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DEM Model Calibration for Vertical Filling:  
Selection of adequate Trials and Handling Randomness 
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Abstract 
The Discrete Element Method (DEM) has been shown to be a viable tool for virtual testing and design 
optimization of industrial processes, including vertical filling of macroscopic granular foods. In prac-
tice, the DEM often relies on model calibration, where parameters are found via iterative adjustment to 
reproduce observations from experiments with the bulk good. Various calibration trials have been sug-
gested, such as the well-known angle of repose test and bulk discharge from a funnel. However, there 
is no certainty that the parameters hold up in simulations of the actual process. One further challenge is 
quantitative model validation. 
In this study, we assess existing and original trials for DEM model calibration for a vertical fill process 
of granular food. Both, the sensitivity to model parameters, as well as to physical randomness were 
considered. The trials were then employed for iterative DEM model calibration. The calibrated model 
was then quantitatively validated by comparing the simulations to experiments. 
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 Introduction 

1.1 Vertical filling 
As a broadly deployable and well established process, vertical filling is commonly used in industrial 
packaging of granular foods, such as candy, snacks and bakery goods. The process is shown schemati-
cally in Figure 1. By increasing the frequency of drops of granulate portions, the output rate can be 
easily increased. However the time distance between the portions must be kept large enough so that 
there is enough time to perform sealing. Otherwise, a particle might get caught between the sealing 
jaws, which often results in need for downtime and maintenance. Thus, good machine design and suit-
able operational settings, that ensure a compact fall of the portions are important for keeping the process 
economical. 

Figure 1: The vertical filling process. (a) Schematic overview over process principle. (b) Successful 
sealing (left) and likely defect due to particles getting caught in the sealing unit (right) 

1.2 Discrete Element Method (DEM) 
Overview The physics of granular dynamics are relatively complex and cannot be handled numerically 
in full detail. The Discrete Element Method (DEM) simplifies contacts by assuming all particles to be 
stiff. Deformation during contact is implemented by allowing a small overlap between particles. Contact 
forces are then calculated with simple relations with the current overlap. Figure 2 shows the overlap-
force relation according to the linear hysteresis model developed by Walton and Braun [1, 2], as de-
scribed in [3] and [4]. A variety of other contact models are available in other DEM implementations. 
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Figure 2: Relationship between particle overlap ߜ and force ܨ for restitution coefficient ε=0.4 (from 
[4]) 

Model Calibration Identifying model parameters for DEM simulations is often challenging [5], so 
often times more or less viable heuristics are used to obtain the desired numerical values [6]. An attrac-
tive and commonly used method is numerical model calibration, which consists of varying the model 
parameters while comparing the simulations to experimental results until reality is reproduced to a sat-
isfactory extend. While there is no universally robust standard procedure available [7], calibration is 
usually performed in a relatively simple representative experiment [8]. A consecutive validation step 
can be then performed to verify if the model parameters hold up in the actual process of interest. 

Solver Noise A rarely discussed topic with regard to DEM simulations is randomness and associated 
solver noise. Since granular systems are highly chaotic, small variations in initial conditions (such as 
the precise positions of individual particles in the collection bin before the drop [4]) can dramatically 
affect the process outcome [9]. Physical randomness can, just as process design, be of great importance 
in achieving a desirable outcome and avoiding unfavorable ones. This is true for the physical process 
as well as the simulations. A second source for uncertainty in the simulations is the so called numerical 
noise which is a result of random rounding errors in processing of variables that are stored with limited 
precision in computer memory. Numerical noise is always present, but will be constant if the simula-
tions are performed on a single processor core [10, 11]. 

1.3 Goal 
For this study, model parameters were to be found for a granular sample food. The good chosen was 
sugar-coated, bite-size chocolate candy with a porous cookie core. Two calibration trials where used, 
one being a test already used by other groups and one being a drop test that is very similar to the indus-
trial process (representing in-situ calibration [6]). Secondly, the necessity to incorporate the physical 
randomness in the DEM simulations and their effect on the calibration was evaluated. Finally, the meth-
ods were compared with regard to their feasibility, robustness and accuracy. 

 Experimental 

2.1 Drop Test 
The drop setup has been described in [4] and is shown in Figure 3. Two rectangular falling tubes with 
different inner areas A□,1 and A□,2 where available. By varying the sample mass, a total of three scenarios 
were performed (Table 1). 
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Figure 3: Drop setup described in [4] and snapshot of drop test. Measures in mm. 

Sample mass Inner tube area Used for 

500g 
A□,1=76 cm² Calibration, Validation 1 

A□,2=100 cm² Validation1,2 

700g A□,1=76 cm² Validation1,2 
1 Validation of hopper discharge calibration    2 Validation of drop test calibration 

Table 1: Scenarios of the drop test 

The experiment was initiated by opening the flaps at the bottom of the sample container. The time 
stamps of the first and last particle leaving the tube at the bottom were recorded. The difference between 
these residence times Δݐ௦ is equivalent to the portion range ߬  discussed in [4]. 

߬ = Δݐ௦ = t୰ୣୱ,୪୮ −  ୰ୣୱ,୮ݐ

Secondly, the degree of filling ߙ of the tube was tracked over time and normalized to the maximal 
possible value (entire tube filled). Figure 3 shows a frame cropped to the tube and the relative particle 
occupancy ߙ plotted over time. 
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2.2 Hopper Discharge 
Discharge tests are popular for DEM model calibration [6, 12, 11], since they are fairly simple and can 
be automated to a great extent. For this study, a Polycarbonate (PC) hopper with a base of 
10 cm x 10 cm that could be opened to initiate discharge, was used. The angle of the sides was 45°. 
The hopper was filled with 2 kg of candy. Then the bulk surface was flattened to the horizontal as much 
as possible to reduce random variation. The false floor was then opened and the occupancy ߙ was 
tracked over time. Figure 4 shows a snapshot of the process and the discharge curve normalized to the 
initial vale of ߙ. 

 
Figure 4: Snapshot of hopper discharge experiment and relative particle occupancy ߙ over time 

 Simulation 

3.1 Discrete Element Method 
The experimental designs from Section 2 were replicated with CAD tools and imported into the DEM 
environment. The DEM implementation used here features the aforementioned linear hysteresis contact 
model. The pieces of candy were ellipsoid but nearly spherical, so a spherical particle representation 
was chosen. The average sieve diameter of the ellipsoids was used as the sphere’s diameter. 
Gravity driven flows tend to be insensitive to contact stiffness [13], so Young’s modulus was chosen 
with regard to numerical criteria (computational cost and numerical stability) and left constant at 108 Pa. 
The calibration parameters ݔ (Table 2) were friction coefficients ߤ, respectively for the static (sticking) 
and the dynamic (sliding) case and the coefficients of restitution ߳. Each parameter was assumed dif-
ferent for the interaction between the particles (P-P) and the interaction between particles and the bound-
ary (P-B). Additionally, a factor for rolling resistance was employed to account for the increased rolling 
of spherical particles compared to the real particles [12]. 
The eventual model parameters ݔ differ from the “true” physical parameters due to model shortcomings 
[14, 15]. For the raw model, i.e. the start values of the calibration, literature values where used. Since 
limited data for sugar coating is available in literature, rice was chosen as a stand-in. The static friction 
௦,ିߤ  between particle and boundary was calculated from the angle ߠ௫  where sliding starts, meas-
ured in an inclined plane test.  

௦,ିߤ = tan	ߠ௫  

With dynamic friction between particles ߤௗ,ି = 0 [16], the simulations occasionally showed unreal-
istic behavior when a particle was compressed between other particles (soap bar effect). ߤௗ,ି was 
therefore set to 0.1. The start value for ܴܴ was estimated at 0.1. 
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Parameter Material and Scenario Symbol Start Values (Raw Model) 

Friction 

Particles –  
Particles 

Static ݔଵ = 	  ௦,ି 0.8 [17] (Rice-Rice)ߤ
Dynamic ݔଶ =  ௗ,ି 0.1 (Numerical Stability)ߤ

Boundary -  
Particles 

Static ݔଷ =  ௦,ି 0.45 (Experimental)ߤ
Dynamic ݔସ =  ௗ,ି 0.1 [16] (Sugar Coating-PC)ߤ

Restitution 
Particles – Particles ݔହ = ߳ି 0.1 [17] (Rice-Rice) 
Boundary - Particles ݔ = ߳ି 0.1 [17] (Rice-Celluloid) 

Rolling  
Resistance Particles ݔ = ܴܴ 0.1 (Estimated) 

Table 2: Calibration Parameters 

3.2 Calibration 
The goal of model calibration is to identify the parameter set ݔ that produces the best match between 
the simulations ݓ and the experimental results ݑ. For the hopper discharge test, the curves from simu-
lation and experiment should be matched, i.e. the point-wise difference Δ୮୵ߙ should become 0. [11] 
In the case of the drop test, we aim to reproduce the portion range ߬  from the experiment as accurately 
as possible. These goals can be formulated as optimization problems, where the error between simula-
tion and experiment is to be minimized. Several optimization strategies have been used for DEM model 
calibration, such as manual comparison [11], gradient-based methods [18], genetic algorithms [19] and 
Artificial Neural Networks [5]. A recently followed approach is to create a metamodel with a kriging 
algorithm from several representative anchor points in the parameter space. The optimization can then 
be performed on the resulting surrogate model [20].The benefit of the latter method is that the number 
of solver runs can be reduced and evaluation of the goal function on the surrogate model is quick. 
The procedure was implemented in an automated calibration workflow (Figure 5) in the optimization 
environment optiSLang. The DEM solver was called at different parameter sets (samples) and the re-
sults were compared against the experimental data. The data was then processed into a metamodel of 
the solver behavior. 

Metamodelling A metamodel is a model for a model, in this case an approximation of the solver result 
 Kleijnen [21] gives a comprehensive .ݑ which in turn attempts to model experimental observations ݓ
theoretical overview over metamodelling techniques, so we will use part of his nomenclature here. The 
solver output ݓ is to be approximated by the output ݓෝ  of the metamodel ݂௧. 

ݓ = ௦݂(ݔ, (ݎ = ݂௧(ݔ) + ݁ 

௦݂ is the noisy solver function which depends on the calibration parameters ݔ and the seed of the 
random number generator ݎ. The metamodel function is ݂௧ with its value depending only on the 
calibration parameters ݔ. ݁ is the residual vector, in which the local error of the metamodel at anchor 
point ݅ is 

݁ = ෝݓ −  ݓ

If we make the assumption, that the kriging algorithm is capable of describing the behavior of a deter-
ministic solver ௦݂(ݔ), there must be an kriging parameter set ߚ which provides optimal fidelity. How-
ever, we must keep in mind, that we only have a finite amount of anchor points ݊ to work with, so we 
can in turn only find an estimate ߚመ  of ߚ. The sample size ݊ can be increased at any time, resulting in 
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the residuals ݁ asymptotically decreasing until an acceptable accuracy is reached at which the process 
is finalized. [21] 

 

Figure 5: Calibration Workflow in optiSLang 

In the case of a noisy solver ௦݂(ݖ,  ,the regression will smooth out some of the solver noise [22, 21] ,(ݎ
while producing greater residuals than in the deterministic case. This however does not necessarily 
imply bad quality of the metamodel but rather highlights the deterministic nature of ݂௧. It should be 
noted that, in the noisy case, the criterion, after how many simulation run the metamodel should be 
finalized, is not obvious. A possible criterion is to track the mean residuals over the number of anchor 
points ݊ and stop the process when stagnation is reached. It is however not guaranteed that this point 
will coincide with an acceptable quality of ߚመ . 

Adaptive Sampling Choosing the anchor points with Latin Hypercube sampling (LHS) [23, 24] allows 
for good coverage of the parameter space while avoiding undesired sampling effects at a smaller number 
of anchor points [25]. However DEM simulations are computationally expensive, so adaptive sampling, 
similar to [26], was performed to reduce the required number of solver calls. 
The general topology (i.e. global trends) of the metamodel can be estimated quite well in an exploration 
phase with relatively coarse sampling. In order to refine the metamodel, we can add anchor points in 
the interesting regions of the metamodel, i.e. where the predicted error Δ߬	 between simulation ݓ and 
experiment ݑ is low. The refinement is fully automated in optiSLang: First a series of preliminary op-
timizations is initialized at different starting points. With the resulting information on interesting regions 
on the metamodel, an ‘expected improvement approach’ [27] is employed to select additional anchor 
points. The solver is then executed at the new anchor points and the metamodel is recalculated with all 
anchor points available. The metamodel refinement is repeated for several iterations until a finalization 
criterion is met (in this case stagnation of the residuals) or the maximum computation budget is spent. 

Optimization Kriging models are continuous and smooth, so fast gradient based approaches can be 
used for optimization [26, 28]. The implementation the Lagrangian NLPQL solver of optiSLang was 
used due to its numerical performance and accuracy [29, 30]. 

3.3 Validation 
There are two sources for errors in the calibration process: Numerical (insufficient metamodel quality) 
and systematic (measurement errors and shortcomings in the DEM model). To exclude both, two sepa-
rate validation steps were performed. 
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Metamodel Validation In order to ensure the prediction capability of the metamodel, a set of ݉ vali-
dation simulation runs were performed at the supposed minimum ݔ௧  and their results ݓଵ,ݓଶ , …  ݓ,
were averaged to ݓഥ௧. The difference ݁௧ = ෝ௧ݓ − ഥ௧ݓ  is a teller for the reliability of the meta-
model at that respective point. If the error is unacceptably high, more anchor points should be added to 
increase the accuracy of ߚመ . 

Parameter Validation To verify that the obtained parameter set ݔ௧  was viable outside the calibration 
scenario, validation simulations were performed in the respective scenarios shown in Table 1. The re-
spective results were obtained from ݉ averaged simulation runs. 

Randomness In real-life, the filling of the containers is a random process that cannot be reproduced in 
the next run, resulting in a partially random initial condition (RIC) of the bulk. This randomness is a 
physical property of the processes, influencing the outcome of the experiment. The DEM simulations 
can either be performed with a RIC, accounting for physical randomness or with an arbitrary constant 
initial condition (CIC), with only numerical noise. 
Figure 6 shows the histogram of a set of noisy simulations of the drop test from Section 2.1 with the 
raw model. (a) shows the case of a constant initial condition (CIC). The only source of randomness here 
was numerical noise, since the simulations were performed on 8 processor cores. (b) shows the respec-
tive simulation with the aforementioned random initial condition. 
Neglecting physical randomness has the potential to lead to a biased result of the calibration, depending 
on how much the particular initial condition chosen affects the process outcome. The simulations were 
thus performed with physical randomness: Both in the drop test and the hopper discharge, a random 
and flat particle bed was created in the simulations before release, ensuring a RIC.  
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Figure 6: Histograms of simulations of the drop test with the ram model and 500 g of particles with 
constant initial state (a) and random initial state (b) 

Creating the RIC adds computational cost: in the case of the drop 37 seconds to the runtime of 110 
seconds per run on average (34%). Furthermore, the RIC increases solver noise. 
Both increased cost and solver noise are undesirable from an engineering standpoint. Since the differ-
ence in the relative standard deviation (coefficient of variation) ܸܥ between CIC and RIC is low, it is 
unclear if the physical randomness actually plays a significant role and that the additional effort will 
yield in higher fidelity models. In order to determine whether the implementation of the physical ran-
domness is actually necessary, for the drop test, we also performed the calibration with an arbitrary but 
constant initial state (CIC). 

CIC 
ܸܥ = 3.1% 

RIC 
ܸܥ = 3.6% 
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 Results 

4.1 Drop Calibration 
Table 3 shows the number of anchor points (simulated parameter sets) over the iterations. Figure 7 
shows a projection of a graphical representation of the metamodel after iterations 1 and 10 respectively. 
The parameters found to be the most influential on the portion range ߬ were ߤௗ,ି and ܴܴ. All other 
parameters are held constant near their respective optimum for low DEM model error. We observe only 
a slight change in the topology of the metamodel between Iteration 1 and 10. This suggests that the 
sampling could be stopped after iteration 1. 

 Iteration 1 
(Exploration) Iteration 3 Iteration 10 Iteration 20 Average per 

Iteration* 
݊ோூ  290 379 693 1162 46 
Comp. cost 11.8 h 15.4 h 28.2 h 47.3 h 1.9 h 
݊ூ  289 378 698 1143 45 
Comp. cost 9.1 h 11.5 h 21.3 h 34.9 h 1.4 h 
*after iteration 1     

Table 3: Number of anchor points ݊ and total computational cost of the calibration in the drop test at 
different iterations, depending on whether the RIC or CIC is simulated 

  
Figure 7: 2-dimensional projection of the 7-dimensional metamodel for Δ߬ in % in relation to the 
two most influential parameters (RR and ߤௗ,ି) at iteration 1 (Exploration) and 10 (RIC) 

However, to gain insight into the quality of the prediction of the metamodel, we must also assess the 
residuals ݁ of Δ߬. Figure 8 shows the local residuals ݁ of the metamodel in the same range as Figure 
7. We find that uncertainty is quite high at iteration 1, especially in the area of low predicted errors 
Δ߬. This implies a bad estimate ߚመ . After increasing the number of anchor points to more than twice 
the original count, at iteration 10, residuals were significantly lower, especially in the interesting areas 
of the metamodel. 
Figure 9 shows the relationship between the residuals ݁ in regions of low predicted errors Δ߬ and 
iteration number for the entire parameter space. Stagnation begins after iteration 3, which suggests that 
adding samples does not improve the metamodel anymore [21]. 
In the next step the minimum error min	(Δ߬) was determined on the metamodel with the NLPQL 
optimizer. The runtime was < 1 min. The metamodel was then validated at the supposed minimum ݔ௧  
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according to Section 3.2, showing a very good match (Figure 10). This confirms that the metamodel is 
indeed of high quality. 

  
Figure 8: 2-dimensional projection of the local residuals ݁ of Δ߬ for iteration 1 (exploration) and 
iteration 10 (RIC) 

 
Figure 9: Residuals ݁ of ߬ for the areas of the metamodel with low predicted DEM model errors 
Δ߬ over iterations (RIC). The respective number of iteration used to calculate the residuals are 
shown as dotted lines. 

The optimized parameter set ݔ௧  was then used for the two validation trials laid out in Section 3.3. The 
results are shown in Figure 10. We find that the calibrated model exhibits a high fidelity in reproducing 
the experimental results. An overview over the accuracy of the DEM models is presented in Table 4. 
The entire calibration process was repeated with a constant initial condition (CIC) before the drop. The 
results are shown in Figure 10. We obtain an equally good result as in the case with the RIC. We con-
clude that in this case, the physical randomness was not crucial for the accuracy of the metamodel. It 
should be noted however, that this could only be true for the specific arbitrary CIC chosen here. Other 
initial conditions might still produce a biased metamodel. 

4.2 Hopper Calibration 
The results of the calibration in the hopper discharge experiment are shown in Figure 11. The validation 
shows an equally good match as in the case of the calibration in the drop test. 
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RIC, 500 g, A□,1 (Metamodel Validation) 

 
 
 

RIC, 500 g, A□,2 (Parameter Validation) 

  
CIC, 500 g, A□,1 (Metamodel Validation) CIC, 500 g, A□,2 (Parameter Validation) 

Figure 10: Results of calibration in the drop test (RIC and CIC).Validation of metamodel after optimi-
zation and parameter validation in the drop test with A□,2 > A□,1 

 
 

݉=20 
Metamodel  
Validation 

Parameter Validation 
500 g, A□,1 500 g, A□,2 700 g, A□,1 

Drop, RIC Δ߬ = 1.1% - Δ߬ = 1.9% Δ߬ < 0.1% 
Drop, CIC Δ߬ = 0.7% - Δ߬ = 1.6% Δ߬ = 0.7% 
Hopper discharge Δ୮୵ߙ = 3.8% Δ߬ = 2.0% Δ߬ = 1.1% Δ߬ = 0.4% 
Table 4: Actual error of ߬ for metamodel validation and for the eventual calibrated parameters ݔ 
for the random initial condition (RIC), constant initial condition (CIC) and the hopper discharge. 
Simulations were performed m=20 times and their results averaged. 
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Hopper discharge (Metamodel Validation) 500 g, A□,2 (Parameter Validation) 

Figure 11: Results of calibration in the hopper discharge test: Validation of metamodel after optimi-
zation and Parameter Validation in the drop test with A□,2 

 Conclusion 

We set out to investigate two experimental approaches for DEM model calibration, suitable to identify 
parameters for the simulation of a drop trial analogous to industrial vertical filling. The first experiment 
was the drop test itself (in-situ calibration) while the second one was a commonly used hopper discharge 
test. In this regard, we investigated whether physical noise in the drop test due to the random initial 
condition at the beginning of the experiment needed to be included in the DEM simulations to obtain a 
good calibration result. 
We found that both experiments are suitable for calibration, yielding low prediction errors of a maxi-
mum of 2%. The calibration in the drop test was repeated without physical noise which yielded an 
equally good result. This suggests the conclusion that physical noise is not relevant for the calibration. 
However it still needs to be proven whether this is true for all initial conditions or only some.  
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