of the chain forces as a function of the crankshaft angle and the speed of the
engine. Obviously, the amount of extremal chain forces is reduced considerably.
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Figure 2: chain forces before and after optimization

6 Conclusion and Future Development
Surrogate-based algorithms are an appreciated tool for single-criteria optimization with time-
consuming objectives. Extended to solve multiobjective optimization problems they provide a
possibility to obtain an approximation of the Pareto set. A minimal number of evaluations of
the objective is possible at the price of an increased complexity of the surrogate model.

We would like to raise two questions for further development of surrogate-based multiob-
jective optimization. Firstly, research is necessary to identify reliable criteria for exploiting the
surrogate-model at more than one location. By differentiating between depth-first and breadth-
first search we can compute at least some evaluations of the objective function in parallel. With
regard to the increased number of processors in every computer it will be advantageous to make
use of parallelization in optimization algorithms. Furthermore, the run time of construction and
training of surrogate-models should be decreased to expand their potential of application.
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