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Abstract

Properties of engineering structures or structural parts are usually of random
nature, due to manufacturing tolerances, material scatter or random loads. For
the numerical robustness assessment within the virtual product development, such
randomness has to be taken into account, by applying correct statistical modeling.
Processes like manufacturing simulation with random parameters or analyses with
random load cases induce random results which are distributed on the examined
structure. For the analysis of such spatially random phenomena, as well as for the
simulation of imperfect structures, random field methodology provides the correct,
moreover effective parametric, by which the most significant information can be
filtrated from the data. Statistics on Structure (SoS) offered by dynardo is a software
for the analysis of given random data. The present article covers a brief theoretical
background of random fields, an overview on SoS and demonstrates the analysis of
random data by an example from crash simulation.
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1 Introduction
In the development of products, e.g. in the automotive branch or for high-level con-
sumer goods, two important trends can be observed. On one hand, more and more
structural parts or even entire structures are optimized by numerical methods. On the
other hand, hardware tests for experimental qualification of these parts are reduced and,
at least partially, are substituted by methods of virtual prototyping. Since requirements
on structures nowadays often reach physical limits, optimized structures tend to react
sensitive towards manufacturing tolerances, material scatter or varying load conditions, if
these were not considered in the development phase. Hence for the assurance of product
quality, avoidance of recalls and fulfillment of safety requirements, an optimization must
be accompanied by a robustness and reliability assessment. For this purpose, random
influences are generated by Monte Carlo methods and the resulting, then also random,
performance is assessed by statistical means (Bucher, 2007; Will, 2007).

Processes like manufacturing simulation with random parameters or analyses with
random load cases induce random results which are spatially distributed on the examined
structure. Pointwise evaluation of the results, i.e. the search for maximal deformations
or stresses, does not make use of the information inherent in the data and may even
lead to misinterpretation if the localization is not tracked. Random field methodology
provides the correct parametric for obtaining dependable results from the analysis of such
spatially random phenomena. Application of random fields for the analysis of given data
on a structure, e.g. results of finite element computations with random inputs, provides
several levels of insight: First, the distribution of scatter on the structure is observed
and hot spots are located. Next, random field data can be decomposed into scatter
shapes, which can be ranked by their contribution to the total scatter and reflect the
“mechanisms” of the random phenomenon observed. Further statistical analysis, mainly
by means of Coefficients of Determination and Coefficients of Prognosis (Most and Will,
2009) allow for a ranking of the influence of random inputs on single scatter shapes. In
other words, it can be seen where on the structure appears the highest scatter of results
caused by which input parameter.

The following section gives an overview on “Statistics on Structure” (SoS), a soft-
ware offered by dynardo for statistical assessment and post-processing of random data,
which are plotted directly on the structural model. The program applies random field
methodology for reducing data and filtrate the most relevant information. Thus section
3 explains the theoretical background, which is helpful for interpretation of the results.
The mentioned evaluations are demonstrated by an application example from robustness
analysis of a structural car part, section 4.

2 Statistics on Structure
Statistics on Structure (SoS) offered by dynardo is a software for post-processing and
analysis of given random data on structures. Typical applications are:

• measurements on the structure, e.g. deviations from the designed geometry, or wear;

• results of structural analyses with random input parameters, e.g. manufacturing
process simulation, random loads.
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Figure 1: Example of SoS post-processing.

In the latter case, results are available for each node or element of the analysed part and
can be related to the random input parameters. Hence, review of results from manu-
facturing process simulation enables the assessment of manufacturing tolerances at any
point on the structure. The statistical relation to the random inputs helps to identify
the cause of tolerances. A structural analysis with random inputs – random parameters
and loads are as well possible as the tolerances computed beforehand – provides measures
of the robustness of the structure. Besides assessment of the global performance, post-
processing of analysis results on the strucure with SoS locates the “hot spots”, as will
be demonstrated in section 4. Such simulations are important steps within robustness
assessment of structural parts.

The typical set-up of an SoS application begins with loading a reference finite element
structure. Several interfaces for established FE programs are available. Next, a sample
result file is read, then results are chosen for post-processing and all inputs and results
generated within a robustness analysis are loaded. Typically but not necessarily these
data are produced with optiSLang. The next step comprises data reduction and filtration
as will be explained in sections 3.2 and 3.3.

Then the post-processing step itself is started. Figure 1 shows the post-processing
window. Several sub-windows can be viewed in parallel. The post-processing options
comprise:

• Descriptive statistics: single designs and design differences, mean values, standard
devations, ranges, maxima and quantiles.

• Correlation and Coefficient of Determination with respect to input parameters.

• Quality capability statistics.

• “Eroded” nodes or elements: location and relative number within the sample of
nodes or elements that failed during the previous analyses.

• For the above evaluations, the data are decomposed by help of random field method-
ology, sect. 3. The resulting scatter shapes of the single random field components
can be plotted, which is a good help for interpretation of the scatter.
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• It is possible to select regions on the structure or amplitudes of scatter shapes. The
respective data are exported for further statistical analysis within optiSLang.

3 Random Fields
3.1 Basics
In simple words, a random field is a random function defined in space. This may be a
function of any geometrical or physical property, such as material parameters, deviation
from the design geometry, distributed load etc. The domain of the function is given by
the structure or structural part under obervation. That is, on any point on the structure,
this property takes a random value. The statistical characteristics may differ at different
locations, and there may exist a statistical dependency between different points.

Let the random function be denoted as H(x, r), wherein x ∈ R is the random property
and r ∈ R3 is the local vector pointing to any location on the structure. Figure 2 shows a
schematic sketch of a random function, defined on a beam structure. Several realizations
of the function form the available sample set, the ensemble. At any point located by
ri, a random variable Xi can be defined by distribution type and statistical moments
(mean value µi, standard deviation σi) which are evaluated from the given ensemble.
Two random variables at different locations, X1 and X2, may be statistically dependent.
A measure for dependency is Pearson’s correlation coeficient, ρ12 = cov[X1, X2]/(σ1σ2).
Obviously, the correlation between two neighboured points is close to one and diminishes
with increasing distance between the two points. For the continuous random function H,
the spatial spread of the mean values is characterized by the mean function

µH(r) = E[H(r)] (1)

and the scatter as well as the correlations by the covariance function

CHH(r1, r2) = E[H(r1) ·H(r2)]− µH(r1) · µH(r2) (2)

Assumed a Gaussian distribution throughout the whole structure, this provides the com-
plete statistical characterization (Vanmarcke, 1983).

Figure 2: Schematic sketch of realizations of a random field, defined on a one-dimensional
structure.
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For numerical computations, the random function has to be discretized in order to
obtain a finite number of random variables. The discretization is oriented at the observed
finite element structure and the type of data, i.e. the discrete support points are either
nodes (e.g. for geometry or displacement data) or element mid points (for element data
such as stresses, strains, etc). As consequence of the discretization, the random function
becomes a random vector X(r) = {Xi(ri)}, characterized by the mean vector µµµXi and
covariance matrix CXiXj . Each member of random vector is associated to a point on the
structure, accordingly for the mean vector and covariance matrix.

3.2 Decomposition
By the following derivation, a parametrization of the random field is found, which consists
of a set of independent random variables. This is required for the simulation, i.e. artificial
generation of samples, but also provides an effective parametric which is helpful in the
analysis of given data in order to filtrate the most significant phenomena. The latter
application will be demonstrated in section 4.

Let the mean values be constantly zero. They can as well be subtracted from the data
and added later when necessary. The mean-free data are denoted X0. Then the covariance
matrix contains all information of the random field, assumed a Gaussian distribution.
With help of an eigenvalue decomposition of the covariance matrix

ΨTCXXΨ = diag{λi} (3)

a set of independent random variables Y with Gaussian distribution and standard devi-
ations obtained from the eigenvalues of the covariance matrix are defined as

Yi := N (0 ;
√
λi ; ρi 6=j = 0) (4)

It can be shown that the following transformation between the basic variables Y and the
“real world” variables X0 holds:

X0 = ΨY (5)
The above is called Karhunen - Loève series expansion (Ghanem and Spanos, 1991). The
random field of possibly dependent variables is expanded by a series of deterministic shape
functions (the eigenvectors of CXX), each scaled by independent random amplitudes.
This is the way to simulate a random field. The transformation is reversed in order to
decompose a given data set and compute the respective parametric:

Y = ΨTX0 (6)

3.3 Data Reduction
If the data are located at every node or element of a finite element structure, regarding
the fact that a covariance matrix is fully occupied, the eigenvalue decomposition is not
tractable. In SoS (cf. section 2) there is the option of mesh coarsening, by which the
number of random field supports and therefore the dimension of the covariance matrix
can be reduced.

Mesh coarsening is performed by an effective polygon reduction algorithm which keeps
the mesh topology, i.e. the relative refinement of the discretization. Data are transferred
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Figure 3: Mesh coarsening and data interpolation for sheet thickness in a metal forming
example.

from the original supports to the coarse mesh by distance-weighted local averaging. The
number of random variables, i.e. the dimension of the random vector X, equals the
number of supports of the coarse mesh. After the decomposition of the coarsened random
field and further analyses, results are mapped back for post-processing. Here, a Moving
Least Squares Regression (Most and Bucher, 2005) is used.

The effect of mesh coarsening is studied at a fictitious example of a sheet metal form-
ing simulation. Figure 3 shows in the upper left plot the sheet thickness after forming
simulation, given at each finite element. Using the same color palette, the data mapped
onto the extremely coarsened mesh already lacks the peaks (right plot). After mapping
back the data (lower left), the smoothing effect can be observed by comparison to the
original data set. One has to keep in mind that this kind of data reduction is a loss of
information, however, the smoothing can be desirable for noisy data.

The Karhunen - Loève expansion, eq. (5) ff., can be truncated for further reduction of
the dimension. The eigenvalues of the covariance matrix are sorted in descending order.
Since the eigenvalues define the variances of the basic variables Yi, only the variables with
highest variances are incorporated in the truncated series. Variables with only a small
contribution to the total scatter of the random field are neglected. The truncation error
is measured as the variability fraction (Brenner, 1995)

Q =

Nλ∑
i=1

λi

/
dim(CXX)

Nsupports∑
j=1

σ2
j

/
Nsupports

(7)

The numerator is the sum of variances of the considered basic variables after truncation,
the denominator is the sum of all variances in the data set, which may have been reduced
before by mesh coarsening. Thus both numerator and denominator are normalized to
the dimension of the underlying mesh. Typically only a small number of basic variables
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suffices to represent over 90% of the total variability, as will be shown in the example,
sec. 4.

In a similar way, the contribution of a single variable to the total scatter can be
calculated as

Q =
λi

/
dim(CXX)

Nsupports∑
j=1

σ2
j

/
Nsupports

(8)

Because each variable is the random scale of one shape function, this single contribution is
an important measure for analysis of the decomposed random field. An important shape,
that is one with high variance, often reveals the “mechanism” that causes the random
scatter on the structure. The statistical relation of the sample of amplitudes computed
by (6) to the random input parameters gives further insight into the causes of scatter.

4 Example from crash analysis
The application presented here is a re-analysis of a project published in Will and Frank
(2008), which exploits new features of the current SoS release. The performance of a load
bearing part of a car body subjected to a crash load case is studied within a robustness
evaluation. Hardware tests of an early stage of development showed plastic buckling,
which could not be reproduced by deterministic methods of virtual product development.

For the stochastic analysis, the forming processes of several structural parts within the
load path were simulated with random production parameters. The yield strength was
assumed to vary within the bounds of purchase tolerances. The resulting sheet thicknesses
and plastic deformations were modeled by random field parametric and introduced to the
crash simulation. Also load parameters such as velocity, barrier position and angle, as
well as friction between barrier and car and within the vehicle itself were considered as
random. For further details of modeling the inputs, see Will and Frank (2008). SoS
helped to analyse the causes of scattering plastic strains and made possible a redesign
to remedy this unwanted behaviour. The present study shall identify the most relevant
scatter shape of the random field and find the responsible input parameters.

The finite element model comprises 4914 nodes and 4826 shell elements. 150 samples
with the mentioned random parameters were generated and put into crash simulation.
The result which is studied in more detail is the plastic strain after crash. Figure 4 shows
the standard deviations evaluated from all samples. Gray shaded areas did not vary, thus
no plastic deformation occured. At about on third from the left, a characteristic area of
high scatter resembles the buckling phenomenon.

The sample of plastic strains is decomposed into shape functions and random ampli-
tudes by the methods explained in section 3. Figure 5 shows the three shapes with highest
variances. The first shape already covers a large part of the plastic strain characteristics
seen in fig. 4, the following shapes add “side effects”. Note that the mode shapes of the
covariance matrix are unit vectors, so palette colors are not comparable. The truncated
series made up of these shapes (cf. eq. 5) and respective amplitudes represents 98% of
the total scatter of the plastic strain. This demonstrates the effectiveness of the random
field parametric proposed here: The original data set which is 100% of variability consists
of one value per finite element, thus almost 5000 random variables in total.
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Figure 4: Load-bearing car part: Standard deviaions of plastic strain after crash.

The sample of the first amplitude is computed by eq. (6) and exported as optiSLang
result file. In optiSLang, the Metamodel of optimal Prognosis (Most and Will, 2009) was
determined. This procedure systematically tests several regression models and subsets of
the input variables in order to find the best regression for the amplitude. The criterion
is the Coefficient of Prognosis: while a larger part of the available data is used for deter-
mining the regression model, the squared correlation between the remaining data and the
regression model is computed to form the CoP. As side effect, the input variables chosen
for the optimal model are ranked by the CoP value. 13 out of 55 input variables were cho-
sen by the algorithm to have significant effect on the first amplitude of the plastic strain
field. As seen in fig. 6, the shell thickness and plastic deformation after forming of the
examined part and the barrier angle have the largest influence. This is the information
needed to improve the design of the part.

5 Concluding Remarks
It is demonstrated in the present paper, how the methodology of random fields can be
utilized within virtual product development. Variance based robustness assessment, by
simulating manufacturing processess or load cases with random parameters, results in
spatially distributed random properties of the observed structure. One possible applica-
tion is to study manufacturing tolerances and formulate quality requirements. Another is
the proof of robustness of a strucural part in regard of spatially random properties.

By interpretation of the results as random fields and decomposition by the Karhunen -
Loève series, sect. 3.2, an effective parametric for the spatial scatter is gained. The shape
functions of the Karhunen - Loève series reveal “mechanisms” of the spatial distribution
and ease therefore the interpretation of it. Analysis of the statistical relation between
random inputs and the simulation results allows to identify and isolate the most significant
effects, therefore the detection of the cause of scatter. This is shown in the example of
section 4.

It is also possible to model a random field, based on measurements, simulation results
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Figure 5: Load-bearing car part: First three shape functions of plastic strain.
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Figure 6: Load-bearing car part: Coefficients of Prognosis of random inputs w.r.t. first
random field amplitude.

or pure assumption and generate imperfect structures for a study of their performance.
Statistics on Structure (SoS) is a software yet for post-processing of such spatially

scattering data, sect. 2. Structural models and simulation results can be read in several
formats. Results of the statistical survey are visualized directly on the structure. Further
developments of SoS aim at:

• even more effective parametric in regard of data reduction and filtration of the most
relevant information,

• handling of different meshes (e.g. FE-model and measurement grid; meshes for sheet
metal forming and crash analysis),

• modeling and simulation of random fields,

• closing the automatic process chain from manufacturing simulation to the perfor-
mance analysis.

Manifold applications of random fields will become possible that way and will be inte-
grated in user-friendly front-end.
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