Presented at the 6th Weimar Optimization and Stochastic Days 2009 Source: www.dynardo.de/en/library

INTALES

nathematik

Sampling based sensitivity analysis: a case study in aerospace engineering

Michael Oberguggenberger

Arbeitsbereich für Technische Mathematik Fakultät für Bauingenieurwissenschaften. Universität Innsbruck

In collaboration with INTALES GmbH Engineering Solutions Supported by ESA/ESTEC and The Austrian Research Promotion Agency (FFG)

Weimarer Optimierungs- und Stochastiktage 6.0

15.-16. Oktober 2009

TEAM ACOSTA 2009

FACULTY OF CIVIL ENGINEERING

Univ.-Prof. Dr. Michael Oberguggenberger * Mag. Robert Winkler Stefan Schett Roland Traxl

FACULTY OF MATHEMATICS, INFORMATICS AND PHYSICS

Univ.-Prof. Dr. Alexander Ostermann Dipl.-Ing. Stefan Steidl Christoph Aichinger * Andreas Grassl Katharina Riedinger * Helene Roth *

INTALES ENGINEERING SOLUTIONS

Dipl.-Ing. Dr. Herbert Haller * Benoit Caillaud * Thomas Charry *

INTRODUCTION

INTALES

- **Issue:** Understanding the behavior of engineering structures near the limit state, especially buckling of light weight shell structures
- **Point of view:** Absolute values of single indicators (e.g. knock down factors) or failure probabilities give little insight in the mechanisms of collapse
- **Remedy:** Better understanding by means of sensitivity analysis
- Situation: Numerical model is given by an Input-Output map

$$Y = g(X_1, \ldots, X_d)$$

where the indicator Y is a function of the design parameters X_1,\ldots,X_d

• Goal: Sensitivity analysis of output with respect to input

FRONTSKIRT OF ARIANE 5 LAUNCHER

INTALES

nathematik

- **Buckling load:** depending on loads, material, geometry (currently 17 130 input variables)
- Flight critical behavior: investigation of (currently) \geq 136 output variables
- Challenges: excessive computational cost
- IO-map continuous but non-differentiable
- Statistical distribution of input parameters unknown (nonparametric methods required)
- Scarce data: flight scenarios supplied by the architect
- **Method of choice:** Monte Carlo simulation, statistical indicators of dependence

INPUT DATA – SIMPLIFIED MODEL

INTALES

mathematik

	Description of input parameters	
i	Parameter X _i	Mean μ_i
1	Initial temperature	293 K
2	Step1 thermal loading cylinder1	450 K
3	Step1 thermal loading cylinder2	350 K
4	Step1 thermal loading cylinder3	150 K
5	Step1 thermal loading sphere1	150 K
6	Step1 thermal loading sphere2	110 K
7	Step2 hydrostatic pressure cylinder3	0.4 MPa
8	Step2 hydrostatic pressure sphere1	0.4 MPa
9	Step2 hydrostatic pressure sphere2	0.4 MPa
10	Step3 aerodynamic pressure	-0.05 MPa
11	Step4 booster loads y-direction node1	40000 N
12	Step4 booster loads y-direction node2	20000 N
13	Step4 booster loads z-direction node1	3.e6 N
14	Step4 booster loads z-direction node2	1.e6 N
15	Step4 mechanical loads x-direction	100 N
16	Step4 mechanical loads y-direction	50 N
17	Step4 mechanical loads z-direction	300 N

Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar

INPUT DATA – SIMPLIFIED MODEL

INTALES

mathematik

	Description of input parameters	
i	Parameter X _i	Mean μ_i
1	Initial temperature	293 K
2	Step1 thermal loading cylinder1	450 K
3	Step1 thermal loading cylinder2	350 K
4	Step1 thermal loading cylinder3	150 K
5	Step1 thermal loading sphere1	150 K
6	Step1 thermal loading sphere2	110 K
7	Step2 hydrostatic pressure cylinder3	0.4 MPa
8	Step2 hydrostatic pressure sphere1	0.4 MPa
9	Step2 hydrostatic pressure sphere2	0.4 MPa
10	Step3 aerodynamic pressure	-0.05 MPa
11	Step4 booster loads y-direction node1	40000 N
12	Step4 booster loads y-direction node2	20000 N
13	Step4 booster loads z-direction node1	3.e6 N
14	Step4 booster loads z-direction node2	1.e6 N
15	Step4 mechanical loads x-direction	100 N
16	Step4 mechanical loads y-direction	50 N
17	Step4 mechanical loads z-direction	300 N

INPUT:

Uniform distributions with spread $\pm 15\%$ of nominal value

Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar

5 / 15

DESCRIPTION OF OUTPUT VARIABLES

INTALES

mathematik

Output measured at 3 rings (100 finite elements each) and aggregated:

DESCRIPTION OF OUTPUT VARIABLES

INTALES

mathematik

Output measured at 3 rings (100 finite elements each) and aggregated:

TYPICAL OUTPUT VARIABLES:

Local variables:

Translations, rotations and stresses, plastic/logarithmic strains, elastic/plastic strain energy densities . . . **Global variables:**

Global variables:

Summarized elastic/plastic strain energy densities, eigenvalues of the stiffness matrix \ldots

Preliminary Analysis – Scatter Plots

Input vs. elastic strain energy density: ring 2 min (left) - max (right)

natik

Optimierungs- und Stochastiktage Weimar

STATISTICAL INDICATORS

Disadvantage: Scatterplots do not eliminate the influence of scale and of interaction of input variables.

Remedy: Statistical indicators that remove these effects.

8 / 15

STATISTICAL INDICATORS

INTALES

Disadvantage: Scatterplots do not eliminate the influence of scale and of interaction of input variables.

Remedy: Statistical indicators that remove these effects.

INDICATORS IN USE $(X_i \text{ VS. } Y)$:

- CC Pearson correlation coefficient;
- PCC partial correlation coefficient;
- SRC standardized regression coefficient;
- RCC Spearman rank correlation coefficient;
- PRCC partial rank correlation coefficient;
- SRRC standardized rank regression coefficient.

PARTIAL RANK CORRELATION COEFFICIENTS

INTALES

EXAMPLE – PCCs AND PRCCs:

1. For each input variable X_i , construct linear regression models

$$\widehat{X}_i = \alpha_0 + \sum_{j \neq i} \alpha_j X_j, \quad \widehat{Y} = \beta_0 + \sum_{j \neq i} \beta_j X_j.$$

2. Compute the residuals

$$e_{X_i \cdot X_{i}} = X_i - \widehat{X}_i, \quad e_{Y \cdot X_{i}} = Y - \widehat{Y}.$$

3. Compute the correlation coefficient of the residuals

PCC:
$$\rho_{X_i, Y \cdot X_{i}} = \rho(e_{X_i \cdot X_{i}}, e_{Y \cdot X_{i}}).$$

CCs, RCCs, PCCs, PRCCs, SRCs, SRRCs

Input vs. elastic strain energy density: ring 2 min (left) – max (right)

95%-Bootstrap Confidence Intervals

Input vs. elastic strain energy density: ring 2 min (left) - max (right)

EVALUATION AND EXTENSIONS

INTALES

nathematik

EVALUATION

- Selection of variables according to significance in at least one criterion;
- refined assessment by multicriteria decision analysis;
- further numerical analysis using selected variables.

EVALUATION AND EXTENSIONS

INTALES

mathematil

EVALUATION

- Selection of variables according to significance in at least one criterion;
- refined assessment by multicriteria decision analysis;
- further numerical analysis using selected variables.

EXTENSION (WORK IN PROGRESS):

Modelling of material parameters by stochastic field: Widely used autocovariance function

$$\mathcal{C}(
ho)=\sigma^2\exp(-|
ho|/\ell)$$
 at spatial lag ho .

Questions:

- Change of sensitivities when material is stochastic;
- dependence of sensitivities on field parameters σ and ℓ ;
- sensitivity of output with respect to field parameters σ and $\ell.$

MONTE CARLO IN ITERATIVE SOLVERS

INTALES

mathematik

Oberguggenberger (Innsbruck)

Idea: Perform Monte Carlo parameter variation not with initial values, but at a later stage in the iterations. Linear equations: Solutions for neighboring systems obtained by a splitting of the stiffness-matrix.

Optimierungs- und Stochastiktage Weimar

15.-16. Oktober 2009

13 / 15

MONTE CARLO IN ITERATIVE SOLVERS

Idea: Perform Monte Carlo parameter variation not with initial values, but at a later stage in the iterations. Linear equations: Solutions for neighboring systems obtained by a splitting of the stiffness-matrix.

nathematik

Nonlinear equations and load incremental algorithms: – do p % of required iteration with average values of input parameters;

- perform Monte Carlo variation of input parameters;
- obtain equilibrium state for each MC realization of parameters;
- perform remaining (1-p)% of iterations.

13 / 15

Monte Carlo in Iterative Solvers

Idea: Perform Monte Carlo parameter variation not with initial values, but at a later stage in the iterations. Linear equations: Solutions for neighboring systems obtained by a splitting of the stiffness-matrix.

Nonlinear equations and load incremental algorithms: – do p % of required iteration with average values of input parameters;

- perform Monte Carlo variation of input parameters;
- obtain equilibrium state for each MC realization of parameters;
- perform remaining (1-p)% of iterations.

Example: Thin cylindrical roof, loaded with a central point-force. Output: central displacement; Input: Young's modulus, Poisson's ratio, load.

NUMERICAL ACCELERATION

INTALES

nathematik

RESULTS

Relative error in CCs and PCCs vs. point of parameter variation; $0 \dots$ variation at initial step, $1 \dots$ variation at final step.

Oberguggenberger (Innsbruck)

Optimierungs- und Stochastiktage Weimar

Outlook

INTALES

- Understanding the reliability of structures by means of sensitivity analysis
- Powerful tool: Monte Carlo simulation plus statistical indicators
- Fairly low computational cost: relatively small sample size suffices
- Assessment of statistical significance by resampling at no additional cost
- Non-parametric method
- Wide range of applicability