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Summary 
Ship impact against bridges crossing waterways may damage the structure and in some unlikely case 
may cause a failure with dramatical consequences. The contribution shows a practical example for 
determining the failure probability of a historical bridge against ship impact. For this purpose, a 
parametric, automatized workflow was generated with ANSYS optiSLang using a nonlinear dynamic 
finiteelement analysis of a 3 dimensional bridge model. In the ANSYS FE-model nonlinear material 
models for concrete, historical masonry and the soil have been considered. The applied calculation 
method allowed a realistic calculation of the bridge by utilizing the available reserves of the load bearing 
capacity due to cracking and due to the load redistributions in the structure. 
In preparation of the probabilistic assessment of the bridge ultimate load calculations have been applied 
to identify the critical impact scenario, the failure mechanism and the ultimate load capacity of the bridge. 
Based on these results, different damage criteria had been derived, which are considered in a first 
variation and sensitivity analysis for the decisive impact scenario. With this sensitivity evaluation the 
most relevant parameters for the load behavior and for the evaluation criteria had been identified and 
only a small number of important input parameters could be identified. 
In the following reliability analysis the most suitable evaluation criterion was used to estimate the failure 
probability. The estimate was validated by using two different types of reliability analysis techniques 
within an automated workflow, an Adaptive Response Surface Approach in the significant parameter 
subspace and a Global Response Surface in the full parameter space combined with directional 
sampling.  
With the presented strategy a confident estimate of the failure probability could be achieved and the 
safety of the historical bridge against ship impact could be proven. 
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1. Robustness Evaluation 

Satisfying design requirements will necessitate ensuring that the scatter of all important responses by 
fluctuating geometrical, material or environmental variability lies within acceptable design limits. With 
the help of the robustness analysis this scatter can be estimated. Within this framework, the scatter of 
a response may be described by its mean value and standard deviation or its safety margin with 
respect to a specified failure limit. The safety margin can be variance-based (specifying a margin 
between failure and the mean value) or probability-based (using the probability that the failure limit is 
exceeded). In Figure 1 this is shown in principle. 

 

Figure 1:  Scatter of a fluctuating response with safety margin (distance between mean and the 
failure limit) and the corresponding probability of failure pF 

In the variance-based approach the safety margin is often given in terms of the corresponding 
standard deviation of the corresponding response. A “six sigma” design should fulfil a safety margin of 
six times the standard deviation. Assuming a normally distributed response, the classical six sigma 
concept considers an additional safety margin of 1.5 times the standard deviation. The 4.5 sigma 
margin of a normal distribution corresponds to a failure rate of 3.4 defects out of one million design 
realizations. The assumption of a normally distributed response may be not invalid if non-linear effects 
dominate the mechanisms of failure as discussed in [8] and [13]. In such cases the extrapolation of 
rare event probabilities like 3.4 out of a million just from the estimated mean value and standard 
deviation may be strongly erroneous. Thus, the assumption of a normal distribution should be verified 
or the probability of failure should be estimated with more qualified reliability methods. 
For industrial applications with a larger number of scattering inputs and non-linear dependencies 
Monte Carlo based methods are often suitable [12]. The Latin Hypercube Sampling (LHS) is one 
approach, where the distribution of the samples is optimized with respect to small errors in the 
statistical estimates of the input scatter. This method does not assume any degree of model behaviour 
and can handle also discontinuous responses. Furthermore, it works independently of the number of 
input parameters. Rough estimates of mean and standard deviation are possible with just 20 solver 
runs. More precise estimates of mean and standard deviation can be obtained by using 50 to 100 
samples, but of course such a pure sampling strategies need a very high number of samples for a 
reliable estimations or   rare event probabilities with  six-sigma accuracy. Based on the evaluated data 
and the estimated scatter of the responses, variance-based sensitivity measures can be evaluated in 
order to further analyse the source of uncertainty. From our experience using a small LHS sample set 
to estimate standard deviation is an effective method which is also robust to system nonlinearity. By 
fitting the distribution function into the histogram of the response we also can verify the window of 
probability based on standard deviation as well as on fitted distribution functions. 
 

2. Reliability Analysis 

With the reliability method the probability of reaching a failure limit is obtained by an integration of the 
probability density of the uncertainties in the failure domain as shown in Figure 2. One well-known 
method is the Monte Carlo Simulation [9], which can be applied independently of the model non-
linearity and the number of input parameters. This method is very robust and can detect several failure 
regions with highly non-linear dependencies. Unfortunately, it requires an extremely large number of 
solver runs to proof rare events. Therefore, more advanced sampling strategies have been developed 
like Directional Sampling, where the domain of input variables is scanned by a line search in different 
directions, or Importance Sampling, where the sampling density is adapted in order to cover the failure 
domain sufficiently and to obtain more accurate probability estimates with much less solver calls. 
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Other methods like the First or Second Order Reliability Method (FORM & SORM) are still more 
efficient than the sampling methods by approximating the boundary between the safe and the failure 
domain, the so-called limit state. In contrast to a global low order approximation of the whole 
response, the approximation of the limit state around the most probable failure point (MPP) is much 
more accurate. Nevertheless, only one dominant failure point can be found and evaluated. This 
limitation holds even for the Importance Sampling Procedure Using Design points (ISPUD), where the 
non-linearity of the limit state can be considered by a sampling around the MPP. A good overview of 
these “classical” methods is given in Bucher [2].  
 

  

Figure 2:  Reliability analysis as multi-dimensional integration of the probability density of the 
inputs uncertainties over the failure domain (left) and integration by Monte Carlo 
Simulation (right) 

 
For a successful application of global response surface methods, it is necessary to assure that the 
region around the most probable failure point is approximated with sufficient accuracy. This can be 
reached by an iterative adaptation scheme, where new support points are generated in this region. 
With this improvement also two or three important failure regions can be represented with a small 
number of solver runs as shown in Roos & Adam [10].  
In reliability analysis where small event probabilities have to be estimated, we have to pay special 
attention that the algorithms obtain an acceptable level of confidence in order to detect the important 
regions of failure. Otherwise, they may estimate a much smaller failure probability and the safety 
assessment will be much too optimistic. The available methods for an efficient reliability analysis try to 
learn where the dominant failure regions are and concentrate their simulation effort in those regions in 
order to drastically reduce the necessary CAE simulations. This is necessary to become candidates of 
reliability for real world applications. Of course there is always a risk that experimenting with such 
approaches will lead to inappropriate short cuts, perhaps missing the failure domain and providing too 
optimistic an estimation of failure probability. Therefore, we strongly recommend that at least two 
different reliability methods are used to verify variance-based estimates of the failure probability in 
order to make reasonable design decisions based on CAE-models. 
 

3. Reliability Analysis of the Main Bridge in Lohr am Main 

In this project the old Main-bridge in Lohr am Main was analyzed. The bridge consists of 5 piers and 6 
arches. 3 arches span the river and 2 piers are founded on the river ground as shown in Figure 3. The 
bridge was built between 1873 and 1875 with sandstone masonry. The simulations are carried out on 
the complete 3D model of the bridge considering the current rehabilitated state of the construction 
(e.g. including tensile bars) and the foundation (sheet pile reinforcements). 

 

failure 

failure 
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Figure 3:  View on the Main-bridge in Lohr am Main  

and corresponding finite element model using ANSYS Mechanical 

 
First in a deterministic analysis five quasi-static load cases have been analyzed: front, edge and arch 
impacts due to ships acting on the water piers. By means of these analyses the dominant load case, 
the expected failure modes and possible failure criteria should be investigated. As a result of these 
simulations using a finite element model with ANSYS Mechanical [1], the front impact on pier number 
2 was found to be most dominant. The plastic behavior of the masonry, concrete and soil due to 
cracking and shear sliding was modelled using the material library ANSYS multiPlas [4], [11].  
In Figure 4 the deformations are shown for this dominant load case. For a maximum deformation of 
12.7 mm, the final failure of the pier occurred. This load case was considered in the probabilistic 
analyses. As failure criteria different response values such as deformations, stresses, external forces 
and the gradients of the plastic region and plastic work have been investigated within a variance-
based sensitivity analysis. As input uncertainties 60 random parameters have been considered: the 
elastic and plastic material parameters were assumed to be log-normally distributed while the 
geometry parameters were taken as normal. The material characterization and its scattering is based 
on extensive measuring by the Federal Institute for Hydraulic Engineering on the structure as well as 
data taken from literature [5]. The impact load was assumed to be time-dependent with a random 
scalar scaling factor (Figure 5) and a random position, where the impact load was acting on the 
structure. The scatter of the load amplitude was considered as a lognormal distribution with a spread 
of 74%. For the load position, a truncated normal distribution with a spread of 30% was assumed. 
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Figure 4:  Maximum deformations depending on the impact load amplitude 

 

 

Figure 5:  Time depending impact load acting on the pier scaled with a random factor   

 

With help of 191 Latin Hypercube samples, which reproduced the assumed scatter of the input 

parameters very well, the scatter of the dynamic response could be investigated. In Figure 6 the 

displacements over time are shown for the individual samples. By using the Metamodel of Optimal 

Prognosis [6], [7] the contribution of the input uncertainty could be quantified. As shown additionally in 

Figure 6 only six parameters out of the 60 inputs could explain the variance of the maximum deformation 

with about 97%. Most dominant are the impact amplitude L_Amp, position L_Pos and the Young’s 

modulus in the pier. 
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Figure 6:  Deformations at the pier top under dynamic impact load for the evaluated 190 LHS 

samples and corresponding sensitivities of the input parameters w.r.t. the maximum 

deformation 

Based on the variation the maximum displacements the safety margin could be estimated. By 

considering failure if the maximum deformation exceeds 12.7 mm, which was obtained from the 

dominant failure load case, the safety margin was about 220 times the standard deviation. For such a 

huge safety margin a qualified reliability analysis was not possible, since the necessary transformation 

of the joint probability density function from the original to the standard-Gaussian space and vice versa 

could not be evaluated numerically.  

Therefore, a different strategy was performed in order to proof the reliability of the structure. Instead of 

estimating the failure probability for the maximum deformation limit, the maximum possible deformations 

for the required safety level was estimated. As safety requirement the risk class 2 according the 

Eurocode [3] was given, which corresponds to a failure probability of 10-6 or equivalently to a reliability 

index of 4.75. 

 

Figure 7:  Variation of the maximum deformation observed from 191 LHS samples with fitted log-

normal distribution and failure limit of 0,3 mm 
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Figure 8:  Adaptive Response Surface Method:  adaptation in the subspace of most relevant 

parameters (left) and convergence of the estimated failure probability (right) for the 

failure limit of 1,2 mm 

 

For this procedure the following steps have been performed: 

1. From the LHS sampling the relative probability could be estimated for small sigma levels by 

using the best fit distribution of the maximum deformation, which was log-normal as shown in 

Figure 7. 

2. For an estimated failure limit of 1,2 mm a qualified reliability analysis was performed using an 

Adaptive Response Surface Method combined with directional sampling within 3 adaptation 

steps as shown in Figure 8. For this procedure only the six most relevant input parameters have 

been considered. 

3. Re-using the ARSM designs a global response surface using the MOP was generated and a 

directional sampling was performed on the MOP approximation. 

4. The ARSM approach was applied again for a failure limit of 2,0 mm. 

5. All designs of the step 2 and 4 have been re-used to generate a MOP and apply Directional 

sampling on the approximation model. 

6. The failure limit corresponding to a failure probability of 10-6 and the failure probability of the 

deterministic failure criteria were obtained by using a linear regression w.r.t. the estimated 

reliability indices as shown in Figure 9. 

 

An overview of the reliability estimates in given in table 1: based on the available 191 LHS samples a 

distribution fitting and reliability estimate was possible for a failure probability larger than 10-2. By using 

the Adaptive Response Surface Method a qualified reliability estimate could be obtained for a failure 

limit of 1,2 mm by 389 further model evaluations. A further analyses by ARSM with 328 model 

evaluations was performed by considering a maximum deformation of 2,0 mm in order to cover even 

smaller values of the failure probability. Since the failure probability for this limit was still larger than 10-

6, the samples of both analyses were used to build a global MOP and estimating the failure probability 

corresponding to a maximum deformation of 3,0 mm.  

In the presented iterative procedure the failure limit w.r.t. the dominant load case was found for a given 

target failure probability. With help a 3D finite element analysis considering nonlinear material behaviour 

the maximum load capacity of the bridge was calculated. Since the estimated failure limit is much smaller 

than the load capacity, the required safety level of the bridge could be proven. For further details of the 

simulation model the interested reader is referred to [5] or to a direct communication with the Dynardo 

GmbH or the Federal Institute for Hydraulic Engineering in Karlsruhe. 
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Figure 9:  Reliability index for the different reliability estimates depending on the failure criteria 

including interpolation for a failure probability of 10-5 and 10-6 

Table. 1:  Overview of reliability estimates for the different analysis steps 

 
  

Limit state =  
maximum deformation 

Failure probability Reliability index β 
Number of  

simulation runs 

0,2 mm 6,28 ∙ 10-2 (LHS) 1,53 - (re-use of 191) 

0,3mm 1,05 ∙ 10-2 (LHS) 2,31 - ( re-use of 191) 

1,2 mm 
2,14 ∙ 10-5 (ARSM-DS) 
2,30 ∙ 10-5 (MOP-DS) 

4,09 
4,08 

389 
- (re-use of 389) 

1,7 mm 1,0 ∙ 10-5 4,3 interpolated 

2,0 mm 4,32 ∙ 10-6 (ARSM-DS) 4,45 328 

2,8 mm 1,0 ∙ 10-6 4,75 interpolated 

3,0 mm 6,96 ∙ 10-7 (MOP-DS) 4,83 - (re-use of 389+328) 

12,7 mm 4,0 ∙ 10-19 8,86 extrapolated 
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Robustness analysis Reliability analysis Linear Regression of Results 

deformation criterion (mm) 



 

 

 
35. CADFEM ANSYS Simulation Conference  

 

15. – 17. November 2017, Koblenz-Kongress, Koblenz 

4. References 

[1] ANSYS Users Manual for ANSYS Rev. 15.07, Analysis Guides, ANSYS Inc., Houston, 

Canonsburg, 2015 

[2] Bucher, C. (2009). Computational Analysis of Randomness in Structural Mechanics. London: CRC 

Press, Taylor & Francis Group. 

[3] DIN EN 1990 Eurocode: Grundlagen der Tragwerksplanung; Deutsche Fassung EN 1990:2002 

[4] multiPlas – elastoplastic material models for ANSYS, Release 5.3.1, DYNARDO GmbH, Weimar, 

www.dynardo.de  multiPlas user’s manual, 2016 

[5] Dynardo. K15-BAW-04, Technical report (unpublished). DYNARDO GmbH, Weimar, 

www.dynardo.de, 2016 

[6] Dynardo GmbH (2017). Methods for multi-disciplinary optimization and robustness analysis – 

optiSLang 6.1 documentation 

[7] Most, T. and J.Will (2008). Metamodel of Optimal Prognosis - an automatic approach for variable 

reduction and optimal metamodel selection, Proceedings Weimarer Optimization and Stochastic 

Days 5.0, Weimar, Germany  

[8] Most, T. and J. Will (2012). Robust Design Optimization in industrial virtual product development, 

Proceedings 5th International Conference on Reliable Engineering Computing, Brno, 2012 

[9] Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. New York: John Wiley & Sons. 

[10] Roos, D., U. Adam (2006). Adaptive Moving Least Squares approximation for the design reliability 

analysis. Proceedings Weimarer Optimization and Stochastic Days 3.0, Weimar, Germany 

[11] Schlegel, R.: Numerische Berechnung von Mauerwerkstrukturen in homogenen und diskreten 

Modellierungsstrategien. Dissertation, Bauhaus-Universität Weimar (2004) 

[12] Will, J.(2007) : State of the Art – robustness in CAE-based virtual prototyping processes of 

automotive applications, Proceedings Weimarer Optimierungs- und Stochastiktage 4.0, 

www.dynardo.de 

[13] Will, J., T. Most and S. Kunath (2017) Robust Design Optimization in Virtual Product Development, 

NAFEMS Ltd., to appear 

 

 

http://www.dynardo.de/

