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In the context of Multidisciplinary Design Optimization (MDO) for vehicle
development, concepts and processes are subjected to continuous changes.
Complex and computational expensive FEA models need to be integrated
into a common workflow in order to produce valid design improvements. This
turns into almost impracticable optimization, robust design and/or reliability
analyses.

Alternative to direct optimization, surrogate models offer fast model pre-
dictions which might facilitate such costly analyses. Nevertheless, still many
challenges hide behind the application of these techniques. When considering
vehicle design, passive safety simulations reveal many of the problems which
can be faced when looking for metamodels over the basis of high dimensional
nonlinear data.

In this work we try to further extent the applicability of surrogate mod-
els to derive model sensitivities and improve prediction capabilities for such
cases. We believe that optimization can only succeed over the basis of high
fidelity simulations for which the surrogate models may act as filters. This
filtering process gives us information which could even be lately used to
construct reduce order FE-models which feature the most important rela-
tionships from the original models.

Leaving aside the local or global approximation issue, we concentrate on
learning as much as possible at the first stages of the analyses, keeping our
optimization problem flexible in order to refine our predictions sequentially
and adaptively by shrinking space and dimensions. A framework for non-
linear modeling with simultaneous model selection is presented, managing
surrogate modeling and sensitivity analysis for complex problems. This main
focus is on fully Bayesian estimation applied to anisotropic Gaussian Pro-
cesses (GP).

Keywords: Crash, Optimization, MDO, Kernels, Gaussian Processes, Bayesian, Clas-
sification, Clustering.

∗Contact: Dipl.-Ing. Alberto Serna, Daimler AG, 059/X603, GR/ACS, 71059 Sindelfingen, E-Mail:
alberto.serna esteban@daimler.com

Weimarer Optimierungs- und Stochastiktage 6.0 – 15./16. October 2009 1



1. Multidisciplinary Design Optimization

In the last years, an increasing effort for Multidisciplinary Design Optimization (MDO)
in the automotive industry can be tracked. This trend results from the fact that design
improvements at different disciplines (Crash, NVH, Durability, Aerodynamic, etc.) often
counteract among them. The integration of different CAE processes into a common
optimization algorithm which allows a systematic formulation of the problem becomes a
main issue. It is worth to remind that in spite of the increasing computational resources,
simulation models still grow continuously in their complexity to offer more accurate
physical representations. Hence, we rely on high fidelity models, but MDO remains as
an extremely computationally intensive task.

Even though optimization is by itself a challenging task, the requirement for robust
design in many situations further difficulties the solution. The experience shows that
our deterministic optima tend to be non-robust, and this is the main issue which makes
the inclusion of robustness criteria in the optimization high interesting. In order to
include uncertainty in the analysis, stochastic, fuzzy or combination of both approaches
can be used to mathematically model the problem.

So called Robust Design Optimization (RDO) includes robust measures in the formula-
tion of the optimization problem. Hence, iterative procedures where robustness of the
optimum is proved after optimization step are hardly applicable, and integrated schemes
become necessary. In some cases, robustness evaluation at each optimization iteration
is proposed, which can be cumbersome and is inefficient, as long as noise effects are not
independent in the design space. The assumption that both noise and design variables
spaces are not related is also not always adequate.

State of the art solutions for MDO in nonlinear systems are summarized here:

Direct Optimization with Genetic/Evolutionary Algorithms (EA) Stochastic optimiza-
tion methods are known to handle noisy, non-smooth responses and are able to
operate efficiently in large problems [Duddeck (2008)]. One of the most impor-
tant inconvenience is the fact that this strategy cannot be fully paralleled, as it
involves an stepwise evolution process. Moreover, these algorithms require a cali-
bration process, which limits their application to computational intensive systems.
Even though the solution can be speed up by tuning evolution strategies, most of
the benefit of such methods resides on the exponential convergence after clusters
of potential optima are found. Therefore, the stochastic search for first popu-
lations provides not much advantages compared with other sampling strategies.
Additionally, the solution is inflexible to variations in the objective or constraint
function.

Surrogate Model based Optimization Under this framework, model responses are sub-
stitute by global approximates which computation is much faster than the original
ones. They try to represent the underlying model based on sampling data, which
can be a challenging task. The potential of this approach relies on the possibility
to carry out expensive uncertainty (UA), sensitivity (SA) or optimization analysis
in the global design space. Sequential sampling can also be carried out to reduce
approximation error once the location of the expected optimum is found [Donald
u. a. (1998); Huang u. a. (2006); Jurecka u. a. (2007)]. Surrogate models allow the
user to better understand the behavior of the system, which is extremely important
in order to optimize complex models. This strategy also benefits from a similar
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evaluation time for all disciplines, easing their integration into a multidisciplinary
framework.

MAM Multipoint Approximation Method [Toropov (1992)]) introduces the use of adap-
tive surrogate model for optimization, in which sequential models are built in sub-
spaces of the design, panning the space until convergence is achieved. They are
thought for nonlinear noisy problems. Originally, first order Response Surface
Methods (RSM) are employed to keep the iterative process efficient. Convergence
in the global design space can sometimes be an issue, although robustness of the
method is claimed in various references [Kurtaran u. a. (2002)].

ESL Alternatively to nonlinear methods, linear optimization advantages apply if the
dynamic loads can be efficiently computed for different states in the path dependent
solution. As a result, it is possible to track the nonlinear optimal design, while the
number of involved variables do not significantly increase computational demands.
Approaches based on Equivalent Static Loads (ESL) describe important advances
in the efficient optimization in the context of structural optimization [Kang u. a.
(2006); Jeong u. a. (2008)]. Nevertheless, the formulation of the optimization
problem as well as the level of nonlinearity strongly affect the convergence of the
iterative process, becoming limited on its application.

Fig. 1 compares a direct approach against surrogate or metamodel based optimization,
showing the potential reduction in the number of analyses needed to cope with the
ultimate solution. The term metamodel is used in this context as a basic model struc-
ture which is able to copy the behavior of completely different high fidelity models by
adaptation to sampled data. We want to remark that optimization algorithms are also
extremely sensitive to problem dimensionality. For the given nonlinear example with
20 dimensions, around 2000 simulations where carried out by the EA in order to con-
verge to the actual optimum. This result was also obtained by applying the same EA
optimization on a valid surrogate model generated from a sample of 100 realizations.
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Figure 1: Response optimization.

In the context of vehicle virtual prototyping, and focused on the structural behavior,
studies conclude that crash discipline, with emphasis in highly nonlinear frontal crash
simulations, becomes critical when trying to make prediction by means of regression
metamodels [Kögl u. a. (2008)]. The inherent nonlinear physical behavior of such load
cases combines with underlying numerical scatter coming from parallel processing, ex-
plicit integration and modeling assumptions. This leads to noiy or unstable results,
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which can still be sometimes used for qualitative prediction with the model. Quan-
titative predictions fail in many cases, especially as far as high order responses (e.g.
acceleration) are involved, fo which precision turns out not to be enough to represent
model causality. This limits the application of MDO to full vehicle concepts.

2. Approach

Several different surrogate models are available in literature and implemented in com-
mercial software, and their use for optimization has been rapidly extended. However
there is still a huge problematic due to the wide range of application of such methods,
and the complexity involved in modeling real high dimensional data. Besides, problems
tend to be over-parameterized and usually few data are available for learning. In the am-
bit of virtual vehicle prototyping, in statistics widely used term ”curse of dimensionality”
condemns many modeling efforts.

In absence of previous knowledge, stochastic sampling methods are usually preferred
to collect model information. In most applications, optimal Latin Hypercube Sampling
(LHS) serves to deliver correlation measures which are used as basic sensitivities. How-
ever, this information is not valid for a large class of problems, where nonlinear patterns
arise. Moreover, correlation measures in high dimensional problems require also from
large datasets to test for variable significance. In fact, dimension reduction (PCA, PLS)
or shrinkage methods (e.g. Ridge Regression) can provide for the necessary screening in
a more efficient way.

Prediction based on small samples sizes requires additional analysis effort. First, optimal
sampling methods which provide space filling and surrogate model oriented designs are
desired. Surrogate model flexibility needs to be maximized, while overfitting remains
under control. For that purposes, kernel based expansions and model ensembles provide
flexible regression schemes, while model building can be achieved with the help of a full
Bayesian approach which combines variable selection and parameter estimation.

We approach Robust Design just by smoothing simulation data, which is not always
expected to be deterministic. This problem arises as soon as variables are filtered out
to increase resolution, as they immediately become noise factors. We search for robust
configurations in terms of general stability, whereas very low probability events subject
of reliability analysis might only be addressed after the problem has been targeted and
bounded precisely. Additionally, we make use of probabilistic models, which can deliver
confidence bounds for the predictions.

Besides, classification surrogate models for their use as optimization constraints are
introduced. A different perspective which becomes necessary as long as selected model
responses are driven by discontinuous modes. Related methods are analogous to the
regression case, while the probabilities for class membership are modeled instead of a
single conditional distribution. This can be achieved by using softmax expressions for
the regression models and alternative inference procedures.

Fig. 2 proposes a basic workflow to handle problematic responses for which linear meth-
ods did not succeed, introducing nonparametric extensions with variable selection. If
required, derived sensitivities will lead an adaptive or sequential sampling strategy later
on. Throughout the procedure, validation measures are considered to decide whether
found models can be transferred into the MDO problem definition. Main decision mea-
sures shown below are based on lost functions for regression and classification problems
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Figure 2: Approach for surrogate modeling of highly nonlinear systems.

and calculated in a k-fold cross validation scheme. Basically, residuals coming from the
actual value (y) and the predicted one (ŷ) are considered.

Mean Square Error (MSE) =
n∑

i=1

(yi − ŷi)2 0 ≤ MSE ≤ ∞

(1)

Coefficient of Prediction (COP) = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

0 ≤ COP ≤ 1

(2)

Classification Rate (CLASS) =
1
n

n∑
i=1

I(yi, ŷi) I =
{

1 yi = ŷi

0 else
0 ≤ CLASS ≤ 1

(3)

3. Identified Problem Classes

To gain understanding of the different problems to be faced when looking for surrogate
models, a explicit division between discontinuous and continuous responses is introduced
here. Two different case studies are considered: a B-pillar concept design for side crash
in passenger car and the subframe rail design of a commercial vehicle.

The first one involves high nonlinearities mainly due to material plasticity and joint
failure. Nevertheless, the intrusion levels at the FE-model in Fig. 3 show continuous
behavior with respect to the varied design parameters.
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Figure 3: B-pillar model in original and deformed state.

In contrast, in the early development phase of the subframe rail, buckling modes which
induce unstable response behavior in the structure might arise. Sensitivity analysis
needs to be carried out to understand how a robust design could be achieved. Besides,
different variable relationships might exist depending on the resulting deformation modes
depicted in Fig. 4, which makes ordinary regression models not suitable.

(a) Outer (b) Inner

Figure 4: Contradictory subframe rail buckling modes.

In such discontinuous cases, the main goal should be to model the buckling condition
based on critical design variables. Moreover, it is highly probable that no continuous
model can be found for each deformation mode (left,right), but only noisy responses.
Forecasting with the FE-model at that stage might also no longer be valid.

Unfortunately, for many load cases it becomes difficult to make such clear classifications,
and compromise solutions need to be adopted. In that sense, additional studies from
crash FEA data with high noise levels are summarized in the Appendix to complete a first
overview. Some of the considered frontal load cases are known to be most challenging
for metamodeling purposes.
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4. Kernel Methods

When trying to derive model input-output relationships, linear models often provide
good approximations. It is important to remark that in spite of nonlinearity occurring
on dynamic responses, variable and response relationships might still be linear. Even
for many nonlinear models the linearity assumption holds under certain assumptions.

Unfortunately, this is not always the case for complex systems. In order to cope with
different problems in a flexible way, kernel methods provide an optimal basis for maxi-
mizing model learning capabilities, as a generalization of the linear model via a transfor-
mation into nonlinear feature spaces. In this paper, we present several examples which
require from such methods to learn from our simulation results. In addition, methods
for inferring model structure in high dimensional spaces are introduced.

Thanks to such a transformation, a Reproducing Kernel Hilbert Space (RKHS) is pro-
posed (H), based on nonlinear mapping functions, which reduce dimensionality problems
to learning capacity problems:

Φ : X → H (4)
x 7→ Φ(x) (5)

A Hilbert Space is a generalization of an Euclidean Space into n-dimensional, providing
important mathematical properties like existence of an inner product. This operations
can be used for choosing similarity functions for regression or classification methods.

It is possible to derive the kernel function from the RKHS, thanks to the existence of
all point function evaluations:

px : H → R (6)
f 7→ px(f) = f(x) (7)

Continuity is built in the mapping, meaning that whenever f and f ′ are close in H,
then f(x) and f ′(x) are close in R. This can be thought of as a topological prerequi-
site for generalization ability [Scholkopf und Smola (2002)]. After mapping to higher
dimensional feature spaces learning might become much easier based on low dimensional
similarity measures, like shown in Fig. 5.

Linear methods are still applicable in the nonlinear projected space. This property
is also called kernel dual representation [Bishop u. a. (2006)], as it provides a linear
decomposition of eigenvalues and modes, as described in Mercer’s theorem.

Theorem 4.1 (Mercer’s Theorem). If k is a continuous kernel of a positive definite
integral operator on L2(χ) (where χ is some compact space),

∫
χ

k(x, χ)f(x)f(χ)dxdχ ≥ 0 (8)

It can be expanded as,

k(x, χ) =
∞∑
i=1

λiφi(x)φi(χ) (9)

using eigenfunctions φi and eigenvalues λi ≥ 0.
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Φ : R2 → R3

(x1, x2) 7→ (z1, z2, z3) := (x2
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Figure 5: Expansion to RKHS feature space.

Many well-known data-driven models for supervised learning tasks are based on RKHS,
like Gaussian Processes (GP), Supported Vector Machines (SVM) or Relevance Vector
Machines (RVM). In contrast, other classic nonparametric regression methods like Weighted
or Moving Least Squares (W/MLS) suffer from support problems due to its formulation,
where model shape depends on the predicted values. Non robustness and extrapolation
issues make MLS not adequate, due to the inability to cover space boundaries in high
dimensions with additional support points.

Below, general kernel regression expressions are introduced, with the example of the
Gaussian kernel function. The last expression shows a model predictor, as a function
of the Gram matrix K and input observations, including regularization terms λ. The
question for the different kernel methods resides on how linear weights and kernel shape
functions should be estimated.

k(x, χ) = φ(x)T φ(x′n) (10)

k(x, χ) = exp
(
−‖x− χ‖

2σ2

)
Gaussian Kernel (11)

ŷ = wT φ(x) = k(x)T (K + λIn)−1x (12)

4.1. Gaussian Processes

In the mathematical context of kernel methods, the probabilistic perspective given by
stochastic processes proved to be the best to learn from our complex simulations in
terms of generalization and computing time. Roughly speaking a stochastic process is
a generalization of a probability Gaussian process distribution (which describes a finite-
dimensional random variable) to functions. From the Bayesian point of view, we may
define prior functions for the model to be learned. Gaussian processes provide several
computational advantages and can be shown to be the solution of many adaptive schemes
like neuronal networks, saving the adaptation process necessary in their architectures.
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They aim an extension of linear model to infinite nonlinear basis, whose complexity is
related to the amount of available data.

From the kernel perspective, a Gaussian Process can be specified by its mean and co-
variance function:

f(x) ∼ GP{E[f(x)], k(x, χ)} (13)

Parameter estimation of GP can be very similar to other kernel methods like Supported
Vector Machines (SVM), for which a convex problem can formulated. However some
conditions regarding likelihood concavity need to be met. This is to say, that the MAP
(Maximum A Posteriori) estimation for GP has a close correspondence with the SVM
solution [Rasmussen und Williams (2006)].

For a general stochastic process, marginal likelihood can be computed as the integral of
likelihood times the prior distribution as:

p(y|X) =
∫

p(y|f,X)p(f |X) df (14)

Considering a Gaussian prior, the following expression holds for the regression result:

p(y|X) = −1
2
yT (K + Σ2

nI)−1y − 1
2
|K + Σ2

nI| − n

2
log 2π (15)

Coming back to the their application in MDO, these methods maximize generaliza-
tion ability for small samples, providing basis for nonlinear sensitivity analysis via so
called Automatic Relevance Determination (ARD) covariance functions, while keeping
computational efforts affordable. Besides, probabilistic models can be used to provide
prediction bounds.

In this work, we show the advantages of introducing more complex kernel or covariance
functions, in order to learn hidden or latent features. Interpretability is also a main
benefit of stochastic processes when compared with full black box solutions like neuronal
networks or other kernel methods like SVM.

5. Bayesian Approach

Data-driven metamodels require from parameter or function estimation. The Bayesian
perspective describes a general framework for estimation, in which the aim is to ap-
proximate the posterior distribution of the probabilistic distribution from the prior and
likelihood expressions (16). Likelihood functions need to be assumed for the underlying
processes. Analytical inference is often mathematically intractable, and approximations
for the posterior distribution by means of Likelihood type II, Laplace and Expectation
Propagation (EP) are widespread. In the past years, a trend towards Monte Carlo
Markov Chains (MCMC) can be followed.

π(θ|X) =
π(X)l(θ, X)∫
π(X)l(θ, X)dθ

(16)

MCMC is considered one of the 10 most important mathematical algorithms. It is based
on random walks, therefore Monte Carlo, but following a Markov chain. A Markov chain
is a mathematical model for stochastic processes, in which the current state only depends
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on most of the previous results. The chain ensures that the walk follows high density
regions in the probability space, thus reducing the effort for estimation of integrals or
optimization. In contrast to Monte Carlo sampling, observations are correlated. The
main advantage is the convergence properties of the chain, although it is not possible
to determine beforehand the amount of realizations needed. The mixing properties of
the chain highly depend on the model complexity and chosen sampling method. A main
issue of the method is to ensure convergence of the chain, for example by means of
parallel chains. Usually, first chain iterations are rejected (so called “burn in”), in order
to remove biased realizations from the whole sample.

A compact introduction to most common methods can be found in [Andrieu u. a.
(2003)], whose main characteristics are briefly introduced next:

Metropolis-Hastings algorithm Generates a random walk using a proposal density (q,
e.g. Gaussian) and a criterion for accepting or rejecting proposed moves,

α < min
{

p(xnew)q(xcurrent|xnew)
p(xcurrent)q(xnew|xcurrent)

, 1
}

(17)

and became very popular due to its wide applicability.

Gibbs sampling A special case of the former, more efficient but limited to the cases
where all the conditional distributions of the target distribution can be sampled
exactly.

Slice sampling A general version off the Gibbs sampler, depends on the principle that
one can sample from a distribution by sampling uniformly from the region under
the plot of its density function. This method alternates uniform sampling of an
auxiliary variable in the vertical direction with uniform sampling from the hori-
zontal “slice” defined by the current vertical position. This is an alternative to
approach sequential integration of multivariate distributions.

Adaptive MCMC Variations of the Metropolis-Hastings algorithm in order to improve
converge properties by tuning proposal distribution parameters during estimation.
Provides improved mixing in large dimensions.

Hybrid Monte Carlo (HMC) This method tries to avoid random walk behavior by in-
troducing an auxiliary momentum vector and implementing Hamiltonian dynamics
where the potential function is the target density. Gradient information is used at
then discarded ar each state. The end result of Hybrid MCMC is that proposals
move across the sample space in larger steps with improved convergence and space
filling properties.

Reversible Jump method (RJMCMC) It is a variant of Metropolis-Hastings that al-
lows proposals that change the dimensionality of the space, which can be useful
for feature identification purposes.

5.1. Bayesian Modeling for Feature Identification

The task of finding nonlinear relevant components can be accomplish by combining
flexible metamodels with variable selection, performing estimation simultaneously. Ker-
nel methods provide the necessary flexibility, especially if ensembles of kernels with
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anisotropic properties are used. Bayesian methods allow the inclusion of penalized like-
lihood functions or even latent variable vectors to find the optimal model structure.

Even though maximum likelihood minimization provides good results in many appli-
cations, its tendency to fail under circumstances (multimodal, high dimensional distri-
butions) makes the full Bayesian approach a valuable alternative. Moreover, variable
selection can also be included in the Bayesian modeling (18), defining discrete priors
for model structure (Hi, not to confound with RKHS definition), linear coefficient pa-
rameter (w) and kernel hyperparameters (θ). By integrating with Monte Carlo Markov
Chains in a fully Bayesian formulation, posteriors might be inferred in a relative effi-
cient manner by means of sampling strategies like Reversible Jump MCMC or the Gibbs
Sampler.

For example, marginal distributions can be sequentially integrated, first for model pa-
rameters:

p(w|y, X, θ,Hi) =
p(y|X, θ,Hi)p(w|θ,Hi)

p(y|X, θ,Hi)
(18)

Then, the posterior over the hyperparameters, including the previous marginal likelihood
(also called evidence) as the new likelihood function,

p(θ|y, X,Hi) =
p(y|X,Hi)p(θ|Hi)

p(y|X,Hi)
(19)

and finally, conditional distribution for the model structure can be elaborated based on
found evidence p(y|X) =

∑
i p(y|X,Hi)p(Hi):

p(Hi|y, X) =
p(y|X,Hi)p(Hi)

p(y|X)
(20)

Most kernel regression models only focus on learning of kernel location parameters
(sparse approximations) but not the kernel scale parameters. Kernels with a single
scale parameter, such as the Gaussian kernel whose precision matrix is a scale multi-
plied by the identity matrix. These kernels assume homogeneity across all covariates,
which is usually not true in modern applied problems, particularly when the number of
covariates is large. ARD kernels provide a first attempt to improve flexibility, with diag-
onal precision matrix, which assigns a scale parameter for each covariate. This facilitates
a variety of structures that can be used in feature selection.

In order to maximize learning capacity, ensembles of anisotropic, stationary kernels are
defined:

yi =
∑

j

βjK(x, χj) + εi, εi ∼ N (0, φ−1) (21)

K(x, χ) = exp

{
−

p∑
l=1

λl(xl − χl)2)

}
(22)

Besides, we propose compositions of kernel by applying kernel operations to further tune
the model. It is possible to operate on unique kernels via summation, multiplication,
convolution, scaling and more without altering their necessary mathematical properties.
Also, considering different similarity functions for noise parameters might help to precise
in the approximation.

To conclude, we use such complex inference approach for the determination of important
hidden features in high dimensional data, which otherwise could not be discovered. This
methodology is only applied at those cases for which variable screening methods did not
succeed.
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6. Regression based Surrogate Models

Having a look to continuous problems from section 3, we might employ regression theory
to construct surrogate models which can infer the conditional density distribution, and
hence the process underlying noisy data.

The following list summarizes some of the most popular methods which can be found
in the literature, including nonlinear versions, which are crucial to fit selected model
responses:

• Linear Regression or Response Surface Models (RSM)

• Moving Least Squares (MLS)

• Regression Trees (CART)

• Artificial Neuronal Networks (ANN)

• Generalized Additive Models (GAM)

• Supported Vector Regression (SVR)

• Projection Pursuit Regression (PPR)

• Multivariate Adaptative Regression Splines (MARS)

• Gaussian Process (GP)

• Kernel Partial Least Squares (KPLS)

The build many branches and research areas which are often strongly linked. Some of
them share many similarities. Kernel regression variants include different regulariza-
tion strategies like Partial Least Squares, Lasso or Ridge regression, till full Bayesian
approach.

After following a best surrogate model approach, we found kernel methods, and partic-
ularly Gaussian Processes the most convenient strategy for generalization in complex
problems with small datasets and more than 20 variables. In the following, we will
discuss examples where these models provide optimal solutions.

6.1. Example: Continuous Function

To illustrate the curse of dimensionality problem, we make use of a highly nonlinear
function, which will be fitted via different regression methods. This example reproduces
the case of a low dimensional manifold carrying most of the variation of the response.
First we sample the minimal two dimensional base, and then increase the dimensionality
up to twenty variables. The last do actually not have any contribution.

The model is based on the Ishigami function, related to research in nonlinear sensitivity
methods:

y(x1, . . . , x20) = sin(x1) + 7sin2(x2) · x1 · (x2 + 0.5) +N (0, 5); xi ∈ [−π, π] (23)
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(c) ARD Gaussian Process (GP)
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(d) Succesful optimization

Figure 6: Optimization based on regression models in optimal subspace of the high di-
mensional Ishigami function.

Fig. 6 attempts to address the risk of overlooking important trends of the underlying
model in the surrogate, which turns into a completely wrong optimization results. On
the left side, surrogate models with 100 support points are overlaid to the original
model. On the right side, EA optimization history is plotted, with a biased localization
of the optimum for the MLS metamodel [Most und Will (2008)]. This is related to the
insufficient model sensitivity, with merely estimation of linear trends.

This example reflects the need for flexible approximations schemes, for example by
including anisotropic designs which allow for directional sensitivity in the model. Only
defining kernels which can accurately reproduce the underlying variogramm can the
variable selection succeed. Nevertheless, complexity in kernel design extends to the
parameter estimation process, and hence Bayesian methods tend to provide an optimal
methodology for model building.

Noise form assumptions play also a central role to increase the precision in the estimation.
Heteroscedasticity can be managed by the metamodel.

6.2. Application: High Dimensional Nonlinear Continuous Problem

Next, we present a real case which shows great similarities with the previously introduced
example. It deals with one of the multiple responses obtained from a frontal crash FEA
for a roadster model.

Weimarer Optimierungs- und Stochastiktage 6.0 – 15./16. October 2009 13



The problem is high dimensional with 99 variables and only 196 simulations are available.
Such load cases usually deliver high noise levels in the solution. Again, we want to
filter relevant trends in the data, which can help to understand model behavior and
decide about the possible inclusion of the response inside the MDO process. We derive
sensitivity indexes from fitted nonparametric models.

Three representative solutions are overviewed. First, we use Random Forest imple-
mentation (RF) [Liaw und Wiener (2002)] in order to show its potential to screen
important variables, especially if their variation is nonlinear. In our implementation,
different Pareto rule inspired strategies are managed to select the optimal subspace.
However, this approach might sometimes fail and often suggests the need for iterative
search solutions, which might be too expensive.
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Figure 7: Selected nonlinear response from frontal crash of a roadster model (see
Appendix, Table 7).

The drawbacks coming from the use of local linear regression by the RF are overcome
by the use of Gaussian Process, whose kernel or covariance functions can better copy
the variation of the unknown process. The last can be used to determine sensitivities
in the data more precisely like shown in Fig. 7, although variable screening through RF
results is performed previously in the 99 dimensional space.

Finally, to overcome the dimensionality problem while keeping flexibility in the approx-
imation, we evaluate the performance of kernel ensembles in a fully Bayesian implemen-
tation. Combining structure and parameter estimation by means of an implementation
of the RJMCMC sampling method, we identify the optimal regression subspace (Fig. 8).
Despite its potential, the method still shows classical convergence problems in the esti-
mation process, mainly owed to overlapping in the kernel ensemble. Robust estimation
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is granted only at the cost of roundabout 50,000 MCMC iterations (20 minutes in Intel
DualCore R© at 3,0 Ghz).
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Figure 8: Feature identification with GP and fully Bayesian approach.

To conclude, we can claim that screening with Random Forest provides robust enough
criteria in order to apply anisotropic GP in the pre-filtered design space, which parame-
ters can efficiently computed for small sample size. Downscaling of the algorithm is also
possible thanks to the last advances in sparse approximations [Rasmussen und Williams
(2006)], which can decrease computational effort from O(n3) to O(nd2). Nevertheless
still exist cases where Random Forest might overlook important variables.

7. Classification based Surrogate Models

Taking over the problem class definition from section 3, we faced now an alternative
to continuous responses. This alternative needs to be confronted when learning from
highly nonlinear simulation models. The objective is to find natural clusters in data,
and decision models which can predict the group membership for new design configu-
rations. This feature can also be fitted within MDO, using found probabilistic models
as optimization constraints. Hence, it would be possible to tackle with noisy responses,
providing that instabilities or differentiated patterns can be found.
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A similar approach is presented in [Missoum (2007); Basudhar u. a. (2008)], however
no solutions for high dimensional data are offered. This is an essential aspect for its use
in real applications.

In this paper, High Dimensional Discriminant Analysis (HDDA) [Bouveyron u. a.
(2007)] and classification based on Random Forest [Liaw und Wiener (2002)] are used
at the first stage. Both methods provide quite flexible solutions which can deal with
high dimensional spaces by means of adaptive Gaussian density estimation and stochas-
tic model space partitioning respectively. Kernel based classification and full Bayesian
extensions are postponed for posterior investigations.

7.1. Clustering Discontinuous Responses

Assigning simulations to different groups can be done is several ways. Knowledge or
design based constraints can serve to the task of splitting data into groups, in spite of
the fact that the transition between them might be obscure.

Instead, it would be desirable to find physical evidence in the data. We first attempt to
do that by applying clustering algorithms. In the machine learning field the process is
called unsupervised learning, because only feature data is available to investigate rela-
tionship between different simulations. Data splitting is normally carried out based on
distance measures. Usually, data clustering supports later data evaluation by means of
classification, outlier detection, subset regression, within more complex analysis [Stein-
bach u. a. (2004)].

Different Clustering strategies can be practiced. A common division is carried out be-
tween hierarchical (K-means, K-medoids) and density based methods like Gaussian
Mixture Models (GMM). In the last years, many new algorithms arose to cope with
dimensionality challenges (Bayesian Approach [Tadesse u. a. (2005)], CLIQUE, etc.)

Several schemes are proposed for dimensionality reduction in the last years. In contrast
to the classification or regression case, we are modeling full densities and not only con-
ditional distributions. As a consequence, the curse of dimensionality becomes even more
critical, and projection methods almost unavoidable [Parsons u. a. (2004)].

In our implementation, we leave aside high dimensional strategies at a first stage due to
the lack of robustness, and content ourselves with pairwise scatterplot based clustering.
Clustering is performed on the variation of the target response for each variable. For
such purposes, we employ density based Gaussian Mixture modeling, which estimation
is carried out using Expectation Maximization (EP). This method combined with low
correlated sampling sets allows us to recognize differentiated groups in some of the
analyzed case studies. The validity of such clusters is checked with the help of time
series or spatial information when available.

7.2. Example: Discontinuous Function

The following basic example pretends to represent the class of problems aimed with
this approach. In the ideal case, we face a model which has a switching condition as
a function of the design variables. The response alternates from two different states.
This unstable behavior is quite common in many physical systems. The variational
characteristics for each state can be completely different, and hence, no unique model
can efficiently predict the response of the system.
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In the current example, only 3 out of 20 variables control the unstable behavior of
the system. This assumption seems quite likely to us, because physical discontinuities
tend to depend on few design parameters in a nonlinear manner. Also variation within
each state follows an ordinary linear model, for which the contribution of the three
classification variables varies for each switching state. Additionally, normal distributed
noise is added to each expression:

y =
{

Xβ + ε if x1 ≥
√

x2
2 + x2

3

Xγ + ζ if x1 <
√

x2
2 + x2

3

(24)

Our objective is to find such alternating models, be able to predict the transition between
them, and finally try to characterize system behavior for each state. We sample 100
model realizations via Latin Hypercube with minimal input correlation.

Clustering for each variable forming the design space with the target response leads us
to the projection which seems to split data optimally. We allow a maximum of three
clusters to be identified. Different criteria like Maximum Likelihood (ML), Partition
Coefficient (PC) or Classification Entropy (CE) are evaluated in order to choose the
optimal number of clusters.
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(b) Found optimal cluster densities

Figure 9: Pairwise Clustering with Gaussian Mixture Models (GMM).

After splitting results into clusters, we make use of Random Forest classification to
find the optimal subspace for classification. We screen off non-significant variables and
proceed with classification in a contracted dimensional space.

For this example, it is possible to find switching states in the pairwise projections of the
original design space. Once this is realized, classification methods can accurately delimit
the transition between both models (Fig. 10). Classification rates over 0.9 achieved in
a 5-fold cross validation setting are collected into Table 1, with the number of clusters
appended to the models (c:2). In this case, linear regression on the classified data
performs accurately (COP over 0.9), as long as all variables are considered again in the
estimation process.

Real application examples (see Appendix) show to us that groups tend to overlap them-
selves and usually noisy process are hidden in each cluster. In fact, these are the cases
where we can get more advantage of modeling group membership probabilities accu-
rately. If defined groups are actually relevant, high dimensional classification methods
allow representing complex decision boundaries, which can be used as surrogate models
in MDO.
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Figure 10: Classification Model (HDDA).

7.3. Application: High Dimensional Discontinuous Problem

The process described in section 7.2 is now applied to a sample data from a Roof Impact
Test based on FEA. Among seven response variables, only one is selected to reproduce
here the modeling process.

In Fig. 11 we can observe two identified clusters corresponding to the minimal value of
the displacement. This division is supported by the time evolution of the response, which
indicates some discontinuity, which can be caused for example by a contact setting. This
is an extreme case which could also be determined visually. However, in many cases not
every response can be analyzed in detail, and process automation becomes essential.

Once we group the different cases, classification is performed on labeled data, including
variable selection. This is carried out based on node purity criterion for the Random For-
est model, to find surrogate models on the optimal subspace. It is important to remark
that sensitivities might be completely different to correlation values or regression based
contributions. Decision boundaries can be use to predict valid design combinations.

8. Conclusions

This paper pretends to highlight the challenges related to the search for surrogate models
when highly complex models are involved. We are aware of the limitations to reproduce
all effects encountered in our high fidelity FE-models, but among several possibilities for
understanding and optimizing such designs, we believe that a combined strategy with
regression and classification models can be extremely useful.

However, for such purpose, more flexible metamodels which enhance identification of
nonlinear trends are introduced in our processes. Simultaneous model building and
inference of model parameters turns to be critical for large sample spaces with few data
available.

Advanced regression models need to be considered for problems including nonlinear be-
havior. Kernel methods offer a generalization of linear models with robust estimation
methods. FE-model validation can be supported with the findings from surrogate mod-
els, and not limited to correlation measures. As a result, numeric problems might be
identified and controlled, also reducing uncertainty in the metamodels.
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Figure 11: Response classification for Roof Impact Test (see Appendix, Table 4).

The same context applies for the discontinuous models, where classification provides
an alternative to cope with unstable and/or noisy responses, which can be defined as
optimization constraints within MDO strategies. High dimensional classification delivers
encouraging results, although some cases still require from larger sample sizes or more
clear definition of the physical response under study.

Hence, we approach optimization for our problems in a stepwise manner, carrying out a
sequential learning process flexible to modifications in the formulation of the optimiza-
tion problem. The aim is to maximize gained information for each step.

9. Outlook

Derived from the results presented, it turns that robust clustering in such high di-
mensional problems might be extremely valuable. Nevertheless, we believe that the
integration of available time and spatial data needs to be prioritize in order to improve
surrogate model prediction quality.

A parallel topic for us consist on merging data-driven and mechanistic surrogate models,
so that sample resolution can be further reduced based on additional physical consider-
ations.

We face now an integrated effort to implement and further develop some of the methods
covered in this article and push them forward until we can prove their usability in the
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design development phase. The importance of variable selection needs to be further
extended into the parameterization of vehicle geometry.
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A. Case Studies

This appendix contains the results of surrogate modeling for selected responses coming
from different vehicle models and load cases.

5-fold cross validation is performed to avoid overfitting and obtain reliable prediction
quality measures. Variable screening for regression (Rank correlation) as well as for
classification cases (Random Forest derived sensitivities) is performed. A combination
of both strategies is used to reduce risk of filtering important variables (i.e. Comb.)
and additionally optimal subspace is sought through nonlinear sensitivity indexes (GP
hyperparameters, i.e. Hyper.)

For the cases where regression does not perform well, classification models based on
clustered data are gathered. The number of found clusters is appended to the name of
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the classifier. Negative COP values, as well as classification based on invalid clusters
results are not removed from the tables.

Finally, prediction measures are stored for each model for comparison and selection
before integration into the MDO problem formulation. Results are promising and in-
duce the application of discontinuous or noisy responses with high classification rates
(CLASS > 0.85) as constraints. For many of the listed Crash FEA based responses,
nonlinear regression does not offer better results than linear methods in terms of COP .
In spite of the low COP values, sometimes it is possible to find out relevant nonlinear
trends which can be used to improve surrogate model quality by sampling sequentially
in reduced spaces.

Response Metamodel Screening Train/Test Variables COP MSE CLASS

y

RSM (linear) None (100/100) 20 0.51 4.09 · · ·
RSM (linear) Comb. (100/100) 8 0.46 4.47 · · ·
GP Comb. (100/100) 8 0.47 4.39 · · ·
RF-reg Comb. (100/100) 8 0.38 5.16 · · ·
GP Hyper. (100/100) 4 0.53 3.91 · · ·
RSM (quadratic) None (100/100) 20 0.46 4.46 · · ·
GP-class-cluster c:2 Comb. (100/100) 5 · · · · · · 0.95
RF-class-cluster c:2 Comb. (100/100) 5 · · · · · · 0.88

Table 1: Metamodel summary for the discontinuous function

Response Metamodel Screening Train/Test Variables COP MSE CLASS

y

RSM (linear) None (100/100) 20 · · · 284.16 · · ·
RSM (linear) Comb. (100/100) 7 · · · 206.04 · · ·
GP Comb. (100/100) 7 1.00 0.01 · · ·
RF-reg Comb. (100/100) 7 0.30 141.42 · · ·
GP Hyper. (100/100) 2 1.00 0.01 · · ·
RSM (quadratic) None (100/100) 20 · · · 268.14 · · ·
GP-class-cluster c:2 Comb. (100/100) 5 · · · · · · 0.00
RF-class-cluster c:2 Comb. (100/100) 5 · · · · · · 0.00

Table 2: Metamodel summary for the high dimensional Ishigami function

Response Metamodel Screening Train/Test Variables COP MSE CLASS

y

RSM (linear) None (100/100) 20 · · · 215.33 · · ·
RSM (linear) Comb. (100/100) 10 0.07 179.86 · · ·
GP Comb. (100/100) 10 0.79 41.21 · · ·
RF-reg Comb. (100/100) 10 0.07 178.33 · · ·
GP Hyper. (100/100) 2 0.82 34.84 · · ·
RSM (quadratic) None (100/100) 20 · · · 231.83 · · ·
GP-class-cluster c:2 Comb. (100/100) 10 · · · · · · · · ·
RF-class-cluster c:2 Comb. (100/100) 10 · · · · · · · · ·

Table 3: Metamodel summary for the high dimensional Ishigami function with additional
noise

Response Metamodel Screening Train/Test Variables COP MSE CLASS

DC Dist PID
LOW END

RSM (linear) None (98/98) 41 0.15 43.93 · · ·
RSM (linear) Comb. (98/98) 14 0.48 26.76 · · ·
GP Comb. (98/98) 14 0.40 30.65 · · ·
RF-reg Comb. (98/98) 14 0.24 39.00 · · ·
GP Hyper. (98/98) 8 0.47 27.20 · · ·

continued on next page ...
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... continued from previous page

Response Metamodel Screening Train/Test Variables COP MSE CLASS

RSM (quadratic) None (98/98) 41 0.05 48.77 · · ·
HDDA-cluster c:2 Comb. (98/98) 17 · · · · · · · · ·
RF-class-cluster c:2 Comb. (98/98) 17 · · · · · · · · ·

DC Dist PID
LOW MIN

RSM (linear) None (98/98) 41 0.64 47.19 · · ·
RSM (linear) Comb. (98/98) 10 0.71 38.41 · · ·
GP Comb. (98/98) 10 0.72 37.17 · · ·
RF-reg Comb. (98/98) 10 0.48 68.51 · · ·
GP Hyper. (98/98) 6 0.74 34.58 · · ·
RSM (quadratic) None (98/98) 41 0.60 53.20 · · ·
HDDA-cluster c:3 Comb. (98/98) 10 · · · · · · 0.71
RF-class-cluster c:3 Comb. (98/98) 10 · · · · · · 0.70

DC Dist PID UPP
END

RSM (linear) None (98/98) 41 0.07 50.75 · · ·
RSM (linear) Comb. (98/98) 13 0.52 26.34 · · ·
GP Comb. (98/98) 13 0.42 31.70 · · ·
RF-reg Comb. (98/98) 13 0.22 42.44 · · ·
GP Hyper. (98/98) 8 0.52 26.52 · · ·
RSM (quadratic) None (98/98) 41 · · · 63.32 · · ·
hdda-cluster c:2 Comb. (98/98) 1 · · · · · · · · ·
RF-class-cluster c:2 Comb. (98/98) 1 · · · · · · · · ·

DC Dist PID UPP
MIN

RSM (linear) None (98/98) 41 0.46 31.94 · · ·
RSM (linear) Comb. (98/98) 10 0.68 18.89 · · ·
GP Comb. (98/98) 10 0.69 18.27 · · ·
RF-reg Comb. (98/98) 10 0.49 30.23 · · ·
GP Hyper. (98/98) 6 0.70 18.14 · · ·
RSM (quadratic) None (98/98) 41 0.32 40.55 · · ·
HDDA-cluster c:2 Comb. (98/98) 8 · · · · · · 0.87
RF-class-cluster c:2 Comb. (98/98) 8 · · · · · · 0.82

DC Intru
RoofSideMember
N4000026 Z rel
mi107mm MAX

RSM (linear) None (98/98) 41 0.63 35.35 · · ·
RSM (linear) Comb. (98/98) 10 0.72 26.30 · · ·
GP Comb. (98/98) 10 0.70 28.20 · · ·
RF-reg Comb. (98/98) 10 0.48 49.00 · · ·
GP Hyper. (98/98) 7 0.75 23.73 · · ·
RSM (quadratic) None (98/98) 41 0.65 33.35 · · ·
hdda-cluster c:2 Comb. (98/98) 1 · · · · · · · · ·
RF-class-cluster c:2 Comb. (98/98) 1 · · · · · · · · ·

DC Intru
RoofSideMember
N4000027 Z rel
mi107mm MAX

RSM (linear) None (98/98) 41 0.67 41.03 · · ·
RSM (linear) Comb. (98/98) 10 0.80 25.08 · · ·
GP Comb. (98/98) 10 0.80 24.96 · · ·
RF-reg Comb. (98/98) 10 0.47 67.42 · · ·
GP Hyper. (98/98) 6 0.76 29.71 · · ·
RSM (quadratic) None (98/98) 41 0.70 37.30 · · ·
HDDA-cluster c:2 Comb. (98/98) 5 · · · · · · · · ·
RF-class-cluster c:2 Comb. (98/98) 5 · · · · · · · · ·

DC Intru
RoofSideMember
N4000056 Z rel
mi107mm MAX

RSM (linear) None (98/98) 41 0.78 31.38 · · ·
RSM (linear) Comb. (98/98) 11 0.86 20.15 · · ·
GP Comb. (98/98) 11 0.86 19.42 · · ·
RF-reg Comb. (98/98) 11 0.48 74.01 · · ·
GP Hyper. (98/98) 6 0.82 25.86 · · ·
RSM (quadratic) None (98/98) 41 0.78 31.78 · · ·
HDDA-cluster c:2 Comb. (98/98) 4 · · · · · · · · ·
RF-class-cluster c:2 Comb. (98/98) 4 · · · · · · · · ·

Table 4: Metamodel summary in a roof impact test for a passenger car

Response Metamodel Screening Train/Test Variables COP MSE CLASS

Occupant load
criterion

RSM (linear) None (91/91) 46 0.70 61.52 · · ·
RSM (linear) Comb. (91/91) 9 0.75 50.29 · · ·
GP Comb. (91/91) 9 0.71 59.73 · · ·
RF-reg Comb. (91/91) 9 0.53 95.97 · · ·
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Response Metamodel Screening Train/Test Variables COP MSE CLASS

GP Hyper. (91/91) 5 0.70 61.81 · · ·
RSM (quadratic) None (91/91) 46 0.74 52.03 · · ·
HDDA-cluster c:2 Comb. (91/91) 12 · · · · · · 0.89
RF-class-cluster c:2 Comb. (91/91) 12 · · · · · · 0.89

Door relative
displacement

RSM (linear) None (91/91) 46 0.35 5.73 · · ·
RSM (linear) Comb. (91/91) 13 0.58 3.72 · · ·
GP Comb. (91/91) 13 0.30 6.10 · · ·
RF-reg Comb. (91/91) 13 0.32 5.96 · · ·
GP Hyper. (91/91) 7 0.40 5.22 · · ·
RSM (quadratic) None (91/91) 46 0.12 7.69 · · ·
HDDA-cluster c:2 Comb. (91/91) 15 · · · · · · 0.85
RF-class-cluster c:2 Comb. (91/91) 15 · · · · · · 0.84

Frontal panel
intrusion

RSM (linear) None (91/91) 46 0.67 0.55 · · ·
RSM (linear) Comb. (91/91) 10 0.76 0.40 · · ·
GP Comb. (91/91) 10 0.70 0.49 · · ·
RF-reg Comb. (91/91) 10 0.51 0.81 · · ·
GP Hyper. (91/91) 5 0.59 0.67 · · ·
RSM (quadratic) None (91/91) 46 0.75 0.41 · · ·
HDDA-cluster c:2 Comb. (91/91) 13 · · · · · · 0.89
RF-class-cluster c:2 Comb. (91/91) 13 · · · · · · 0.89

Subframe rail
lower displacement

RSM (linear) None (91/91) 46 0.60 597.45 · · ·
RSM (linear) Comb. (91/91) 5 0.84 231.08 · · ·
GP Comb. (91/91) 5 0.91 135.86 · · ·
RF-reg Comb. (91/91) 5 0.63 553.14 · · ·
GP Hyper. (91/91) 3 0.91 128.95 · · ·
RSM (quadratic) None (91/91) 46 0.55 667.09 · · ·
HDDA-cluster c:2 Comb. (91/91) 5 · · · · · · 0.90
RF-class-cluster c:2 Comb. (91/91) 5 · · · · · · 0.89

Subframe rail
upper
displacement

RSM (linear) None (91/91) 46 · · · 111.77 · · ·
RSM (linear) Comb. (91/91) 10 0.53 40.95 · · ·
GP Comb. (91/91) 10 0.25 64.84 · · ·
RF-reg Comb. (91/91) 10 0.33 58.37 · · ·
GP Hyper. (91/91) 6 0.34 57.70 · · ·
RSM (quadratic) None (91/91) 46 · · · 146.55 · · ·
HDDA-cluster c:2 Comb. (91/91) 4 · · · · · · 0.90
RF-class-cluster c:2 Comb. (91/91) 4 · · · · · · 0.85

Impact velocity

RSM (linear) None (91/91) 46 0.60 0.84 · · ·
RSM (linear) Comb. (91/91) 14 0.75 0.52 · · ·
GP Comb. (91/91) 14 0.69 0.66 · · ·
RF-reg Comb. (91/91) 14 0.40 1.26 · · ·
GP Hyper. (91/91) 8 0.59 0.86 · · ·
RSM (quadratic) None (91/91) 46 0.39 1.28 · · ·
HDDA-cluster c:2 Comb. (91/91) 2 · · · · · · · · ·
RF-class-cluster c:2 Comb. (91/91) 2 · · · · · · · · ·

Table 5: Metamodel summary for a frontal crash in a passenger car

Response Metamodel Screening Train/Test Variables COP MSE CLASS

Subframe rail
endtime
displacement

RSM (linear) None (48/48) 7 · · · · · · · · ·
RSM (linear) Comb. (48/48) 7 · · · · · · · · ·
GP Comb. (48/48) 7 · · · · · · · · ·
RF-reg Comb. (48/48) 7 0.01 · · · · · ·
GP Hyper. (48/48) 5 · · · · · · · · ·
RSM (quadratic) None (48/48) 7 0.15 · · · · · ·
hdda-cluster c:3 Comb. (48/48) 1 · · · · · · · · ·
RF-class-cluster c:3 Comb. (48/48) 1 · · · · · · · · ·

Subframe rail
maximum lateral
displacement

RSM (linear) None (48/48) 7 · · · · · · · · ·
RSM (linear) Comb. (48/48) 5 0.11 997.01 · · ·
GP Comb. (48/48) 5 · · · · · · · · ·
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Response Metamodel Screening Train/Test Variables COP MSE CLASS

RF-reg Comb. (48/48) 5 0.17 919.77 · · ·
GP Hyper. (48/48) 4 · · · · · · · · ·
RSM (quadratic) None (48/48) 7 0.17 921.08 · · ·
hdda-cluster c:2 Comb. (48/48) 1 · · · · · · · · ·
RF-class-cluster c:2 Comb. (48/48) 1 · · · · · · 0.92

Table 6: Metamodel summary in a frontal crash for a commercial vehicle

Response Metamodel Screening Train/Test Variables COP MSE CLASS

Maximum relative
displacement X
4105573

RSM (linear) None (196/196) 99 · · · 701.65 · · ·
RSM (linear) Comb. (196/196) 14 0.42 266.51 · · ·
GP Comb. (196/196) 14 0.36 291.72 · · ·
RF-reg Comb. (196/196) 14 0.32 312.54 · · ·
GP Hyper. (196/196) 7 0.37 286.63 · · ·
RSM (quadratic) None (196/196) 99 · · · 858.26 · · ·
HDDA-cluster c:2 Comb. (196/196) 21 · · · · · · 0.85
RF-class-cluster c:2 Comb. (196/196) 21 · · · · · · 0.85

Maximum relative
displacement X
504

RSM (linear) None (196/196) 99 · · · 228.37 · · ·
RSM (linear) Comb. (196/196) 11 0.34 68.34 · · ·
GP Comb. (196/196) 11 0.21 81.82 · · ·
RF-reg Comb. (196/196) 11 0.34 67.96 · · ·
GP Hyper. (196/196) 7 0.22 80.59 · · ·
RSM (quadratic) None (196/196) 99 · · · 285.01 · · ·
HDDA-cluster c:2 Comb. (196/196) 9 · · · · · · 0.90
RF-class-cluster c:2 Comb. (196/196) 9 · · · · · · 0.92

Maximum relative
displacement X
515

RSM (linear) None (196/196) 99 · · · 144.93 · · ·
RSM (linear) Comb. (196/196) 15 0.12 49.63 · · ·
GP Comb. (196/196) 15 · · · 74.89 · · ·
RF-reg Comb. (196/196) 15 0.12 49.77 · · ·
GP Hyper. (196/196) 9 0.06 53.16 · · ·
RSM (quadratic) None (196/196) 99 · · · 172.45 · · ·
HDDA-cluster c:2 Comb. (196/196) 17 · · · · · · 0.89
RF-class-cluster c:2 Comb. (196/196) 17 · · · · · · 0.90

Minimum relative
displacement Y
4105573

RSM (linear) None (196/196) 99 · · · 463.72 · · ·
RSM (linear) Comb. (196/196) 17 0.27 214.92 · · ·
GP Comb. (196/196) 17 0.03 286.07 · · ·
RF-reg Comb. (196/196) 17 0.22 228.95 · · ·
GP Hyper. (196/196) 10 0.13 255.68 · · ·
RSM (quadratic) None (196/196) 99 · · · 523.77 · · ·
HDDA-cluster c:2 Comb. (196/196) 12 · · · · · · 0.78
RF-class-cluster c:2 Comb. (196/196) 12 · · · · · · 0.79

Maximum relative
displacement Y
4105573

RSM (linear) None (196/196) 99 · · · 412.43 · · ·
RSM (linear) Comb. (196/196) 20 0.30 161.30 · · ·
GP Comb. (196/196) 20 0.04 221.16 · · ·
RF-reg Comb. (196/196) 20 0.27 167.82 · · ·
GP Hyper. (196/196) 7 0.24 175.78 · · ·
RSM (quadratic) None (196/196) 99 · · · 603.30 · · ·
HDDA-cluster c:2 Comb. (196/196) 8 · · · · · · · · ·
RF-class-cluster c:2 Comb. (196/196) 8 · · · · · · · · ·

Minimum relative
displacement Y
4105642

RSM (linear) None (196/196) 99 · · · 98.59 · · ·
RSM (linear) Comb. (196/196) 19 · · · 38.90 · · ·
GP Comb. (196/196) 19 · · · 47.99 · · ·
RF-reg Comb. (196/196) 19 0.08 35.52 · · ·
GP Hyper. (196/196) 10 · · · 44.84 · · ·
RSM (quadratic) None (196/196) 99 · · · 131.72 · · ·
HDDA-cluster c:2 Comb. (196/196) 15 · · · · · · 0.81
RF-class-cluster c:2 Comb. (196/196) 15 · · · · · · 0.79

Maximum relative
displacement Y
4105642

RSM (linear) None (196/196) 99 · · · 634.24 · · ·
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Response Metamodel Screening Train/Test Variables COP MSE CLASS

RSM (linear) Comb. (196/196) 18 0.24 182.42 · · ·
GP Comb. (196/196) 18 0.44 135.56 · · ·
RF-reg Comb. (196/196) 18 0.36 155.35 · · ·
GP Hyper. (196/196) 4 0.52 114.88 · · ·
RSM (quadratic) None (196/196) 99 · · · 796.04 · · ·
HDDA-cluster c:2 Comb. (196/196) 19 · · · · · · · · ·
RF-class-cluster c:2 Comb. (196/196) 19 · · · · · · · · ·

Table 7: Metamodel summary in a frontal crash for a roadster model
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