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Abstract

Within stochastic analyses, nature-inspired optimization algorithms (NOA) imitate nat-
ural processes like biological evolution or swarm intelligence. Based on the principle ”sur-
vival of the fittest“, a population of artificial individuals searches the design space of pos-
sible solutions in order to find a better solution of the optimization problem. The usage of
these algorithms is recommended for various applications. NOA are very robust against
mathematically ill-conditioned problems. Particle swarm optimization algorithm and sim-
ple design improvement are added to the algorithms that are already available in optiSLang
. Together they compose the new NOA flow. This paper also presents some improvements
and enhancements that come with optiSLang 3.2. Thus, within optiSLang 3.2, difficult
single or multiobjective optimization tasks can be solved even for large and difficult search
spaces. Many practical and theoretical benchmarks have been accomplished to appraise
the behaviour of the existing and appearing algorithms and settings. Some of them will
be named and listed. To disburden users to choose the right algorithm and settings for
optimization tasks we conclude with advises and an easy to use decision tree.

Keywords: optiSLang, Nature-inspired algorithms, PSO, SDI, evolutionary algorithms,
singleobjective, multiobjective

1 Introduction
Nature Inspired Optimization Algorithms (NOA) imitate natural processes like biological evo-
lution or swarm intelligence. Based on the principle ’survival of the fittest’ a population of
artificial individuals searches the design space of possible solutions in order to find a better ap-
proximation for the solution of the optimization problem. In optiSLang 3.2 we combined the
existing nature-inspired optimization flows evolutionary algorithm (EA) and genetic algorithms
(GA) with the new flows particle swarm optimization (PSO) and simple design improvement
(SDI) to the new workflow NOA. Therewith we provide a clear arranged overview for the user.
A homogene dialog design is chosen to represent the common information and differences be-
tween all nature-inspired optimization methods. In version 3.1 we introduced Particle Swarm
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Optimization. We improved its convergence behaviour in version 3.2 by adapting the accel-
erations coefficients and bringing some more parameters to the GUI front end. In version 3.2
we also introduced a new algorithm Simple Design Improvement (SDI). Further enhancements
are three adaptive mutation methods for PSO and EA and hybrid crossover operators for EA.
This paper will describe the new implementation and major modifications. To get a better un-
derstanding of the different algorithms and to find good and robust settings we performed a lot
of practical and theoretical tests. We did this for single- and multiobjective tasks. This paper
presents an excerpt of the results. To help finding the right settings we implement approved
default settings that are based on our gained knowledge and experience. Additionally we give
our users an advice which algorithm to use in a specific problem via an easy understandable
decision tree. The user will be guided to select a proper algorithm for his special problem.
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Figure 1: General flowchart of nature inspired optimization algorithms

All kinds of nature inspired algorithms are following a particular flow. It starts with a
random initialization (see fig. 1 step (1)) of a population containing µ individuals representing
possible solutions to the given optimization problem. After initialization the actual iteration
loop starts, where every loop represents a generation g. To create a new generation the fittest
designs will be selected (step (2)). The adaption refered to step (3) can be done in different
ways, e.g. crossover or swarm movement. Mutation (step (4)) can be applied afterwards. All
individuals are evaluated (step (5)) by assigning them a fitness value based on the objective value
and possible constraint violations. Thus a high fitness score means a good accommodation to
the problem and corresponds with a minimum objective value. After evaluating each design the
archive, which keeps good solutions, will be updated for the next selection step (step (6)). The
generation counter is increased and the iteration continues until a stopping criterion is fulfilled
(step (7)).
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2 Simple Design Improvement
Simple Design Improvement (SDI) is a nature inspired optimization method that improves a
proposed design without extensive knowledge about interactions in design space. SDI works
very robust while searching for better settings than the proposed one. SDI is not developed to
find optimal solutions. It is designed to improve the proposal.

General SDI Flow A start population of size µwill be generated by a uniform distributed latin
hypercube sampling Iman and Conover (1982); McKay et al. (1979) around a user defined start
design d1 = (x1, ..., xn)T . Sampling bounds width γ ∈ [0, 1] is chosen by the user. Thereby
γ regards the percentage of the global search space (eq. 1f). Since SDI is a nature inspired
optimization method producing the population from a latin hypercube sampling is interpreted
as adaption step in NOA. The best design of the population will be evaluated. It is selected
as center for the next sampling (Fig. 2). Depending on the optimization problem the whole
population might move into a better region and achieve an improvement in each step.

Best Design

Next Center

Figure 2: Movement of SDI - iterations

Selection In each iteration step SDI searches the best design of the current population. The
one with best objective and least violations of constraints is chosen as center of the following
sampling procedure.

Sampling The adaption step of SDI is a uniform distributed latin hypercube sampling around
the current best design. The lower sampling bound xl(t)i will be

x
l(t)
i = xbi − 0.5γ · ri (1)

and the upper sampling bound xu(t)i analogically

x
u(t)
i = xbi + 0.5γ · ri (2)

with
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ri = xui − xli global parameter range
xbi design parameter i of best of last generation

Evaluation and Replacement All individuals will be compared concerning objective and
constraints considering a parameter-free constraint handling method.

• Split the population into feasible and infeasible solutions.

• Determine the fitness of feasible solutions based on their objective values

• Assign ranks to all infeasible solutions based on their constaint violations using the dom-
inance criterion (see section 4).

• Determine the fitness of each infeasible solution by adding the fitness of the worst feasible
solution to the rank value.

The archive will keep the winner of a generation. Hence, the archive size is 1.

Convergence SDI stops if the chosen convergence criteria will be reached or if the maximum
number of generations gmax is reached. optiSLang provides the following 2 convergence crite-
ria.

• Type 1: Gained improvement

‖oj‖ ≤ D1‖o1‖ (3)

oj objective vector of the best design belonging
to the j-th generation

D1 scaling value of initial objective

E.g. Choosing D1 = 0.8 means the algorithm stops if an improvement of 20% was
reached since beginning.

• Type 2: Deterioration of performance

‖oj‖ ≥ (1 +Dj−1)‖oj−1‖ (4)

Dj−1 scaling value of the previous best objective
of the previous generation.

E.g. Choosing Dj−1 = 0.5 would mean the algorithm stops if a deterioration of 50% to
the last generation happened.
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3 Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a nature-inspired optimization method developed by
Eberhart and Kennedy (1995) that imitates the social behaviour of a swarm searching for feed.
Information about good positions will be transmitted to other individuals of the swarm so that
they move into direction of previously good found positions. In nature an individual can be
represented by a bird, bee or fish. An overview of modifications of this algorithm can be found
e.g. in Coello and Reyes-Sierra (2006).

General PSO Flow As every nature inspired optimizer PSO starts with initializing a popula-
tion of size µ where each individual represents a possible solution of the optimization problem.
Swarm intelligence is influenced by two main components, the personal and global component.
This means that each individual remembers its personal best solution and will also be influenced
by the best solution of the swarm. In the first iteration each individual will store its first position
as local best. The group leader (global best) will be the best out of all current solutions.

Ranking and Selection The essential point of the PSO is to find good positions to move the
swarm to. Therefore all individuals will be compared considering objective and constraints to
evaluate the best among them. Each individual remembers its personal best out of all timesteps.
Global best will be the best out of all found positions of the whole swarm.

Movement Each individual will change its position into direction of its personal best found
position and the global best found position. There are three important parameters that influence
the speed and spread of the swarm. The inertia weight wt is a scaling factor for the previous
velocity. The personal acceleration coefficient cp,t is a scaling factor for the second term of eq.
5, which is also called cognitive component. The third term, called social component, is scaled
by the global acceleration coefficient cg,t.

vit+1 = wt · vit
+ cp,t ·R[0, 1] · (xip,t − xit)
+ cg,t ·R[0, 1] · (xg,t − xit)

xit+1 = xit + vit+1

(5)

i index of design
t generation number
xip,t personal best position of design i
xg,t global best position
xit current position of design i
wt inertia weight
cp,t personal acceleration coefficient / cognitive component
cg,t global acceleration coefficient / social component
vit velocity of design i in generation t
R[0, 1] uniform distributed random variable between 0 and 1

5



The choice of good coefficients is very important for the convergence behaviour of PSO.
Because in most applications it does not make sense to apply meta optimization optiSLang
offers two predefined search strategies with default values for each coefficient. Local search
strategy should be chosen if the user has some information about the optimization space and
has maybe even preoptimized the problem. The swarm movement is slower and less intensive
throughout all generations with the following values wt = 0.4, cp,t = 1.0 and cg,t = 1.0. Global
search strategy is recommended for mathematically ill or large problems. The swarm movement
is very intensive in the beginning of the search and will be damped throughout the optimization
process. Default values for the coefficients will be varied linear with wt = 0.9...0.2, cp,t =
0.9...0.1 and cg,t = 0.1...0.9. Movements into direction of the global best will be stronger in the
last terms of optimization and movements into direction of each personal best will be stronger
in the first terms. That way a exploration in first terms and exploitation in last terms can be
reached.

Mutation To allow a more sophisticated search, optiSLang provides the same mutation
methods that can be used in evolutionary algorithms (section 5.2). For executing a classical
PSO search one has to choose ”None” - mutation. I.e. movement is the only working operator.

Evaluation and Archive Update The archive will be updated with the best solution, called
global best. Hence, the archive size is 1. To find the global best solution the algorithm com-
pares all individuals concerning objective and constraints. The feasable solution with minimal
objective will be the global best (dominance method). If there are only infeasable solutions in
the first population global best will be the individual with least constraint violations (strength
pareto method).

4 Multiobjective Particle Swarm Optimization Algorithm
The Particle Swarm Optimization algorithm can also be applied to multiobjective optimization
problems. Because there is not only one optimal point some changes in its handling occur. The
stagnation criterion observes the changing ratio of the archive. In each iteration the archive de-
signs will be compared to the archive of the last iteration and the relative frequency of changes
will be calculated. Due to the fact that multiobjective archive keeps more than one design this
ratio should be selected less strict. The maximum rate of changes in archive can be modified
by the user. A recommended value of stagnation ratio would be between 10% and 20%. The
main difference to singleobjective PSO is the treatment for archive selection which is based on
the comparison of individuals. As mentioned in section 3 for single objective PSO optiSLang
selects the fittest design as global leader. For the next timestep the swarm will move in this
direction. In multiobjective optimization the fitness evaluation is different from the singleob-
jective approach.

optiSLang provides a strict dominance-based method for multiobjective fitness evaluation
in PSO . The Pareto-dominance criterion is formulated for two decision vectors a and b as
follows

• Solution a ∈ X dominates solution b ∈ X if it is feasable and better or equal in all
objectives and better in at least one objective.
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• Solution a ∈ X is indifferent to solution b ∈ X if none of both solutions dominates the
respective other.

The dominance relation can be expressed as:

a � b ⇔ ∀ i ∈ {1, 2, . . . ,M} : fi(a) ≤ fi(b)
∧∀ j ∈ {1, 2, . . . , J} : gj(a) ≥ 0
∧∀ k ∈ {1, 2, . . . , K} : hk(a) = 0
∧∃ l ∈ {1, 2, . . . ,M} : fl(a) < fl(b)

(6)

The archive will keep all nondominated solutions for selecting the global best design. It is rec-
ommended to choose a high archive size to get a good representation of the pareto front. If
there are no valid designs in the first generation e.g. because of many constraints, the strict
dominance method will be changed automatically by optiSLang to the dominance based fit-
ness method, strength pareto. The strength pareto method is a dominance-based ranking which
takes into account by how many individuals a solution is dominated and how many individuals
a solution dominates [Zitzler et al. (2001)].
For efficient usage the archive size must not exceed the population size which is changed auto-
matically by optiSLang . A constant number of designs will be filled into the archive in each
generation step. If there are enough pareto designs the archive will only store nondominated
designs else it will be filled with suboptimal designs. To make sure that no information about
good solutions will get lost we store all pareto-optimal solutions in the archive even if the max-
imum archive size is reached for the strength pareto criteria.

o1

o2

  

Sum manhattan distance of

2 nearest pareto designs

o1

o2

Sum euclidean distance of

2 nearest pareto designs

Figure 3: Refinement criteria: crowding distance and cumulated distance

The target of multicriteria optimization is to display the front uniformly. Less observed
regions of the pareto front are prefered to be stored in the archive. optiSLang provides two
density ranking methods that will be considered for the strict dominance based mehod (Fig. 3).

Crowding Distance Sum of the manhattan distance of the 2 nearest pareto designs to the
observed one Raquel and P.C. Naval (2005).
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Cumulated Distance Sum of the euclidean distance of the 2 nearest pareto designs to the
observed one.

To reach an evenly spread pareto front, individuals that are very close to their neighbors
will be changed by new nondominated individuals then. For global best selection all archive
designs will be sorted in ascending order by the density method. With local search strategy the
top archive individual will be chosen for global best (move to most crowded region), while with
global search strategy the global best will be chosen randomly based on a uniform distribution
out of 10% of the top archive.

5 More enhancements
In addition to the realization of new methods some changes and enhancements to previous
versions have to be mentioned here. First of all we improved the performance of the flow by
unifying the implementation in C++. Thus we can access and provide a C++ library of the
nature-inspired optimization algorithms. We brought some more parameters to the GUI front
end to allow choosing suitable settings. We also extended the number of possible combinations
of different operators. Through homogene dialog design and a clear arranged overview the
common information and differences between all nature-inspired optimization methods will
be represented. Beside these enhancements we implemented hybrid crossover operators and
adaptive mutation. These will be explained in detail in the following text.

5.1 Hybrid Crossover/Recombination
The crossover operator is a method of recombination where two parent individuals produce two
offsprings by sharing information between chromosomes. The intention is to obtain individuals
with better characteristics (exploitation) and to maintain the diversity of the population (explo-
ration). Crossover is regarded as the main search operator in GAs. The original formulation
of GAs uses a binary representation of the decision variables. The optiSLang implementation
uses a real-valued coding where each chromosome is a vector of floating point numbers, repre-
senting the decision variables of an individual. Crossover operators for real-coded GAs can be
classified into the following groups:

Discrete Crossover Operators: This group is based on binary crossover operators and in-
cludes singlepoint , multipoint and uniform crossover. These operators do not change
the numerical values of the genes but exchange them between the parent chromosoms ac-
cording a specific scheme. Geometrically they generate a corner of the hypercube defined
by the two parent chromosoms.

Aggregation Based Crossover Operators: These operators use an aggregation function to com-
bine the genes of the parents numerically to generate the genes of the offspring. The
arithmetic crossover is a representative of this group.

Neighbourhood Based Crossover Operators: The genes of the new individuals are deter-
mined from intervals defined in neighbourhoods of the parent genes throughout proba-
bility distributions. An example of this group is the simulated binary crossover.
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Hybrid Crossover Operators Crossover operators are recombining two parent chromosoms
according to specific schemes. For different optimization problems a different crossover opera-
tor might be the most suitable. The idea behind hybrid crossover is to apply diverse crossover
operators on the parent chromosoms in order to take advantage of their distinct offspring gen-
eration mechanisms. optiSLang provides the selection of two crossover operators to keep the
number of control parameter as low as possible. Both operators produce two offspring chromo-
soms from two parents, but only one offspring of each pair is randomly chosen. Using a hybrid
crossover can improve the effectiveness of this genetic operator.

5.2 Adaptive Mutation
Mutation introduces random variation to the genes of the offspring chromosom. In general there
exist two parameters that can be modified by the user, standard deviation and mutation rate.
Each gene gi is selected for mutation with a specified probability or mutation rate respectively.
The real-valued mutation is based on a normal distribution function for each gene with the
value of the gene as its mean value. The standard deviation σ of this distribution influences the
size of the mutation steps.

gt+1
i = gti +N(0, σti) ; i ∈ (1, n) (7)

Mutation is the main search operator for ES (evolutionary strategies), but can also be applied
after recombination (see fig. 1). The two parameters mutation rate and standard deviation
can stay constant or get modified during the run of the algorithm. In the first case the user
needs to specify appropriate values for the parameters, what requires much experience and
always depends on the specific optimization problem. For the mutation rate a value of 1/n
is recommended, where n is the number of variables. The standard deviation is defined in
relation to the variable range. This parameter can strongly influence the performance of the
optimization. Depending on the problem and the optimization strategy, standard deviations
between 0.01 and 0.1 are appropriate values for this strategy parameter.

Self Adaptive Mutation Baeck (1996): ”Technically, this so-called self-adaption principle
combines the representation of a solution and its associated strategy parameters within each
individual, and the strategy parameters are subject to mutation and recombination just as the
object variables.“In this method the standard deviation of a normal distribution for mutation
will be adapted during the search. All design parameter (object variable) that are selected for
mutation will be mutated according to a normal distributed random number as in Equation 7.
Other than the above mentioned approach the standard deviation σi will be mutated according
to a logarithmical distribution in each generation.

σ8t
i = σti · exp s8 · exp si (8)

where s8 ∼ N(0, 1
2n

) and si ∼ N(0, 1
2
√
n
). Strategy parameter σnew is obtained from arithmeti-

cal recombination (λ = 0.5) of the parents mutation standard deviations σ̂k, σ̂l.

σnew = (1− λ)σ̂k + λσ̂l (9)
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Constraint Adaptive Mutation In this method the standard deviation of a normal distribu-
tion for mutation depends on the distance between each design and all violated designs. The
intention of this approach is to consider the violation of constraints in a special way. Designs
that are close to an infeasable region will be mutated less than designs far away from infeasable
regions. Therefore the distances between each parameter j of design i of the population to all
violated designs k will be calculated. These violated designs are stored in an extra archive and
consider also previous generations.

dikj = |xkj − xij| (10)

The distances will be sorted in ascending order for each parameter j and the µ shortest distances
will be quadratically accumulated. The standard deviation of the normal distribution function
for mutation of design i for parameter j will be calulated by

σij =

√√√√α ·
µ∑
k=1

dikj (11)

Within optiSLang the value of α is 0.1. Hence, this method is only active if there are violated
designs. Otherwise a mutation based on a normal distribution with linear descreasing standard
deviation will be applied.

Modulated Adaptive Mutation The method analyzes successful mutations and adaptively
changes the distribution hypothesis for mutation steps. The mutation of the gene gi is defined
as

gt+1
i = gti +Xi ; i ∈ (1, n) (12)

where Xi is a random variable with zero mean and standard deviation σti . At the initial stage a
normal distribution is assumed for each random variableXi. At starting point the corresponding
probability density function (PDF) is given by

ϕt(xi) =
1

σti
√

2π
exp

[
− x2

2(σti)
2

]
; t = 0 (13)

The adaption takes place on component level and is based on the evaluation of successful
mutations. For a successful mutated offspring individual, whose fitness is better than the fitness
of its parent, the mutated genes and the realised mutation steps δi are identified, seeRiedel et al.
(2005). The probability density function of the random variable corresponding to a mutated
gene, which has led to an improved fitness, is modulated by a symmetric modulation function.
The method provides a self-adaptive strategy for changing the probability density of the muta-
tion steps. The probability of mutation steps which led to an improvement is increased by the
modulation function. Because the strategy evaluates single mutations of individuals, it can only
be applied to evolution strategies, where no crossover operator can blur the effects of successful
mutations.

6 Benchmarks
To appraise the quality of the enhancements and new algorithms we applied a lot of practical ap-
plications and many of the testfunctions that could be found in literature. Several combinations
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of the available nature-inspired optimization algorithms in optiSLang were tested with differ-
ent single and multiobjective testfunctions. Different parametersettings that can be chosen have
been tested. Amongst easy understandable parameters like population size or maximal number
of generations, we modified parameters like the number of crossover points nxover, crossover
rate/probability pxover, distribution parameter nc, mutation rate rmutate and maximal archive size
narchive and so on. The different settings will be described in the belonging subsections. The
aim was also to validate the existing or find some more approved default settings.
Before we start presenting some of our results one have to know that the found optimum of a
nature-inspired algorithms relies on the stochastic behavior that comes with the definition of the
method. To avoid judging on luck we ran each setting 100 times for each problem. Than we
compared the statistics over all optimization runs. Therefore we take mean, standard deviation
and median in singleobjective case. In the case of multiobjective optimization we judge on the
average number of designs that are dominated. These designs are the shifted pareto fronts of
initial reference runs. Due to some limits in time and resources we did not apply this procedure
to practical applications. For time consuming problems we used the settings which showed
small standard deviations in academic examples. These more or less robust settings had been
considered to give comparable results with less (or only one) optimization run. The average
time of a single optimization run can also be seen in all result tables. But for the reason of some
computational overhead in optiSLang 3.x we do not judge on that in this paper. These times
should only be regarded if the C++-library of the tested workflow is used and solverruns are
sufficiently fast, respectively.

6.1 Singleobjective Problems
We tested a lot of practical applications and theoretical testfunctions that can be found in liter-
ature (Hock and Schittkowski (1980); Moré et al. (1981); Molga and Smutnicki (2005); Storn
and Price (1995) etc.). The tested problems have different characteristics. Thus the behaviour of
the algorithms and settings is tested for large input spaces, numerous constraints and problems
with a lot of local optima or discrete responses and inputs.
Because each algorithm is following a stochastical pattern of behavior single test runs would
not be very significant. For that reason we tested each algorithm setting 100 times and evalu-
ated statistical data of best objective as mean x̄bestobj , median x̃bestobj , standard deviation sbestobj ,
minimum xmin and maximum xmax. All algorithms had been tested for several population size
and number of maximum generations. An excerpt of the numerical results can be seen in section
A.3.

Rosenbrock: This smooth testfunction in a 10-dimensional space has an optimum at xi =
1, i = 1, · · · , 10. The standard deviation of setting S7 is smaller than that of others. I.e.
the global PSO converges robust (in every run) near to the optimum. Settings S8 and S10 are
comparably good for most runs, but higher xmax and sbestobj show that the algorithms are less
robust.

Griewank: This testfunction has several local minima in [−600, 600]5, but a global minima
at xi = 0, i = 1, · · · , 5. Here settings S7, S8, S10, S11, S15 and S16 show good results with
a small standard deviation. Even the SDI shows good results with less designs. By trend PSO
and SDI converge earlier which means they need less calculations than EAs.
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Name Method Adaption Ranking Selection Mutation Special parameter

S1 EA Singlepoint Exponential Stochastic None
S2 EA Multipoint Linear Stochastic None nxover = n

2
S3 EA Uniform Linear Stochastic None pxover = 0.5
S4 EA Copy Linear Stochastic None
S5 EA SBX Linear Stochastic None pxover = 0.5

nc = 5
S6 EA Arithmetic Linear Stochastic None pxover = 0.5
S7 PSO(global) - - - normal rmutate = 0.2

distributed wt = 0.9 . . . 0.2
cp,t = 0.9 . . . 0.1
cg,t = 0.1 . . . 0.9

S8 PSO(local) - - - normal rmutate = 0.2
distributed wt = 0.4

cp,t = 1.0
cg,t = 1.0

S9 SDI - - - - γ = 0.1
S10 EA Multipoint Linear Stochastic normal rmutate = 0.2

distributed nxover = n
2

S11 EA Multipoint Linear Stochastic self nxover = n
2

adaptive
S12 EA Multipoint Linear Stochastic modulated nxover = n

2
adaptive

S13 PSO(global) - - - self rmutate = 0.3
adaptive narchive = 100

S14 PSO(global) - - - self rmutate = 0.2
adaptive narchive = 500

S15 EA Multipoint Linear Stochastic self nxover = n
2

adaptive hybrid += SBX
S16 EA Multipoint Linear Stochastic self nxover = n

2
adaptive hybrid += Uniform

Table 1: Overview of tested nature-inspired algorithms with different settings for single-
objective testproblems
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Rastrigin: This function has similar characteristics as Griewank, but is defined in a smaller
space [−5.12, 5.12]3. S10, S11, S15 and S16 give best results with only a small standard devia-
tion.

Six-hump-camel-back: This function does not have local optima, but 2 global optima. All
PSO settings and EA with mutation are very good. Setting S8 will reach the one optima in every
run because of sbestobj = 0.

Ackley: We tested this function with x1, x2 ∈ [−30, 30]. There are many local minima but in
direction of the global minima the difference of function values of neighbored minima increase.
Best results showed setting S8 with only a small standard deviation, but also S7, S10 and S10
reached good results. Results of PSO are acceptable but in some runs the algorithm converged
towards a neighbored local optima.

10 bar truss: This problem was tested a few times in optiSLang 3.2 and optiSLang 3.1.4.
In that runs the global PSO was worse than EA settings. The reason is the influence of the
inequality constraints to the quality of PSO. Local improvement of the preobtained solution
gives good results with all algorithms.

Conclusions: Results for EA without mutation (S1-S6) are worse compared to other settings
for each testfunction. PSO with normal mutation (S7/S8), EA with Multipoint crossover, self
adaptive mutation and hybrid crossover SBX (S15) and EA with Multipoint crossover and nor-
mal mutation (S10) showed good results for all testfunctions. It should be mentioned that setting
S10 is by neglecting some minor changes default setting in version 3.1.x. Setting S15 is now
chosen as default setting for EA. Setting S7 is the new default setting for global PSO, S8 for
local PSO.

6.2 Multiobjective Problems
A lot of testfunctions that can be found in literature (Deb et al. (2002); Okabe et al. (2004); van
D. A. and B. (2000); Osyczka and Kundu (1995) etc.) have been tested. These problems have
different characteristics. Thus the behaviour of the algorithms and settings is tested for large
input spaces, numerous constraints, problems with local pareto optimal solutions, disconnected
pareto fronts and so on.
In a single run with 50000 calculations (µ = 100, λ = 100 and gmax = 500) and setting
PSO (M3) we created a reference file with pareto designs for testproblems Kita, Kursawe, Deb,
Tanaka and with setting EA (M9) for testproblem Osyczka respectively. Reference pareto fronts
can be seen in section A.2. We have chosen two test criteria for each testfunction. Therefore
we moved the reference front by 1% and 10% into the non-dominant direction and check if the
pareto front of each setting dominates these. We count the number of dominated points of the
shifted reference front (#DP1 / #DP10). Some of our results are shown in A.4 and listed below.

Kita: All PSO settings gave good results. Even with 400 designs (µ = 10, gmax = 40) the
first test criteria was fullfilled with about 66%. Compared to that EA with multipoint crossover
and several mutation methods only reached about 30%. With µ = 50 and gmax = 200 PSO is
still the best algorithm for this testproblem with only 1500 calculated designs.
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Name Method Adaption Ranking Selection Mutation Special parameter

M1 EA Multipoint Pareto Tourn. None nxover = n
2

M2 EA Uniform Pareto Tourn. None pxover = 0.5
M3 PSO - - - normal D, narchive = 1000

(global) distributed rmutate = 0.3
wt = 0.9 . . . 0.2
cp,t = 0.9 . . . 0.1
cg,t = 0.1 . . . 0.9

M3* see M3 SP, narchive = 10
M4 PSO - - - normal D, narchive = 1000

(local) distributed rmutate = 0.3
wt = 0.4
cp,t = 1.0
cg,t = 1.0

M4* see M4 SP, narchive = 10
M5 SDI - - - - γ = 0.1
M6 EA Multipoint Pareto Tourn. normal rmutate = 0.2

distributed nxover = n
2

M7 EA Multipoint Pareto Tourn. self nxover = n
2

adaptive
M8 PSO - - - self D, narchive = 100

(global) adaptive
M8* see M8 SP, narchive = 10
M9 EA Multipoint Pareto Tourn. self nxover = n

2
adaptive hybrid += SBX

M10 EA Multipoint Pareto Tourn. self nxover = n
2

adaptive hybrid += Uniform

Table 2: Overview of tested nature-inspired algorithms with different settings for multi-
objective testproblems
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Kursawe: The phenomenon of disconnected pareto fronts appears quiet often in real world
problems. With the Kursawe testproblem we can benchmark the different algorithms and set-
tings on this characteristic Kursawe (1991). Differences of results between PSO and hybrid EA
with self adaptive mutation can hardly be found. PSO gives better first criteria results and EA
better second criteria results for µ = 10 and gmax = 40. With higher population size EA gives
better first criteria results too. The pareto front of this testproblem is divided into 3 sections. A
bigger population size is suggested. So a local convergence can be prevented.

Deb: The special characteristic of this testproblem is that there are local and global pareto-
optimal solutions. The local pareto-optimal solutions occur at y = 0.6 and the global ones at
y = 0.2. Some algorithms have problems with finding the global pareto front, see Deb (1999).
EA with mutation (M6, M7) and hybrid crossover (M9, M10) are the only settings that find the
global pareto front in its whole range in most optimization runs. PSO has problems in finding a
good representation of the global front. It finds some global solutions but not enough to cover
the whole range. The main problem of PSO in this case is the alternation of two good solutions.
Once global best is close to y = 0.6 and next time it is close to y = 0.2. So the swarm will
move in an area between these two points and can not converge to a solution. Additionally
the influence of global best will increase with further generations, but the chance of moving
towards the local solution is higher if this region is searched better in the beginning because the
archive will keep more local pareto-optimal solutions then. So PSO can get trapped into the
local pareto front lately.

Tanaka: PSO gives better results than other algorithm settings, but even with µ = 50 and
gmax = 200 the first test criteria is fullfilled only 30%. The second criteria generally fulfills the
requirements. The optimizer converges to early. Choosing a smaller stagnation rate can help to
overcome this problem.

Osyczka: Since this testproblem has 6 parameters we have better results with a higher popu-
lation size (µ = 100 instead of µ = 50). Because of the number of constraints it might be hard
then to find valid designs, we used strength pareto (settings M3*, M4* and M8*). Best results
had been found by EA with hybrid crossover and self adaptive mutation.

Conclusions: Looking at the result we can determine that there is not a special setting that is
always better than the others. The quality of all settings differ a lot for each testproblem. There
is a trend which we can ratify from some practical applications that PSO works better in case
of continuous input space and only a few and less violated constraints. As far as the number of
discrete inputvariables rises or constraints are violated often EA works better. Most practical
applications showed good results when using self adaptive mutation (see also 3). Evolutionary
algorithms generally work better with hybrid crossover. As the tests show a combination of
multipoint and simulated binary crossover gives good and stable results. Higher population
sizes tend to give a better representation of the pareto front. These settings will be default for
the new pareto workflow.
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7 Recommended Applications
NOAs produce good results for many problems but they often converge slower compared to
other optimization methods. Depending on the choosen settings for some problems they tend
to converge towards local optima rather than the global optimum of the problem. But rapidly
locating good solutions even for difficult search spaces is an advantage.

multi

Pareto-Flow1

Number of Objectives

single

NOA-Flow

unaware

SDI

Knowledge about the problem

fragmental

global

preoptimized

local

binary

GA

Type of Parameter

discrete

EA2 (PSO)

continuous

PSO (EA)

None

PSO

Constraint violations

seldom

EA (PSO)

frequently

EA

EA2

1See section Pareto Optimization
2Discrete crossover operators
 (singlepoint, multipoint, uniform)

Figure 4: Recommended Applications

The use of NOA algorithms are recommended:

• in all cases where gradient based optimization or response surface approximation fails.

• in case of a high number of variables or constraints.

• in case of discrete or binary variables

• in case of discrete responses

• if the user is unaware about the problem

The offered nature-inspired algorithms differ partially a lot. Their usage and suggested settings
depend on the number of objectives as well as any preoptained information about the behaviour
of the investigated system, the type of variables and the character of constraint violations. An
overview of the advised selection can be seen in figure 4. A decision tree is shown. Therein a
light shaded rectangle gives a possible solution, a dark shaded rectangle means a decision.

Example 1 No information about the behaviour of the system, that is to be optimized, exists
or a complete new solution should be found. Recommended application: SDI
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Example 2 Based on previous observations, a preoptimized design exists. All variables of the
underlying scope are continuous. Recommended application: PSO local

Example 3 Example 2 but with a further information: The problem contains frequently vio-
lated constraints. Recommended application: EA local

In some cases the use of NOA can be more complex than the usage of other strategies. One
possibility to reduce this effort is the search for optima on response surfaces. Because evalua-
tions based on metamodels are very cheap, many generations should be used here.

7.1 Multiobjective optimization
Multiobjective optimization is applied if the task contains at least two conflicting objectives.
Generally the number of objectives describing the optimization problem is unlimited. For-
mulating optimization problems with more than three conflicting objectives should become a
challenging task for the engineer and also the analysis of the resulting hypersurface is nontrivial.

multi

Pareto-Flow

Number of Objectives

single

NOA-Flow1

Type of Parameter

discrete

EA2 (PSO)

continuous

PSO (EA)

None

PSO

Constraint violations

seldom

EA (PSO)

frequently

EA 1See section NOA-Flow
2Discrete crossover operators

Figure 5: Recommended Applications

The application of multi-objective-optimization is recommended if there is a comprehensive
knowledge about the problem, which not only includes the objective functions but also impor-
tant design variables and constraints. For those reasons this method should not be used when
analyzing a problem for the first time. If objectives are positive correlated, or non conflicting
respectively, the optimum of the problem would be represented by a point instead of a trade-off
front. It should be decided whether the application of a task with a reduced number of objec-
tives (singleobjective) is more suitable.
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The offered algorithms differ partially a lot. Their usage and suggested settings depend on mul-
tiple parameters. Therewith it is not easy to find a suitable algorithm for non - specialists. To
help the user to choose good settings even for very difficult tasks, a decision tree is given in
figure 5. The interpretation of this decision tree equals that given in the single objective section
(sec. 7, fig. 4).

8 Conclusion
Within stochastic analyses, nature-inspired optimization algorithms (NOA) imitate natural pro-
cesses like biological evolution or swarm intelligence. Based on the principle ”survival of the
fittest“, a population of artificial individuals searches the design space of possible solutions
in order to find a better solution of the optimization problem. The usage of these algorithms
is recommended for various applications. NOA are very robust against mathematically ill-
conditioned problems. Thus, with help of the NOA wizard within optiSLang , difficult single
or multiobjective optimization tasks can be solved even for large and difficult search spaces.
Particle swarm optimization algorithm and simple design improvement had been added to the
algorithms that were already available in previous versions of optiSLang . Together they com-
pose the new NOA flow. This paper also presented some improvements and enhancements
that come with optiSLang 3.2. Three adaptive mutation operators had been implemented as
well as the possibility to combine multiple crossover operators. Many practical and theoretical
benchmarks have been accomplished to appraise the behaviour of the existing and appearing
algorithms and settings. Some of them had been named and listed. It could be seen, that the
introduced enhancements improved the behaviour of the implemented algorithms a lot.
The offered natural inspired algorithms differ partially a lot. Their usage and suggested settings
depend on multiple parameters. Therewith it is not easy to find a suitable algorithm for non -
specialists. To help the user to choose good settings even for very difficult tasks, optiSLang
provides various approved pre-settings and an easy understandable decision tree. This allows
even non-optimization specialists to successfully use (multi-disciplinary) optimization.
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A Appendix

A.1 Singleobjective Testfunctions
Testfunction Rosenbrock

f(~x) → min

f(~x) =
n∑
i=1

((100(xi+1 − x2
i )

2) + (1− xi)2)

~x ∈ [−2.4, 2.4]n

optimal point: xi = 1, i = 1, . . . , n
optimal value: f(x) = 0

(14)

Testfunction Griewank

f(~x) → min

f(~x) =
n∑
i=1

x2
i

4000
−

n∏
i=1

cos( xi√
i
) + 1

~x ∈ [−600, 600]n

optimal point: xi = 0, i = 1, . . . , n
optimal value: f(x) = 0

(15)

Testfunction Rastrigin

f(~x) → min

f(~x) = 10n+
n∑
i=1

(x2
i − 10 cos(2πxi))

~x ∈ [−5.12, 5.12]n

optimal point: xi = 0, i = 1, . . . , n
optimal value: f(x) = 0

(16)
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Testfunction Sixhump

f(x, y) → min

f(x, y) = (4− 2.1x2 + (x4)/3)x2 + xy + (−4 + 4y2)y2

x, y ∈ [−2, 2]n

optimal points: (x1, y1) = (−0.0898; 0.7126),
(x2, y2) = (0.0898;−0.7126)

optimal value: f(x) = −1.0316

(17)

Testfunction Ackley

f(~x) → min

f(~x) = −ae
−b

s
1/n

nP
i=1

x2
i

− e
1/n

nP
i=1

cos(cxi)
+ a+ e

a = 20, b = 0.2, c = 2π

~x ∈ Rn

xi ∈ [−30, 30]→ many local optima
xi ∈ [−2, 2]→ area of global optimum

optimal point: xi = 0, i = 1, . . . , n
optimal value: f(x) = 0

(18)
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A.2 Multiobjective Testfunctions
Testfunction Kita

f1(x, y), f2(x, y) → min

f1(x, y) = x2 − y

f2(x, y) = −0.5x− y − 1

x, y ∈ [0, 7]

0 ≤ −x/6− y + 6.5
0 ≤ −x/2− y + 7.5
0 ≤ −5x− y + 30

(19)

Figure 6: Reference pareto front of testfunction Kita
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Testfunction Kursawe

f1(~x), f2(~x) → min

f1(~x) =
n∑
i=1

−10e−0.2
√
x2

i +x2
i+1

f2(~x) =
n∑
i=1

|xi|0.8 + 5 sin(xi)
3

~x ∈ [−5, 5]n (n=3)

(20)

Figure 7: Reference pareto front of testfunction Kursawe
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Testfunction Deb

f1(x), f2(x, y) → min

f1(x) = x

f2(x, y) = (2− e−( y−0.2
0.004

)2 − 0.8e−( y−0.6
0.04

)2)/x

x, y ∈ [0.1, 1]

(21)

Figure 8: Reference pareto front of testfunction Deb
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Testfunction Tanaka

f1(x), f2(y) → min

f1(x) = x

f2(y) = y

x, y ∈ (0, π]

0 ≤ x2 + y2 − 1− 0.1 cos(16 arctan(x
y
))

0 ≤ 1
2
− (x− 1

2
)2 − (y − 1

2
)2

(22)

Figure 9: Reference pareto front of testfunction Tanaka
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Testfunction Osyczka

f1(~x), f2(~x) → min

f1(~x) = −(25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2)

f2(~x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6

~x ∈ R6

0 ≤ x1, x2, x6 ≤ 10
1 ≤ x3, x5 ≤ 5
0 ≤ x4 ≤ 6

0 ≤ x1 + x2 − 2
0 ≤ 6− x1 − x2

0 ≤ 2− x2 + x1

0 ≤ 2− x1 + 3x2

0 ≤ 4− (x3 − 3)2 − x4

0 ≤ (x5 − 3)2 + x6 − 4

(23)

Figure 10: Reference pareto front of testfunction Osyczka
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A.3 Benchmark results of singleobjective testfunctions
We compare mean x̄bestobj , median x̃bestobj , standard deviation sbestobj , minimum xmin and max-
imum xmax of best objective and the mean of calculated designs per setting for every testfunc-
tion. When comparing the results in these tables it is obvious that mutation is a very important
setting in evolutionary algorithms. Mutation prevents the algorithms to stagnate too early and
find suboptimal solutions as it can be seen in settings S1-S6.

Results of testfunction Rosenbrock with 10 parameter

Setting
x̄bestobj x̃bestobj sbestobj xmin xmax #Designs

S1 688.138 571.513 401.789 143.310 1933.938 364.6
S2 258.107 212.920 165.508 57.039 1063.481 423.2
S3 236.111 205.362 135.836 31.110 966.716 427.6
S4 2148.240 2096.703 940.248 428.560 5310.298 200.0
S5 202.160 169.253 122.058 40.289 600.705 975.2
S6 103.426 88.725 62.410 27.080 361.327 438.4
S7 10.021 9.897 1.509 5.168 15.751 981.6
S8 14.846 10.445 15.163 6.514 74.125 919.0
S9 16.771 14.795 11.263 9.008 97.647 733.2
S10 16.200 10.275 16.912 1.788 78.693 992.4
S11 28.373 16.876 24.365 8.299 110.203 966.2
S12 101.831 95.284 35.728 22.582 217.784 652.0
S13 49.558 36.925 36.983 12.418 207.358 760.4
S14 26.094 17.869 20.566 10.551 109.726 847.4
S15 25.776 16.097 19.964 9.328 83.789 975.8
S16 28.005 16.043 24.310 8.778 109.314 968.8
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Results of testfunction Griewank with 5 parameter

Setting
x̄bestobj x̃bestobj sbestobj xmin xmax #Designs

S1 11.779 10.870 6.899 1.686 31.195 342.4
S2 10.721 9.529 6.488 1.959 42.725 348.4
S3 9.352 8.286 5.684 1.148 28.159 352.6
S4 51.614 52.207 19.858 7.061 100.854 200.0
S5 7.031 5.130 5.929 0.289 30.613 944.2
S6 3.916 2.713 3.542 0.537 20.469 382.2
S7 0.741 0.714 0.247 0.251 1.746 804.2
S8 0.723 0.728 0.197 0.216 1.222 634.6
S9 0.976 0.989 0.177 0.590 1.375 536.0
S10 0.484 0.454 0.228 0.108 1.169 896.6
S11 0.783 0.767 0.225 0.266 1.224 884.4
S12 3.636 3.505 1.162 1.087 7.448 473.4
S13 1.687 1.432 0.886 0.436 5.793 710.6
S14 1.144 0.984 0.524 0.404 3.307 765.8
S15 0.534 0.497 0.222 0.056 1.023 957.4
S16 0.770 0.786 0.273 0.198 1.579 878.0

Results of testfunction Rastrigin with 3 parameter

Setting
x̄bestobj x̃bestobj sbestobj xmin xmax #Designs

S1 9.721 8.631 5.297 1.464 25.551 303.2
S2 10.125 9.636 4.430 2.084 22.987 293.4
S3 8.951 8.130 4.807 2.400 26.951 301.8
S4 23.876 24.438 7.074 9.307 39.694 200.0
S5 4.225 3.225 3.261 0.044 19.098 683.8
S6 7.308 6.478 3.877 0.485 22.108 320.4
S7 3.203 2.711 2.553 0.018 14.683 595.6
S8 1.776 1.188 1.663 0.009 7.996 708.2
S9 11.934 10.754 7.093 0.881 36.262 398.2
S10 0.526 0.185 0.836 0.002 5.553 757.4
S11 0.951 0.566 0.999 0.019 6.241 693.8
S12 2.390 2.340 1.009 0.410 7.817 526.6
S13 5.267 5.194 2.696 0.294 14.865 462.8
S14 4.165 3.557 2.580 0.020 11.316 542.6
S15 0.573 0.221 0.847 0.002 4.977 827.0
S16 0.767 0.409 0.874 0.009 5.628 756.2

29



Results of testfunction Six-hump-camel-back

Setting
x̄bestobj x̃bestobj sbestobj xmin xmax #Designs

S1 -0.867 -0.932 0.185 -1.029 -0.218 281.2
S2 -0.849 -0.921 0.214 -1.031 0.089 262.0
S3 -0.833 -0.920 0.234 -1.031 0.171 262.4
S4 -0.522 -0.555 0.357 -1.017 0.290 200.0
S5 -0.966 -1.016 0.114 -1.032 -0.476 581.8
S6 -0.955 -1.011 0.121 -1.032 -0.302 361.6
S7 -1.030 -1.031 0.004 -1.032 -0.999 652.2
S8 -1.032 -1.032 0.000 -1.032 -1.031 650.4
S9 -0.957 -1.031 0.235 -1.032 -0.208 393.2
S10 -1.031 -1.031 0.001 -1.032 -1.023 617.6
S11 -1.027 -1.030 0.009 -1.032 -0.967 530.4
S12 -1.009 -1.018 0.024 -1.032 -0.925 352.2
S13 -1.023 -1.028 0.013 -1.032 -0.949 488.4
S14 -1.029 -1.031 0.005 -1.032 -1.006 614.0
S15 -1.030 -1.031 0.003 -1.032 -1.010 701.6
S16 -1.028 -1.031 0.005 -1.032 -1.000 537.8

Results of testfunction Ackley with 2 parameter

Setting
x̄bestobj x̃bestobj sbestobj xmin xmax #Designs

S1 8.291 8.072 3.615 0.275 16.397 267.0
S2 8.665 8.595 3.547 1.558 18.640 265.6
S3 8.828 9.055 3.366 0.804 16.112 267.0
S4 12.589 12.883 3.836 3.093 19.882 200.0
S5 6.100 5.437 3.834 0.020 15.606 643.6
S6 2.022 1.838 2.119 0.000 10.247 415.2
S7 0.418 0.115 0.664 0.005 2.917 740.8
S8 0.094 0.056 0.125 0.002 0.708 668.2
S9 1.016 0.903 0.638 0.074 2.633 455.2
S10 0.749 0.453 0.724 0.008 3.092 642.2
S11 1.566 1.259 1.090 0.035 3.946 558.2
S12 3.979 3.839 1.536 0.216 7.883 368.2
S13 1.794 1.747 1.105 0.020 4.324 547.6
S14 1.054 0.550 1.153 0.011 5.508 652.0
S15 0.862 0.409 0.998 0.004 3.813 713.6
S16 1.564 1.343 1.187 0.054 4.242 607.0
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Results of 10 bar truss problem

The optimization problem is to minimize the mass of the structure subject to displacement and
stress constraints which can be described as follows.

disp+ 0.02 ≥ 0

1.7e8− stress ≥ 0
(24)

Setting in optiSLang 3.1
xbestobj #Designs

EA global 764 400
Best of EA global as start design

EA local 658 400

Within optiSLang 3.2 we tested the default settings. Global search strategies use a randomly
generated start population of a predefined size. These results can be compared with the result
for EA with global search in optiSLang 3.1. The local search settings use all the same start
design. PSO local search also uses constant acceleration coefficients that force the swarm to
move into direction of global best with a constant rate throughout the whole optimization. SDI
was first tested with default γ = 10% but we couldn’t improve the solution because the sampling
space was chosen to big in that preoptimized area. Thus, we used a smaller sampling bound
of γ = 1% to help the algorithm search in a smaller space. That way we could improve the
preoptimized solution.

Setting in optiSLang 3.2
xbestobj #Designs

PSO global 661 400
EA global (self adaptive) 635 400
EA global (self adaptive, hybrid
crossover)

598 400

EA global (normal) 741 400
Best of EA global as start design

EA local 585 400
PSO local 584 400
SDI (γ = 10%) 598 400
SDI (γ = 1%) 586 400
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A.4 Benchmark results of multiobjective testfunctions
We compare the percentage of designs that dominate a pareto front with a shifted reference
front (shift: 1% and 10%). In the following tables #TP is the number of designs on reference
pareto front, #PD is the number of found pareto designs and #Designs is the mean of the total
number of designs. #PD includes also identical designs for which reason in some settings the
number can be very high but both test criteria are not fullfilled.

Results of testfunction Kita

Setting
µ λ gmax time

(sek)
#TP #PD #DP1 #DP10 #Designs

M1 10 10 40 0.08 36 103.59 0.02 0.33 206.0
M2 10 10 40 0.05 36 104.77 0.02 0.44 201.7
M3 10 10 40 0.03 36 22.15 0.60 0.99 360.9
M4 10 10 40 0.03 36 23.49 0.66 1.00 351.8
M5 10 10 40 0.03 36 15.38 0.42 0.98 311.8
M6 10 10 40 0.06 36 64.02 0.31 0.97 357.9
M7 10 10 40 0.10 36 63.06 0.22 0.96 341.9
M8 10 10 40 0.04 36 19.23 0.64 1.00 351.8
M9 10 10 40 0.07 36 59.08 0.31 0.99 364.6
M10 10 10 40 0.11 36 66.73 0.22 0.97 342.5

Setting
µ λ gmax time

(sek)
#TP #PD #DP1 #DP10 #Designs

M1 50 50 200 0.60 36 432.75 0.05 0.82 752.5
M2 50 50 200 0.49 36 428.81 0.08 0.88 749.5
M3 50 50 200 0.17 36 30.29 0.90 1.00 1452.5
M4 50 50 200 0.17 36 45.33 0.96 1.00 1372.0
M5 50 50 200 0.07 36 31.76 0.55 0.97 1213.0
M6 50 50 200 0.55 36 349.76 0.74 1.00 1775.0
M7 50 50 200 0.33 36 370.53 0.64 1.00 1724.5
M8 50 50 200 0.11 36 25.41 0.85 1.00 1494.0
M9 50 50 200 2.63 36 313.99 0.78 1.00 2253.5
M10 50 50 200 0.30 36 364.61 0.62 1.00 1651.0
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Results of testfunction Kursawe

Setting
µ λ gmax time

(sek)
#TP #PD #DP1 #DP10 #Designs

M1 10 10 40 0.07 59 108.17 0.01 0.25 236.3
M2 10 10 40 0.09 59 107.36 0.01 0.33 229.1
M3 10 10 40 0.05 59 30.65 0.45 0.93 371.5
M4 10 10 40 0.03 59 32.02 0.45 0.88 345.1
M5 10 10 40 0.04 59 27.21 0.23 0.52 302.5
M6 10 10 40 0.09 59 62.89 0.38 0.96 383.0
M7 10 10 40 0.12 59 63.82 0.25 0.98 371.5
M8 10 10 40 0.06 59 22.82 0.29 0.95 358.8
M9 10 10 40 0.12 59 51.15 0.39 0.98 381.5
M10 10 10 40 0.13 59 60.80 0.34 0.98 377.9

Setting
µ λ gmax time

(sek)
#TP #PD #DP1 #DP10 #Designs

M1 50 50 200 0.39 59 524.94 0.06 0.82 932.0
M2 50 50 200 0.38 59 510.19 0.09 0.84 922.5
M3 50 50 200 0.07 59 39.92 0.66 1.00 1778.5
M4 50 50 200 0.10 59 67.73 0.83 1.00 1567.5
M5 50 50 200 0.18 59 54.08 0.53 0.69 1407.0
M6 50 50 200 0.66 59 315.93 0.92 1.00 1797.0
M7 50 50 200 0.95 59 331.50 0.87 1.00 2037.0
M8 50 50 200 0.41 59 25.41 0.36 1.00 1643.5
M9 50 50 200 0.36 59 257.65 0.93 1.00 1923.5
M10 50 50 200 2.17 59 325.99 0.87 1.00 2040.5
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Results of testfunction Deb

Setting
µ λ gmax time

(sek)
#TP #PD #DP1 #DP10 #Designs

M1 10 10 40 0.14 81 121.78 0.01 0.12 214.2
M2 10 10 40 0.08 81 119.16 0.03 0.15 195.9
M3 10 10 40 0.05 81 39.67 0.14 0.50 251.4
M4 10 10 40 0.08 81 52.32 0.14 0.37 259.8
M5 10 10 40 0.01 81 51.41 0.10 0.24 186.9
M6 10 10 40 0.05 81 87.97 0.28 0.80 324.9
M7 10 10 40 0.09 81 88.45 0.23 0.83 334.2
M8 10 10 40 0.04 81 34.64 0.17 0.58 270.6
M9 10 10 40 0.14 81 87.90 0.37 0.89 346.0
M10 10 10 40 0.06 81 90.51 0.21 0.84 327.7

Setting
µ λ gmax time

(sek)
#TP #PD #DP1 #DP10 #Designs

M1 50 50 200 0.75 81 517.68 0.14 0.60 806.0
M2 50 50 200 0.59 81 513.35 0.13 0.59 820.0
M3 50 50 200 0.06 81 52.21 0.35 0.82 1015.0
M4 50 50 200 0.11 81 108.42 0.35 0.71 1034.5
M5 50 50 200 0.19 81 139.64 0.25 0.42 878.5
M6 50 50 200 0.55 81 494.16 0.83 0.99 1580.5
M7 50 50 200 0.39 81 468.35 0.82 0.99 1424.0
M8 50 50 200 0.13 81 48.77 0.34 0.85 1082.5
M9 50 50 200 0.48 81 405.16 0.93 1.00 1554.5
M10 50 50 200 0.69 81 462.21 0.82 0.99 1457.5
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Results of testfunction Tanaka

Setting
µ λ gmax time

(sek)
#TP #PD #DP1 #DP10 #Designs

M1 10 10 40 0.07 231 98.24 0.00 0.05 232.5
M2 10 10 40 0.09 231 96.22 0.00 0.05 226.5
M3 10 10 40 0.02 231 16.02 0.13 0.75 338.4
M4 10 10 40 0.02 231 16.61 0.13 0.67 321.6
M5 10 10 40 0.02 231 12.32 0.06 0.47 287.9
M6 10 10 40 0.05 231 38.44 0.03 0.48 379.1
M7 10 10 40 0.06 231 44.05 0.02 0.45 365.1
M8 10 10 40 0.04 231 14.09 0.07 0.77 327.6
M9 10 10 40 0.06 231 29.79 0.04 0.53 386.6
M10 10 10 40 0.06 231 41.80 0.02 0.44 376.8

Setting
µ λ gmax time

(sek)
#TP #PD #DP1 #DP10 #Designs

M1 50 50 200 0.43 231 386.50 0.01 0.22 804.5
M2 50 50 200 0.61 231 399.13 0.01 0.19 804.0
M3 50 50 200 0.09 231 26.38 0.21 0.95 1522.0
M4 50 50 200 0.06 231 32.72 0.33 0.89 1371.0
M5 50 50 200 0.19 231 26.33 0.20 0.54 1347.5
M6 50 50 200 1.03 231 298.07 0.10 0.83 1973.0
M7 50 50 200 0.53 231 295.75 0.08 0.76 1777.5
M8 50 50 200 0.11 231 21.21 0.12 0.94 1427.0
M9 50 50 200 2.83 231 273.96 0.16 0.88 2237.5
M10 50 50 200 0.59 231 301.48 0.08 0.78 1849.0
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Results of testfunction Osyczka

Setting
µ λ gmax time

(sek)
#TP #PD #DP1 #DP10 #Designs

M1 100 100 100 3.27 80 1239.69 0.00 0.01 2574.0
M2 100 100 100 3.28 80 1239.20 0.00 0.01 2574.0
M3* 100 100 100 1.02 80 56.33 0.17 0.68 9852.0
M4* 100 100 100 1.13 80 52.61 0.27 0.73 9864.0
M5 100 100 100 6.17 80 45.29 0.16 0.39 8480.0
M6 100 100 100 5.28 80 789.35 0.54 0.87 9979.0
M7 100 100 100 19.35 80 931.84 0.47 0.79 9837.0
M8* 100 100 100 4.85 80 34.36 0.08 0.66 9703.0
M9 100 100 100 9.00 80 447.10 0.62 0.92 10000.0
M10 100 100 100 24.09 80 945.50 0.50 0.82 9950.0

Setting
µ λ gmax time

(sek)
#TP #PD #DP1 #DP10 #Designs

M1 50 50 200 2.42 80 613.02 0.00 0.00 1325.0
M2 50 50 200 1.73 80 601.37 0.00 0.00 1360.0
M3* 50 50 200 0.23 80 57.98 0.24 0.62 8597.5
M4* 50 50 200 0.25 80 57.27 0.29 0.69 8580.5
M5 50 50 200 3.80 80 33.18 0.10 0.35 4927.5
M6 50 50 200 12.54 80 792.21 0.47 0.76 9626.5
M7 50 50 200 22.71 80 893.64 0.40 0.71 8154.5
M8* 50 50 200 5.20 80 27.62 0.08 0.49 7245.5
M9 50 50 200 22.51 80 517.60 0.53 0.84 9827.5
M10 50 50 200 85.24 80 923.80 0.41 0.72 8068.5
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Benchmark of mutation methods

EA with multipoint crossover

• AM1 self adaptive mutation (M7)

• AM2 constraint mutation

• AM3 normal mutation (M6)

• AM4 modulated mutation

Test Setting µ λ gmax time #TP #PD #DP1 #DP10 #Designs

Kita AM1 10 10 40 0.08 36 67.60 0.21 0.99 327.0
Kita AM2 10 10 40 0.09 36 59.00 0.35 0.98 347.4
Kita AM3 10 10 40 0.11 36 57.56 0.31 0.98 362.6
Kita AM4 10 10 40 0.21 36 33.30 0.21 1.00 299.6

Tanaka AM1 100 100 100 3.52 231 591.22 0.11 0.87 3202.0
Tanaka AM2 100 100 100 22.10 231 603.98 0.24 0.93 4384.0
Tanaka AM3 100 100 100 2.46 231 634.18 0.17 0.93 4264.0
Tanaka AM4 100 100 100 9.46 231 10.80 0.14 0.93 3160.0

Osyczka AM1 100 100 100 1.37 80 368.30 0.41 0.78 6178.0
Osyczka AM2 100 100 100 20.47 80 324.64 0.50 0.80 7786.0
Osyczka AM3 100 100 100 2.09 80 346.84 0.47 0.82 6998.0
Osyczka AM4 100 100 100 33.72 80 366.80 0.07 0.37 3294.0

Table 3: Benchmark of different mutation methods for EA with multipoint crossover
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