Robust Design Optimization of a Centrifugal Compressor concerning Fluid-Structure Interaction and Manufacturing Tolerances

Dirk Roos DYNARDO GmbH dirk.roos@dynardo.de Johannes Einzinger ANSYS Continental Europe johannes.einzinger@ansys.com

Conclusion Robustness Analysis

ONon robust behavior with respect to

O Efficiency

O Total pressure

- OBut acceptable failure probability level for structural risk
 - O Estimation of a Six Sigma Design

OEfficiency: myeta

- O RVHubBeta1 as largest as possible
- O RVShdBeta1 as largest as possible
- O RImpeller as smallest as possible

OTotal pressure: ptratio

- O myomega as largest as possible
- O RImpeller as largest as possible
- O ptratio mean -> 1.355

minptratio vs. INPUT: myomega, (linear) r = 0.INEQUAL: maxptratio vs. INPUT: myomega, (linear) r =

ANSYS[®]

Successive Robust Design Optimization

- iterative decoupled loop approach
- in combination with identification of the most significant random and design variables using the multivariate statistic
- first step the robustness evaluation can be used to prove the predictive capability of the simulation model and to
- identify the most important parameters to solve reliability analysis, efficiently
- it is neccessary to evaluate robustness and safety of the design

W.

Design Optimization II Robustness Evaluation II

Robust Design Optimization Reliability Analysis

Design Optimization II

Opti	Robust Ou	tput Strings	Constraints	Objectives					
#	Name	Value	Ref.Value	Lower Bound	Upper Bound	Туре	Format	Active	Const
1	myomega	699.76	699.76	699.0	703.0	continuous	%20.14f		
2	InletWidth	53	53.6136610657	52.5	57.5	continuous	%20.14f	V	
3	ExitWidth	26	27.8049298398	26.5	28.5	continuous	%20.14f	V	
4	Rimpeller	305	292.556879245	291	300	continuous	%20.14f	V	
5	HubBeta1	-48	-52.5	-55	-49.5	continuous	%20.14f		
6	HubBeta3	-25	-27.017132519	-28	-26.5	continuous	%20.14f	V	
7	ShdBeta1	-55	-60.267623161	-60.5	-59.5	continuous	%20.14f	V	
8	RVHubThk1	45	45.0	35	66.0	continuous	%20.14f	V	
9	RVHubBeta1	60	66.0	62.0	68	continuous	%20.14f		
10	RVShdBeta1	60	62.8548646835	60.0	64.0	continuous	%20.14f	V	
11	RVShdThk1	45	45.0	35.0	55.0	continuous	%20.14f	~	
12	HubBeta2	-25	-25.0	-27.5	-22.5	continuous	%20.14f		
13	ShdBeta2	-45	-45.0	-49.5	-40.5	continuous	%20.14f		
14	ShdBeta3	-30	-30.0	-33.0	-27.0	continuous	%20.14f		
15	HubThk1	1	1.0	0.8	1.2	continuous	%20.14f		
16	HubThk2	6	5.91963645103	5.0	7.0	continuous	%20.14f		
17	ShdThk1	1	1.03011230706	0.8	1.2	continuous	%20.14f		
18	ShdThk2	6	6.0	5.0	7.0	continuous	%20.14f		
19	ImpellerBlades	20	20	18.0	24.0	continuous	%20.14f		
20	RVBlades	24	24	21.6	28.7999999999	continuous	%20.14f		

Cancel

OK

ANSYS° dynando

Design Optimization II: ARSM

Design Optimization II: ARSM

	Initial	SA	ARSM I	EAI	ARSM II
Total Pressure Ratio	1.3456	1.3497	1.3479	1.3485	1.356
Efficiency [%]	86.72	89.15	90.62	90.67	90.76
#Designs	-	100	105	84	62

© 2010 ANSYS, Inc. All rights reserved.

W.

Design Optimization II

Robustness Evaluation II

Robust Design Optimization Reliability Analysis

Robust evaluation II: LHS

Tolerance limit η<90% ~8% outside Tolerance limit Π_T>1.36 ~17% outside

W.

Design Optimization III Robustness Evaluation III

Robust Design Optimization Reliability Analysis

Design Optimization III: ARSM

ANSYS[®] dunando

Design Optimization III: ARSM

	Initial	SA	ARSM I	EAI	ARSM II	ARSM III
Total Pressure Ratio	1.3456	1.3497	1.3479	1.3485	1.356	1.351
Efficiency [%]	86.72	89.15	90.62	90.67	90.76	90.73
#Designs	-	100	105	84	62	40

© 2010 ANSYS, Inc. All rights reserved.

W.

Design Optimization III

Robustness Evaluation III

Robust Design Optimization Reliability Analysis

Robust evaluation III: LHS

Tolerance limit η<90% ~4.5% outside

Robust Design

Tolerance limit 1.4<∏_T<1.36 ~6% outside

Robust evaluation III: Eigen

Safety Design?

- 35 11

Design Optimization

obustness Evaluation

- Himmelblau function
- Nonlinear two dimensional state function g(x1,x2)
- Nonlinear limit state function g(x1,x2)=0 '
- Three separated domains with high failure probability density

© 2010 ANSYS, Inc. All rights reserved.

- Adaptive response surface method
- Directional sampling on MLS
- Design evaluations: 58
- PF = 1.67E-06 (1.99E-06)

- Sigma level independent
- n ≤ 20
- Multiple adaptive DOE
- Supports multi-domain limit states

Adaptive response surface approximation

Reliab	ility setting	gs	0
Load/Save Presets			
reliability algorithm	Adaptive ro	esponse surface	•
Parameters			
Assumed failure pro	bability	3.4e-6	
Sampling	method	directional sampling	
Number of	directions	adaptive sampling directional sampling 🔺	
Initial DoE	schema	D-optimal quadratic	•
Initial axial m	ultiplier	1.0	
Following DoE s	chemes	D-optimal linear	
Rotate DoEs	chemes		
Maximum number of e	lusters	3	
Max. number of ad	aptions	6	
Accuracy of failure probab	ility [%]	50.0	
Limit bound of parameter chan	iges [%]	2.0	
Reset		Cancel	ОК

- Sampling methods on the MLS approximation:
 - Adaptive Sampling
 - Directional Sampling
 - supports more than two failure domains
 - and sigma level independent
 - Cluster analysis to detect number of failure domains with high failure probability
- Rotatable adaptive designs of experiments to improve the approximation accuracy

Summary

- Parametric Workflow management
- Automatic and embedded solution
- Parallel and distributed solver runs
- Process integration within optiSLang
- Efficient Robust Design Optimization with
- Quadratic convergence rate and
- 18 design parameters and
- 26 random geometry parameters,

- including the manufactoring tolerances based random field modelling
- Optimized robust design: 5% improvement of the efficiency (η<90%, failure rate ~4.5%) Tolerance limit (1.4<Πτ<1.36, failure rate ~6%)
- Optimized Six Sigma design $P(\mathcal{F}) \approx 3 \cdot 10^{-7}$
- N = 100 + 105 + 84 + 100 + 62 + 50 + 40 + 50 + 68 = 659 design evaluations (SA)(EA)(ARSM)(RE)(ARSM)(RE)(ARSM)(RE)(RA)
- Calculation time: 10 days (8 CPUs)