Systematic Optimization of a Lightguide Coupling Setup

S. Kunath,¹ R. Knoth,2 S. Steiner², S. Zhang², C. Hellmann³, F. Wyrowski⁴

¹ Dynardo GmbH ² LightTrans International UG ³ Wyrowski Photonics GmbH

⁴ Friedrich-Schiller-University Jena

.

Motivation

- The **optimization of advanced optical designs** is very challenging due to their
 - complexity,
 - nonlinearity,
 - a huge number of input parameters and
 - interactions between them.

• The demands for the system's **performance** are

- versatile and
- very high and even get higher concerning optimization and robustness criteria.

• Furthermore, totally new developments, like

- new materials,
- manufacturing possibilities and
- very short product development times,

simultaneously, require advanced methodologies to develop competitive optical products.

Solution: Software optiSLang

- Dynardo supports the whole virtual product development process with software solutions including
 - Process integration (e.g. VirtualLab, SPEOS, Zemax, Matlab)
 - Building workflows (e.g. coupling several physical domains)
 - Automation
 - Robust Design Optimization

Robust Design Optimization for Product Development

Sensitivity Analysis

Understand the most important input variables!

check solver and extraction noise

Optimization

Optimize your product design!

Example: Binary grating for lightguide coupling

© Dynardo GmbH

Optimization Task: Binary Grating Coupling

 How to design a binary grating structure to couple a set of plane waves into a planar lightguide?

Problem description: Inputs

Parameters to be varied for optimization

Inputs

- variation of the **fill factor** *c/p* with the ٠ slit width c and the period p
 - > 0.1% to 99.9%
- variation of the **modulation depth** h ٠ > 50 nm to 1500 nm

Initial Configuration of Grating	
fill factor	50.00%
modulation depth	400.00nm
period	410nm
operating order	1 st transmitted

Problem description: Outputs

- Aim of the optimization over the desired FOV:
 - Maximize Mean Efficiency
 - Minimize Uniformity Contrast

Optimization Workflow

 Automation and optimization driven by optiSLang using VirtualLab Fusion for optical design simulation

Use Case: https://www.lighttrans.com/use-cases/feature-use-cases/grating-optimization-in-virtuallab-fusion-using-optislang.html

Optimization Results

- Pareto Front of two contradicting objectives:
 - Mean Efficiency
 - Uniformity Contrast
- Pareto Front illustrates optimal compromise between objectives
- Choice of best design depends on the needs of the optical designer

Optimization Results

- Pareto Front of two contradicting objectives:
 - Mean Efficiency
 - Uniformity Contrast
- Pareto Front illustrates optimal compromise between objectives
- Choice of best design depends on the needs of the optical designer

Optimization Results: Pareto Front Designs

• Cluster Analysis of Fill Factor (3 clusters)

Optimization Results: Metamodelling

Metamodel of Optimal Prognosis that shows the influence of the two input parameters modulation depth and fill factor on the mean coupling efficiency of the binary grating

20

Optimization Results: Metamodelling

Metamodel of Optimal Prognosis that shows the influence of the two input parameters modulation depth and fill factor on the Uniformity contrast of the binary grating

Optimization Results: Best design selection

 Best design selection: best compromise for a prioritized low uniformity contrast and an acceptable mean efficiency including manufacturable grating parameters

Results: Coupling Efficiency after Optimization

 As a result, the uniformity contrast was significantly reduced but to the cost of the entire efficiency

Use Case: https://www.lighttrans.com/use-cases/application-use-cases/optimization-of-binary-grating-for-lightguide-coupling-over-desired-fov.html

Example: Slanted grating for lightguide coupling

Optimization Task: Slanted Grating Coupling

How does the additional free parameter of the slant angle affect the design of the incouple grating?

Optimization Result of optiSLang

The additional freedom of the slant angle provides additional solutions

© Dynardo GmbH

Results: Coupling Efficiency after Optimization

- Best solution can be selected according specific constraints
- Either uniformity contrast or mean efficiency might be prioritized

Use Case: https://www.lighttrans.com/use-cases/application-use-cases/optimization-of-slanted-grating-for-lightguide-coupling-over-desired-fov.html

Further work and outlook

• 2D data analysis for further understanding and improved optimization results, e.g. to obtain a desired angular efficiency

Calculated Angular Efficiency at Eye-Box Assumed Desired Angular Efficiency at Incouple Region

Thank you for your attention!

Further information: www.dynardo.de

Contact information: <u>stephanie.kunath@dynardo.de</u>

