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m Introduction

© Complex system (many parameters, computationally
expensive, slow, ...)

© Needed: Fast and reasonably accurate response (e.g.
for real-time applications such as control systems)

o Possible choices:

Reduce model complexity based on essential
physical features (“reduced order model”)

Replace model based on mathematical simplicity
(“metamodel”)




m Reduced order model

© Purpose: Faster analysis
© Properties
Need to understand and represent physics
May be applicable for many different load cases

Very suitable for time dependent phenomena
(structural dynamics, convection-diffusion
processes)

Can be tricky in the presence of strong nonlinearity

¢ Typical example: Modal analysis




m Metamodel

© Purpose: Faster analysis, simplify and understand
complex relations (e.g. in robustness analysis)

© Properties
Mathematically formulated black box
Suitable for arbitrarily nonlinear I/0 relations
Requires extensive training data
Very difficult to extrapolate
Time-dependent problems may be tricky

¢ Typical example: Linear response surface model




m Common properties

© Based on previous experience
Knowledge of physical processes
Acquired experience through “training”
¢ Limited range of applicability
Nonlinearities
Number of input variables
¢ NOTE: Approaches complement each other

» Combination may be better than the sum of the
individual parts!




m Metamodels by regression

- Adjust a model to experiments

Y = f(X,p)

» Set of parameters
P = [p17p27 R 7p’n]T

» Experimental values for input X and output Y
(X® YEN E=1...m

Search for best model by minimizing the residual

S(p) =3 [y® — f(x®.p)] " p* = argmin S(p)
k=1




m Linear regression

© Linear dependence on parameters (not on variables!)

f(X,p) = sz-gi(X)

¢ Necessary condition for a minimum




m Coeflicient of determination

© Defined by correlation between experimental data
and model predictions

P2 _ (E[Y-Z])Q;
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¢ Adjusted (reduced) COD for small sample sizes
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m Selection of important variables

) Coeflicient of determination can be utilized to select
important parameters and/or variables

) Starting from a suitable regression model with
sufficiently large COD (> 0.80) parameters/variables
are eliminated one at a time

> Reduction of COD indicates relevance of parameter/
variable

» Coefficient of importance COI between 0 and R?

COI; = COD — COD;




w Importance by ANOVA

Eliminate e-th parameter p. from regression
n
fo(X.p)= )  pigi(X)
i=1,ie
- Compute residual S, of reduced regression

- Compute F statistic
1 S.—S

—
m-n S

Large values of F' indicate higher importance of p.
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formation of plastic

© Structure and load
configuration

© Plastic material,
deterministic

¢ Random Loads

¢ Collapse due to




m Probability of failure

o All variables are (Gaussian

RV Mean | Std. Dev.

p. |KN/m)| 12.0 1.2
F, [kKN 30.0 3.6
F, kN 40.0 4.8

© Directional sampling, 15.000 samples
P(F)=43-10""; (3 =3.93

with a standard error of 3%.




Actual limit state

© From
directional
sampling with
15.000 points
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Approximation by MLS

© Based on support points from directional sampling
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m Estimated failure probability

© Approximation results

Method m | P(F)-107°> |

Shepard 50 2.1 4.1
1000 2.1 4.1
RMLS 50 2.2 4.1
1000 3.7 4.0
ANN 50 5.9 3.9
1000 3.3 4.0
Quadratic 10 7o 3.8

¢ Reference value (directional sampling, 15.000
samples)

P(F)=43-10"°; 3=3.9




m Speedyne: Basic Concept

© Hybrid solution strategy
Multi-body approach (Rigid body dynamics)

Finite element method (continuum
mechanics)

o Explicit time integration

Increase critical time step by modal
reduction

Eliminates high-frequency responses

¢ Suitable for drop test analysis




m History of speedyne development

» 2000-2001: theoretical base of modal projection
method, verification with simple examples

» 2002: verification of FE-tire model and comparison
with LS-DYNA

- 2003-2006: verification for drop test analysis

> 2006: base of super stable contact algorithms,
automatic segment based contact

» 2007-2009: industrial examples are running with super
stable contact




m Speedyne for application

© Final product level simulation can based on
lecacy FE code

> Speedyne can be used for concept level, for
optimization and stochastic analysis (reduction
of legacy FE model leads to significant speed-
up of single simulation)

» Speedyne can be used for long simulation
times (e.g. multiple impacts) due to enhanced
stability




m Basic assumptions

© Additive decomposition of displacement field
Rigid body motion in inertial frame

Deformation in body frame




m Range of applicability

» Time step resulting from explicit integration must be
significantly smaller than required from physics

» Physics dominated by frequency range covered by
relatively large time step

» Contact must not dominate numerical stability -
largely not relevant any more due to super-stable
contact handling

. Geometrical nonlinearity (tension stiffening) must
remain small in order to keep time step large




m Super-stable contact

> Apply correction to the velocity field such that
momentum and energy are maintained

» Remove/reduce penetrations by appropriately
modifying velocities

» Use symplectic integration algorithm to preserve a
Hamiltonian close to the total energy (exact for
Hamiltonian systems)

» Time step can be kept rather large (depending on
relative velocity of colliding parts)




Speedyne - procedure

Initialize kinematics

y

Compute loads and
restoring forces at Ry, tg, ug

y

Integrate rigid body
Ry, t;

Integrate deformable body

u
Check contact, if yes
modlfy Rl, tl, u

J

Copy new to old
merge new displacements u;
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System Reduction
(modal based)

Speedyne

Rigid Body Solver
(transient)

Finite-Element Solver
(nonlinear)

Contact Solver
(super-stable)

Application to dynamic impact
(e.g. drop test))




m est example
Aunardo 1 P

© Simple cube, hexahedral elements, one tie




dqd N Full vs. reduced integration
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dqd N Full vs. reduced integration

—__ Total energy ~ Total energy
— rowentiplenangy ~ Potential energy

Kinetic energy Kinetic energy
_—_ Defarmation energy —— Deformation energy
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Export to legacy FE-Solver

S, Mreae
(Avg, T5%)

JAlda0e
.311a+06
LT3Ta0€
L163a+406
.S90a+0¢
DLSa«0s
3.442a+0¢6
AGiaene
.295a+06
L T2la06
.1dTa+06
LT3 Ta08
L000Q+00

taet_cubatl
CD8: tast_cudadl.odb Abague/Scripting Intarfaca 6.7-1 Wad Fadb 13 17.30.44 CET 2008

Stap: etap-l, firet analyeie ebtap

raanlite frapa for tinal.3673101731073%a-05

Primary Var:, §, Mieas

Daforoad Var. U Daformation Scala Factor. +1.000a+00




m Concluding remarks

» Time-consuming simulation tasks prevent application
of optimization and stochastic analysis

' Simulation time can be substantially reduced by

reduced order models (based on understanding of
physics)

Metamodels (based on black-box I/O relations)

> Both approaches have different advantages/
disadvantages

- Combination approach appears promising in order to
obtain best results under time constraints

- New development under way:



