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Summary 

 
During the preliminary design phase, the car body is to be optimized. The demands on the car body 
are formulated by numerous performance constraints derived from crash, strength or driving comfort 
requirements. At the beginning of an optimization procedure, often one or more design drafts are 
available representing the previous knowledge from known functional designs. These designs are 
being parameterized and by this become utilizable for parameter optimization. In this example, the 
design space is described by an average of 1500 design variables. Because of very restrictive 
performance demands and numerous construction constraints, only extremely small areas of 
admissible and, regarding the weight, promising car dimensioning exists in the 1500 dimensional 
design space. 
 
It is of high interest to find out whether there exist any competitive car concepts in the design space 
that lie beyond known car concepts or load paths, respectively. In this case, the optimization task does 
not only consist of an weight optimization of known car concepts, but includes the search for 
alternative vehicle concepts. In the here presented example, the search for reliable vehicle 
dimensioning has been successful thanks to special sampling strategies followed by genetic 
optimization algorithms. Subsequently, it has been investigated by means of cluster analyses whether 
there are vehicle concepts representing alternative complete vehicle concepts, and appropriate 
starting points for local optimization were determined. For selected designs, up to twenty clusters have 
been searched for weight optimal variants by means of mathematical optimization. 
 
Due to the combination of genetic strategies for the search for admissible vehicle dimensioning and 
mathematical optimization for weight optimization on the islands of admissible vehicle dimensioning, 
the weight could be significantly further reduced then by mathematical optimization strategies only. 
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0. Introduction 
It is of high interest to find out whether there exist any competitive car concepts in the design space 
that lie beyond known car concepts or load paths, respectively. In this case, the optimization task does 
not only consist of an weight optimization of known car concepts, but includes the search for 
alternative vehicle concepts. A thus formulated optimization task often leads to mathematically ill-
conditioned problems. Weight optimization and the observance of many constraints are often quite 
contradictory. Therefore, the optimization task is subdivided into the identification of islands of 
admissible designs (or, if the case may be, alternative vehicle concepts) on one hand, and the weight 
optimization on the islands, on the other hand. Genetic strategies are especially applicable for the task 
of island search. Genetic strategies are charecterized by a high robustness in mathematically ill-
conditioned optimization tasks. Additionally, previous construction knowledge can be integrated on 
various levels. Provided that the selection, mutation and reproduction mechanisms are chosen 
appropriately, genetic search strategies can search large spaces and do not finish the search in the 
first local optimum. Once islands of admissible designs are found and appropriate gradients can be 
determined, mathematical optimization methods are highly efficient for weight optimization on such an 
island. 
 
All structural mechanics calculations are performed with NASTRAN. The mathematical Optimization 
by means of gradient solvers are performed using NASTRAN SOL200. The genetic optimization as 
well as the cluster analysis are performed using OptiSLang. 
 

1. Optimization during the preliminary design 
During the early design state, the design spaces are to be investigated searching for alternative 
vehicle concepts. Additionally, the full vehicle models are to be weight optimized. In the course of 
these investigations, several important performance constraints regarding NVH, stiffness or 
crashworthiness have to be observed. This is realized by investigating eight static load cases (in order 
to analyze stiffness and crash behaviour) as well as several dynamical loadcases containing modal 
analyses and frequency analyses. Additionally, more than three thousand construction constraints 
have to be met, such as sheet thickness skips, height/length ratios, or constructed space. A total of 
1544 design variables can be modified in the full vehicle model. These are e.g. profile measures 
(height/width) or sheet thicknesses. All variables are regarded as continuous. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Full vehicle model 
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The classical conflict in optimization tasks of this kind is that the aim of weight minimization and the 
observance of the constraints are somewhat contradictory. Additionally, it is to be assumed that all 
initial designs lie within the inadmissible space, while only very small admissible areas do exist in the 
high dimensional design space that are both interesting regarding the weight and fulfilling the 
performance constraints. The existence of multiple “islands” of admissible designs representing 
several basic variants of admissible full vehicle designs is presumed. Therefore, the search for these 
islands is an important part of the optimization task. The second part consists of the weight 
optimization on one island. Hence, in the following, algorithms for global as well as local optimization 
are employed. 
In the course of the design process, a time frame of about two weeks is previewed for the complete 
optimization task. 
 

1.1 Previous approach 

 
Starting from Best Practice designs, numerous optimization runs with different start values have been 
executed by means of mathematical optimization. In order to perform a systematical search in the 
design space, DOE methods have been tested to define start values. About 100 starting values have 
been selected out of the multitude of possible sampling points in the high dimensional space. Starting 
from these values, it has been tried to find admissible weight optimized designs using a gradient 
optimizer. By this strategy, an admissible weight optimal design weighing 1096 kg has been found. It 
is displayed in fig. 9 to 14 as a comparison. 
 
At BMW, long lasting experiences exist regarding the calibration of control parameters for gradient 
optimization, as well as on how to start an optimization in admissible or inadmissible regions, 
respectively. The formulation of the objective function is depending on several factors: on one hand, 
whether the starting point is situated in an admissible or an inadmissible region, and, on the other 
hand, whether the aim of the optimization is to find admissible designs or to reduce weight. 
Additionally, it is advantageous to integrate the constraints into categories and to extend the objective 
functions with the maximum value of these categories and additional punishing terms. All these 
experiences have been used to obtain the previously shown solution of the task by means of 
mathematical optimization. 
 
In theory, the gradient based methods may lead to the closest “dominant” local minimum. That is due 
to numerical reasons, the nonlinearities, and the finite step width. Therefore, these optimization 
methods are called local approaches. Nevertheless, in the course of the iterations also a different local 
optimum of the objective function may be met. Therefore, it is impossible to define the covered path of 
a gradient optimization as the confidence region of an optimum. With this strategy, gradient 
optimization is a “random” search strategy with a high probability that the found state is admissible. 
That leads to considerable numerical expenses. In this case, one function evaluation took about 10 
minutes, leading to a 60 to 100 times longer gradient optimization. Therefore it seems advisable to 
consider global optimization by means of genetic algorithms. 
 

1.2 Motivation of the hybrid optimization strategy 

Even if, in some cases, convenient gradients can be determined and the gradient solver finds 
admissible design spaces, it can be assumed that gradient solvers are successful only on an “island”. 
Therefore, we suggest a genetic search strategy for the global search on potentially different islands. 
As mentioned above, the constraint equations and the aim of weight minimization are contradictory. 
Therefore, the operators of the genetic optimization are calibrated in order to priorily search for islands 
of optimal designs. At the same time, as little as possible weight should be added. Still a significant 
potential for weight optimization of the found admissible designs is expected. In the next step, the 
weight optimization on the islands is executed by means of gradient optimizers, mainly to rise 
efficiency. As the case may be, multiple valid designs may be available for gradient optimization. 
Therefore the set of valid designs is to be investigated by means of cluster analysis in order to find 
alternative vehicle concepts as well as appropriate starting values for weight optimization. 
 

 

It is of vital importance for the performance of the genetic search algorithm to use as much of the 
available know-how as possible. For the start values, this may be the best practice designs; for later 
generations, the information of previous optimization steps. This know-how is integrated in the start 
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generation, the constraints and the objective terms as well as in the operators of the genetic search 
strategy. 
It showed in the course of the work that the creation of the start generation by means of stochastic 
sampling methods in the original space, i.e. 1500 optimization variables with upper and lower bound, 
is not convinient. This approach leads solely to start designs with too much weight to be interesting. 
Hence, in the design space defined by the boundaries of the optimization variables, there is only an 
extremely small subspace interesting for weight optimization. It has become necessary to find a 
different way to generate an appropriate start generation. Based on the present design state, a start 
generation is created by means of hierarchical mutation and is shifted into a region of low weight. 
 

1.3 Global optimization by means of genetic search strategies 

Of course, the expected numerical expense of one single calculation of all load cases is of crucial 
importance for the choice of the genetic operators and the size and number of generations. In 
moderate design spaces, i.e. with about 10 to 100 variables, at least 50 design evaluations, distributed 
into 5 generations with 10 designs each, are necessary to reach significant design improvement as far 
as our experience goes. If this condition is fulfilled, the genetic strategies can develop something that 
might be called “genetic intelligence” which leads to design improvements that go beyond random 
improvements as achieved with Monte Carlo approaches. In the present case, one single calculation 
of all loadcases on one CPU did last less than ten minutes. Furthermore, a Linux cluster with 20 
CPU’s was available. Therefore, a total amount of 10,000 runs has been considered feasible, and the 
genetic operators have been calibrated accordingly. For the first step of the global optimization, a 
generation size of 50 and a number of 100 generations have been chosen. The start generation has 
been chosen relatively large in order to increase the probability of finding multiple design islands. 
 
Considering such a large number of optimization variables, significant correlations between the 
variables can be expected. Therefore, the hierarchical structure of the variable tree has been taken 
into account in the initialization of the start generation. Herein, a hierarchy of eleven assembly groups 
and 44 components has been taken into account, such as front end, cowl, bottom, or rear, on one 
hand, and bumper, engine mounting, or shock absorber mounting, on the other hand. 
 
The 50 designs of the start generation have been initialized using Latin Hypercube Sampling around a 
reference design, utilizing the hierarchy. The following mutations have been used: 
- the assembly groups have been sampled with a standard deviation of 0.2 around the reference 

design. This corresponds to a scattering around the reference design in the 2-sigma-value of +-
40%. 

- additionally, the components have been sampled with a standard deviation of 0.5 around the 
reference design. This corresponds to a scattering around the reference design in the 2-sigma-
value of +-10%. 

Following this, the start generation was scaled into the weight range of about 1100 kg, in order to find 
islands with as little weight as possible. 
 

1.4 Objective function and constraint for global optimization 

In genetic algorithms, the objective function is also called “fitness“ and consists of the objective 
function of the optimization task as well as constraint terms. 
 
The weight and the constructed space are included in the objective function. The constraints equally 
considered concern the stiffness (deformation), the eigenfrequencies, the distances between the 
eigenfrequencies, the stresses as well as acceleration values from harmonic analysis. All constraints 
of one demand class (e.g. constraints regarding eigenfrequencies) are combined. If all constraints of 
one class are fulfilled, this results in a sum less than 1.0. If one or more constraints are violated, the 
sum takes a value greater than 1.0. All constraints are introduced into the fitness function in the form 
of scaled punishing terms. The scaling factor is chosen so that a fulfillment of a constraint is rated with 
a value of 1. In case of violation, the scaled values increase up to 400. Additionally, a constant 
punishing term is included into the fitness function in order to reliably distinguish admissible from 
inadmissible designs in case of violation of one or more constraints. 
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The operators of genetic strategy contain elitism, selection, reproduction, and mutation. They are 
chosen such that the design space is mainly searched for admissible designs by the genetic 
optimization strategies. 
 
The constructive constraints are controlled subsequent to the creation of the design variants and 
“repaired” in case of violation. Thus it is ensured that only those designs fulfilling the construction 
constraints are evaluated. The repaired values of the design variables are entered into the calculation 
before the solver run. 
 

2. Global and local optimization 

2.1  Global Optimization – search for islands by means of genetic optimization strategies 

The following adjustment of the genetic optimization strategy have been chosen: 
 
- In each generation, 50 indivuduals are calculated, the total number of generations being 100. 
- The island search begins with a start generation that is initialized around the reference design 

using the knowledge of assembly group and component hierarchy and scaled into an interesting 
weight region. 

- Following each generation calculation, two elite designs are determined by means of roulette 
wheel logic and 99% scaling of the roulette wheel. These elite designs are entered unchanged 
into the next generation. 

- After each generation calculation, the ten worst designs are determined by means of roulette 
wheel logic and erased from the generation. 

- The parent pairs are allotted by means of roulette logic as well from the gene pool of the current 
generation. 

- The genetic interchange is executed using a uniform crossover probability of 8 %. 
- For the mutation, a standard deviation of 0.03 in the normalized range from lower to upper 

bound of the optimization variables is used. This mutation rate is decreased linearly to 0.01 in 
the course of 100 generations. 

 
After about 15 generations, i.e. 750 calculation runs, the genetic algorithm had grown a sufficiently 
good genetic memory. Thus, successful genes and search directions could be identified, leading to a 
continuous improvement of the constraints. After 67 generations resulting in a total of 3348 solver 
runs, the optimization was stopped. Up to this point, not one admissible design fulfilling all constraints 
could be found. The interpretation of the optimization revealed the following trends: 
 
The stiffness constraint shows a good gradient and is reliably fulfilled after the 60th generation, that 
means 3000 solver runs (fig. 2). The exceedance of the eigenfrequency constraints trends to 
decrease, but still is slightly violated (fig. 3). 
The weight clearly trends to rise during the optimization and stagnates from generation 60 at a level of 
about 1120 kg (fig. 4). Additionally, the constructed space is clearly increased (fig. 5) as well as the 
first bending mode (fig. 6) and the first torsion mode (fig. 7). 
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Fig.2 History of the stiffness constraint (starting from a value of 1.0, indicated by the bold red line, the 
constraint is fulfilled)  

 
 
 
Fig. 3  History of the eigenfrequency constraint (starting from a value of 1.0, indicated by the bold red 
line, the constraint is fulfilled)  
 
  

 
Fig. 4  History of weight 
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Fig. 5  History of constructed space  
 

 

 
Fig. 6  History of the first bending mode 

 
Fig. 7  History of the first torsion mode 
 

2.2 Restart of the genetic optimization 

The knowledge derived from the previous optimization is integrated into the start generation, and the 
genetic operators are adjusted: 
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- 100 individuals per generation and a total of 100 generations are calculated. 
- The start population consists of 100 designs that were chosen from those designs of the 

previous optimization that did best fulfill the constraints. 
- After each generation, five elite individuals are determined by means of roulette wheel logic and 

a 90 % scaling of the roulette wheel. These are entered unchanged into the next generation. 
- After each generation, ten worst designs are determined by means of roulette wheel logic and 

deleted from the generation. 
- Again by means of scaled roulette wheel logic, the parents are determined from the gene pool 

of the current generation. 
- The genetic crossover is performed with a uniform crossover probability of 15 %. 
- A standard deviation of 0.05 from lower to upper boundary in the normed space of the 

optimization variables is used for mutation. In the course of the calculation of the 100 
generations, this mutation rate is decreased linearly to 0.03. 

 
With the adapted genetic optimization strategy leading to higher genetic crossover and mutation, an 
increase of the convergence speed of the constraint fulfillment was aimed at. At the same time, the 
stronger elitism served to concentrate the genetic optimization around the previously determined best 
designs. The generation size was increased in order to minimize the probability, that a convergence to 
local optima could be enforced. As can be derived from the following results, the adjustment of the 
genetic operators was successful regarding speed as well as probability (which describes the amount 
of admissible designs). The Best_Design could be found in generation 28 (Design_2717) weighing 
1148 kg, with a constructed space of 3.38e8 mm4 . In total, 1018 admissible designs have been found. 
As the genetic optimization concentrates on the search for islands, the weight is still considerably high 
(1150 kg). 
 
In the history plot of the objective function considering only the influence of weight and constructed 
space, it can be seen that the chosen genetic strategy finds islands with a good trend. The first 
admissible design could be found in the solver run 1219 with a weight of 1148 kg. Starting from 
generation 30, the variance of the objective function does increase considerably. That means that the 
chosen genetic strategy creates too much mutation. Only a weak trend towards design improvement 
can be detected in the following. 
 

 
Fig.8  History of the objective function 
 

2.3 Cluster analysis and local optimization 

By means of cluster analysis, a total of ten clusters is determined from the subspace of the 1018 
admissible designs. They are searched depending on a radius in the normed space. A cluster’s center 
of gravity is constituted by the two most similar designs of each cluster. The cluster algorithm 
determines the two most similar designs from the bulk of admissible designs. Then, it detects all 
designs within the cluster radius. These designs form cluster 1. Equally, cluster 2 and all further 
clusters are determined from the remaining space of admissible designs. The cluster determination is 
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repeated with gradually larger radius up to the point where the clusters coincide. This happens 
because the cluster membership depends on the radius. Thus, the largest possible cluster radius 
leading to the smallest possible subdivision of the admissible designs into clusters is determined. In 
the following, local optimizations by means of gradient optimization are started from ten selected 
designs. For each cluster, it is always the design most reliably fulfilling the constraints that is selected 
as a starting point for the gradient optimizer. These designs are assumed to have the largest weight 
optimization potential. In the following table, the most successful optimization in cluster 4 is evaluated. 
An admissible design weighing as little as 1056 kg could be found by means of cluster analysis and 
local optimization using NASTRAN Sol200. 
 
 Weight 

[kg] 
Constraint 
Stiffness 
OptiSLang 

Constraint 
Eigenfrequencies
OptiSLang 

Maximum 
constraint 
NASTRAN 

OptiSLang Cluster 4 1160 0.89 0.989  
NASTRAN_Optimization 
from the gravity center of 
Cluster 4 

1056   1.000 

Tab. 1 Optimization results using NASTRAN Sol200 for Cluster 4 
 

 
Fig. 9  Construction space difference from Design_Cluster_4 to Best_Design_Natran_old 
 

 
22nd CAD-FEM Users’ Meeting 2004                                                                                 
International Congress on FEM Technology 
with ANSYS CFX & ICEM CFD Conference                                                                                                           
 
November 10-12, 2004, International Congress Center Dresden, Germany  
 



 
Fig. 10  Weight difference from Design_Cluster_4 to Best_Design_Natran_old  
 
In the following, alternative whole vehicle concepts have been identified. This was done by evaluating 
the scaled distance of two design vectors (i.e. vectors of optimization variables). The local optimization 
of the clusters 1 to 10 did yield very similar designs. Therefore, it is assumed that all these clusters 
belong to one construction variant. That means that all clusters lie on one construction variant island. 
Thus, the cluster analysis is continued by increasing the cluster radius until the first ten clusters 
coincide and ten new stable clusters form. These clusters are called clusters 11 to 20, and for each of 
it a local optimization using NASTRAN Sol200 is performed. Again, for each cluster, the design most 
reliably fulfilling the constraints is selected as start value. Hereby, in cluster 11, an admissible design 
with a weight of only 1037 kg could be found. The optimization of cluster 11 is illustrated in table 2. 
Subsequently, a comparison of the scaled distances of the optimal designs of all 20 clusters and the 
previously best design of a conventional NASTRAN Sol200 optimization did yield large distances of 
the optimal designs in the design space. Thus, it is assumed that the designs belong to different 
construction variants. In fig. 13 and 14, the differences of the two construction variants are shown. 
 
 Weight 

[kg] 
Constraint 
Stiffness 
OptiSLang 

Constraint 
Eigenfrequencies 
OptiSLang 

Maximum 
constraint 
NASTRAN 

OptiSLang Cluster 11 1167 0.868 0.983  
NASTRAN_Optimization
from the gravity center 
of Cluster 11 

1037   1.000 

Tab. 2  Optimization results using NASTRAN Sol200 for Cluster 11 
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Fig. 11  Construction space difference from Design_Cluster_11 to Best_Design_Natran_old 

 
Fig. 12  Weight difference from Design_Cluster_11 to Best_Design_Natran_old 
 

3. Summary of the hybrid optimization 
Compared to the previous approach, approximately 60 kg could be economized in the preliminary 
draft by means of hybrid optimization. That represents about 5% of the total weight. 
 
Comparing the weight optimal designs of the first 20 clusters, significantly different admissible designs 
of interesting weight could be identified. Herein, a resemblance criterion for alternative vehicle 
concepts has been used. Thus, admissible designs with an interesting weight could be found that 
belong to different design islands in the design space, i.e. different construction variants. For example, 
in the designs illustrated in fig. 13/14, this results in a significantly different constructed space in the 
rear as well as partly significantly different weights of the rear, the c-column, the roof and bottom 
structures. 
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Fig. 13  Constructed space difference from Design_Cluster_4 to Design_Design_Cluster_11  

 
Fig. 14  Weight difference from Design_Cluster_4 to Design_Design_Cluster_11 
 

4. Outlook 
The present recipe for success can be summarized as follows:  
 
- Use of a repair script for all designs proposed by the optimizer controlling whether the 

construction constraints are met and repairing the designs in case they are not. The repaired 
design is then reentered into the optimizer. 

- Global optimization (island search) by means of genetic strategies as implemented in 
OptiSLang. Herein, the start generation is created around the reference design including the 
hierarchical knowledge, and scaled to the expected optimal weight. 

- Having found a sufficient number of admissible designs, appropriate starting points for local 
optimization are determined by means of cluster analysis. 
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- Local optimization, i.e. weight optimization, is executed on the islands of admissible designs by 
means of a gradient optimizer. 

 
All in all, about 13000 design evaluations with OptiSLang are necessary for the island search, 
resulting in 2 to 3 days of computing time. Afterwards, approximately 20 local optimizations using 
NASTRAN Sol 200 are performed. 
 
A significant weight reduction could be achieved using this combination of sampling strategies, genetic 
optimization for global island search, cluster analysis for identification of islands of different design 
concepts, and gradient optimization for local weight optimization. Subsequently, a further project deals 
with the robustness of the whole process and further improvement of the performance of all its steps. 
Additionally, the whole process is integrated as a predefined workflow into a BMW specific version of 
the OptiSLang GUI. 
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