0

1

.

Efficient Robust Design Optimization of Optical Systems

Lightguide Optimization with SPEOS and optiSLang

Stephanie Kunath, Dynardo GmbH

Motivation

- The **optimization of advanced optical designs** is very challenging due to their
 - complexity,
 - nonlinearity,
 - a huge number of input parameters and
 - interactions between them.

• The demands for the system's **performance** are

- versatile and
- very high and even get higher concerning optimization and robustness criteria.

• Furthermore, totally new developments, like

- new materials,
- manufacturing possibilities and
- very short product development times,

simultaneously, require advanced methodologies to develop competitive optical products.

Solution: Software optiSLang

- Dynardo supports the whole virtual product development process with optiSLang. This includes
 - Process integration (e.g. SPEOS, VirtualLab, Zemax, Matlab)
 - Building workflows (e.g. coupling several physical domains)
 - Automation
 - Robust Design Optimization

Robust Design Optimization for Product Development

Sensitivity Analysis

Understand the most important input variables!

- understand and reduce the optimization task
 - check solver and extraction noise

Optimization

Optimize your product design!

SPEOS Integration

Process Integration: ANSYS SPEOS

A) optiSLang inside Workbench

B) Direct integration via scripts

C) Workbench inside optiSLang

ANSYS SPEOS and Mechanical

• Optomechanical design studies with SPEOS and Mechanical

Process Integration: SPEOS for CAD

• SPEOS for NX and CATIA

			Ра	ram	eters		Resp	onse	S	
Parameter	9					Var	iables		=	Responses
Surface_1.Radius 22.0136	Absolute path -					🕞 🔺 Ot			▼ Open	AXCL_4 0.0772099
Surface_1.Thickness 3.25896	Inputs					0	Outputs			DIMX_10 0.0620347
Surface_2.Radius -435.76	Search for					s	Search for			EFFL_2 50
Surface_2.Thickness 6.00755		Name	Value	Surface	entry_1		Name	Value	^	LACL_5 0.000840718
Surface_3.Radius -22.2133	32	Surface_6.Thick	42.2078	6	Predefined parameter	1	AXCL_4	0.0772099		REAX_7 18.1586
Surface_3.Thickness 0.999975	33	Surface_5.Thick	2.95208	5	Predefined parameter	2	DIMX_10	0.0620347		TRCX_56 0.00120823
Surface_4.Radius 20.2919	34	Surface_5.Radius	79.6836	5	Predefined parameter	3	DIMX_11	0.0617638		TRCX_75 -0.00411876
Surface_4.Thickness 4.75041	35	Surface_4.Thick	4.75041	4	Predefined parameter	4	DIMX_9	0.0641993		
Surface_5.Radius 79.6836	36	Surface_4.Radius	20.2919	4	Predefined parameter	-	EFFL_1	49.9881		
Surface_5.Thickness 2.95208	37	Surface_3.Radius	-22.2133	3	Predefined parameter	6	EFFL_2	50		
Surface_6.Thickness 42.2078	38	Surface_3.Thick	0.999975	3	Predefined parameter	7	EFFL_3	50.0661		
Input slots	39	Surface_2.Radius	-435.76	2	Predefined parameter	8	LACL_5	0.000840718		Output data
	40	Surface_2.Thick	6.00755	2	Predefined parameter	G	REAX_6	18.1493		Standard slots
	41	Surface_1.Thick	3.25896	1	Predefined parameter		0 REAX_7	18.1586		
	42	Surface_1.Radius	22.0136	1	Predefined parameter		1 REAX_8	18.1727		

Example: Lightguide Optimization

Lightguide Optical Shape Design Optimization

- Lightguide optimization of an automotive headlamp
- Obtain an homogeneous lit appearance, maximize average luminance
- Homogeneity is represented by RMS contrast

Lit appearance

Cross section

Lightguide Parametrization

- Inputs: 5 trimming ratio control points of prisms on the lightguide
 - -> control efficiency of each prism
- **Outputs** (Luminance):
 - RMS contrast
 - Average [cd/m²]
 - Minimum [cd/m²]
 - Maximum [cd/m²]

• Objective:

Minimize *RMS contrast* Maximize *average luminance*

Sensitivity Analysis

Understand the most important input variables!

• check solver and extraction noise

Value

CP4

G_TR

CPO

TR 0

CP3

Ĕ

ט

Valu

CP2

Ľ

0

LG_TR_CP1_Value

Range plot

Sensitivity Analysis Sampling

- Latin Hypercube Sampling with 100 designs
- Input ranges and correlation matrix of inputs:

LG_TR_CP0_Value

Name

Range

LG_TR_CP4_Value

LG_TR_CP3_Value

LG_TR_CP2_Value

Sensitivity Analysis Results

- **Metamodelling**: CoPs over 70% for non-linear effects!
- Dominant parameters over all responses is the value of the trimming ratio (TR) of the control point (CP) at position 0 (LG_TR_CP0_Value) of the and at position 2 (LG_TR_CP2_Value)
- No effect of trimming ratio at CP4 detected

Sensitivity Analysis Results

- **Metamodelling**: *Minimum luminance* is mainly effected by trimming ratio at CP0 and CP3
- RMS contrast is mainly effected by trimming ratio at CP0 and CP2

Efficient Robust Design Optimization of Optical Systems CASCON, Kassel 2019

Sensitivity Analysis Results

• **Metamodelling**: Average luminance only depends on trimming ratio at CP0

Efficient Robust Design Optimization of Optical Systems CASCON, Kassel 2019

Sensitivity Analysis Results

• Correlation analysis: 2 clusters for *average luminance* get visible

Sensitivity Analysis Results

• Correlation analysis and cluster analysis

Sensitivity Analysis Results

• Correlation analysis and cluster analysis

Optimization

Optimize your product design!

Definition of Objectives

- Visualization of objectives using designs from sensitivity analysis
- Trade-off between RMS contrast and average luminance
- -> Pareto optimization (2 separate objectives):
 - Minimize RMS contrast
 - Maximize average luminance

Efficient Robust Design Optimization of Optical Systems CASCON, Kassel 2019

Definition of Input Range

• Limit the range of trimming ratio at CP0 to [90;97.3] to increase average luminance

Efficient Robust Design Optimization of Optical Systems CASCON, Kassel 2019

Pareto Optimization on Metamodel

- **Pareto front designs** illustrate trade-off between the objectives
- Best design can be chosen from the Pareto front and used as start design for further direct optimization

Pareto Optimization on Metamodel

- Further analysis of the **Pareto front designs** with Parallel Coordinates Plot
- Data ranges of all inputs are strongly limited within the optimization space -> further reduction of input space possible

Direct Optimization with SPEOS

- Validation of Pareto front designs of optimization on metamodel (=best designs) with SPEOS
- Use these designs as start design for subsequent direct optimization with SPEOS

Summary and Next Steps

- optiSLang-SPEOS integration
- Design understanding and definition of optimization problem with sensitivity analysis
- Efficient pre-optimization on metamodel
- Direct optimization with SPEOS
- Next steps:
 - Consideration of more input parameters and meet the regulation
 - 2D (signal) data analysis for further understanding and improved optimization results

Lit appearance

Cross section

Thank you for your attention!

Further information: www.dynardo.de

Contact information: <u>stephanie.kunath@dynardo.de</u>

