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Introduction

Complex system (many parameters, computationally 
expensive, slow, ...)

Needed: Fast and reasonably accurate response (e.g. 
for real-time applications such as control systems)

Possible choices:

Reduce model complexity based on essential 
physical features (“reduced order model”)

Replace model based on mathematical simplicity 
(“metamodel”)
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Reduced order model

Purpose: Faster analysis

Properties

Need to understand and represent physics

May be applicable for many different load cases

Very suitable for time dependent phenomena 
(structural dynamics, convection-diffusion 
processes)

Can be tricky in the presence of strong nonlinearity

Typical example: Modal analysis
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Metamodel

Purpose: Faster analysis, simplify and understand 
complex relations (e.g. in robustness analysis)

Properties

Mathematically formulated black box

Suitable for arbitrarily nonlinear I/O relations

Requires extensive training data

Very difficult to extrapolate

Time-dependent problems may be tricky

Typical example: Linear response surface model
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Common properties

Based on previous experience

Knowledge of physical processes

Acquired experience through “training”

Limited range of applicability

Nonlinearities

Number of input variables

NOTE: Approaches complement each other

➼ Combination may be better than the sum of the 
individual parts!
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Metamodels by regression

Adjust a model to experiments

Set of parameters

Experimental values for input X and output Y

Search for best model by minimizing the residual
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Y = f(X,p)

p = [p1, p2, . . . , pn]T

(X(k), Y (k)), k = 1 . . .m

S(p) =
m∑

k=1

[
Y (k) − f(X(k),p)

]2
; p∗ = argmin S(p)



Linear regression

Linear dependence on parameters (not on variables!)

Necessary condition for a minimum

Solution
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f(X,p) =
n∑

i=1

pigi(X)

∂S

∂pj
= 0; j = 1 . . . n

m∑

k=1

{
gj(Xk)[Y k −

n∑

i=1

pigi(Xk)]

}
= 0; j = 1 . . . n

Qp = q



Coefficient of determination

Defined by correlation between experimental data 
and model predictions

Adjusted (reduced) COD for small sample sizes

In the previous example
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R2 =
(

E[Y · Z]
σY σZ

)2

;Z =
n∑

i=1

pigi(X)

R2 = 0.86; R2
adj = 0.63

R2
adj = R2 − n− 1

m− n

(
1−R2

)



Selection of important variables

Coefficient of determination can be utilized to select 
important parameters and/or variables

Starting from a suitable regression model with 
sufficiently large COD (> 0.80) parameters/variables 
are eliminated one at a time

Reduction of COD indicates relevance of parameter/
variable

Coefficient of importance COI between 0 and R2
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COIi = COD− CODi



Importance by ANOVA

Eliminate e-th parameter pe from regression

Compute residual Se of reduced regression

Compute F statistic

Large values of F indicate higher importance of pe
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fe(X,p) =
n∑

i=1,i !=e

pigi(X)

F =
1

m− n

Se − S

S



Reliability of space frame

Structure and load 
configuration

Plastic material, 
deterministic

Random Loads

Collapse due to 
formation of plastic 
zones
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Probability of failure

All variables are Gaussian

Directional sampling, 15.000 samples

with a standard error of 3%.
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RV Mean Std. Dev.
pz [kN/m] 12.0 1.2
Fx [kN] 30.0 3.6
Fy [kN] 40.0 4.8

P (F) = 4.3 · 10−5; β = 3.93



Actual limit state

From 
directional 
sampling with 
15.000 points

Color 
indicates 
distance from 
origin in 
standard 
Gaussian 
space
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Approximation by MLS

Based on support points from directional sampling

1450 support points 1000 support points



Estimated failure probability

Approximation results

Reference value (directional sampling, 15.000 
samples)
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Method m P (F) · 10−5 β

Shepard 50 2.1 4.1
1000 2.1 4.1

RMLS 50 2.2 4.1
1000 3.7 4.0

ANN 50 5.9 3.9
1000 3.3 4.0

Quadratic 10 7.7 3.8

P (F) = 4.3 · 10−5; β = 3.9



Speedyne: Basic Concept

Hybrid solution strategy

Multi-body approach (Rigid body dynamics)

Finite element method (continuum 
mechanics)

Explicit time integration

Increase critical time step by modal 
reduction

Eliminates high-frequency responses

Suitable for drop test analysis
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History of speedyne development

2000-2001: theoretical base of modal projection 
method, verification with simple examples 

2002: verification of FE-tire model and comparison 
with LS-DYNA

2003-2006: verification for drop test analysis 

2006: base of super stable contact algorithms, 
automatic segment based contact 

2007-2009: industrial examples are running with super 
stable contact
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Speedyne for application

Final product level simulation can based on 
legacy FE code

Speedyne can be used for concept level, for 
optimization and stochastic analysis (reduction 
of legacy FE model leads to significant speed-
up of single simulation)

Speedyne can be used for long simulation 
times (e.g. multiple impacts) due to enhanced 
stability
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Basic assumptions

Additive decomposition of displacement field

Rigid body motion in inertial frame

Deformation in body frame

u = uR + uD
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Range of applicability

Time step resulting from explicit integration must be 
significantly smaller than required from physics

Physics dominated by frequency range covered by 
relatively large time step

Contact must not dominate numerical stability - 
largely not relevant any more due to super-stable 
contact handling

Geometrical nonlinearity (tension stiffening) must 
remain small in order to keep time step large
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Super-stable contact

Apply correction to the velocity field such that 
momentum and energy are maintained

Remove/reduce penetrations by appropriately 
modifying velocities

Use symplectic integration algorithm to preserve a 
Hamiltonian close to the total energy (exact for 
Hamiltonian systems)

Time step can be kept rather large (depending on 
relative velocity of colliding parts)
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Speedyne - procedure
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Analysis chain
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Test example

Simple cube, hexahedral elements, one tie
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Full vs. reduced integration
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Full reduced



Full vs. reduced integration

26

Full reduced



Export to legacy FE-Solver
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Export to legacy FE-Solver
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Concluding remarks
Time-consuming simulation tasks prevent application 
of optimization and stochastic analysis

Simulation time can be substantially reduced by

reduced order models (based on understanding of 
physics)

Metamodels (based on black-box I/O relations)

Both approaches have different advantages/
disadvantages

Combination approach appears promising in order to 
obtain best results under time constraints

New development under way: optiSpeed 28


