

WOST 2010 Cortronik GmbH **Stent Development**

Optimization Strategies for the Development of Vascular Stents.

Nils Götzen André Schoof

Introduction
Stent Development
Design Optimization
Optimization Strategy
Conclusion & Outlook

Introduction

Coronary Angioplasty With Stent Placement

- Atherosclerosis is plaque build-up inside the coronary arteries
- I most common type of heart disease
- I leading cause of death in EU/US
- I lifestyle changes & medicines effective treatment at early stage of the disease

Introduction

Coronary Angioplasty With Stent Placement

- one of the most important achievements of the last years in interventional cardiology
- balloon is inflated to compress the plaque
- stent expands and attaches
 to the artery wall
- stent stabilizes opened vessel until the healing process has finished

Stent System Assembly

Stent-Delivery-System

Stent mounted on Delivery System

Stent Development

Design Development Circle

- closely integrated CAD + FEA is used from the early development phase on
- parametric CAD geometry
- I numerical evaluation
- parameter analysis +
 optimization
- prototyping +
 experimental evaluation

From 3D to 2D and back again

From 3D to 2D and back again

CORTRONIK

Strategy – CAD

- parametric geometry model with Solid Edge
- I independent design features are important for minimum of cross-correlation
- geometry parameters
 - I meander width
 - outer crown arc radii
 - I inner crown arc radii
 - strut widths
 - strut angle
 - offset values etc.

CORTRONIK

Strategy – FEA

- FE model generation in ANSYS Workbench (WB) bi-directional interface with Solid Edge
- cyclic BC with CEs (APDL scripts)
- non-linear 2D Solution
 - I non-linear material model
 - large strain kinematics
 - contact modeling

CORTRONIK

Load Steps

- crimping radial compression (mounting on balloon)
- dilatation radial expansion (balloon expansion)
- recoil radial spring back
- compliance radial reaction force
- 18 load steps

run time: ca. 2-4 min.

Strategy – FEA

- Script based post-processing in WB
 output parameter definition
 equivalent plastic strain at arc radii
 strain distribution in arcs
 radial compliance
 self contact forces
 overall min. strut width
- export of WB to optiSLang project

Design Strategy

CORTRONIK

Review

- I in the past: optimization as "trial and error approach"
- sensitivity analyses of design parameters using WB Design-Xplorer – limited success
- recently few true optimization studies were published
- using parametric modeling in ANSYS Classics & RSM approach
- or mesh-morphing as modeling tool
 with ARSM approach
- reduced dimensions in design space

Source: Li, N., Zhang, H., Ouyang, H., 2009, Finite Elements in Analysis and Design Wu, W. et al., 2010, Annals of Biomedical Engineering

- prior to DOE, input parameters: 31 ; output parameters: 63
- I definition of BCs & objective function
- objective function compliance + compliance range + strain distribution (4x) + mean contact forces + var contact forces
- I latin hypercube sampling
- $\mathbb{N} = 600$ (wall clock $\approx 12h$)
- I parameter range ≈ \pm 20%

compliance

pl. strain

contact pressure

INPUT: DP_MW

Optimization Strategy

Strategy – optiSLang – ARSM

- initial parameter are selected based on COI (DOE)
 1st loop:
 - design parameters:
 - I meander width
 - max. arc strut width (4x)
 - arc radii (4x)
 - I radius offset (4)
 - ± 20% parameter range
 - GA/NLPQLP
 - 20 iterations
 - up 10h wall clock time per ARSM loop (300-600 simulations)

Strategy – optiSLang – ARSM

- following loops (up to 8 loops):
 - start design = best design from previous loop
 - design parameters = combination of few initial and new
 parameters
 - I less important variable will be replaced by new ones
 - parameter range will be reduced stepwise down to ± 3%
 - 20-30 iterations

Conclusion & Outlook

CORTRONIK

optiSLang

- 1 year intense usage & experience of optiSLang at Cortronik Stent Development
- I proofed to be very successful and highly effective
- confidence with new tools & algorithms
- I new challenges in terms of model generation (stability) & formulation of objective function
- extended usage planned robustness analyses
 - I include geometrical variance (production tolerance)
 - I include scatter of material properties (elongation fracture)

Vielen Dank