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Summary: 
 
Optimization as well as robustness evaluation are key technologies of virtual product development.
The optimization, i.e. improvement of product characteristics, has been an integral part of this 
development for several years now. On the other hand, the robustness of a construction, i.e. the
reliable function within admissible boundaries, is becoming more and more focused on, recently. In
fact, robustness is an additional demand on „optimized“ designs. 
The optimization and robustness evaluation are either performed consecutively or simultaneously, and
numerous methods are available for this. In the following, existing methods shall shortly be introduced
and discussed from a practical point of view regarding their appliance in virtual prototyping processes.
Three optimization method classes are discussed. These are: mathematical optimization methods
using gradients, response surface methods, and stochastic search algorithms. Pareto optimization will 
be shortly mentioned. 
Within the robustness analysis, the sensitivity of the unavoidable scatter of environmental conditions
and their impact on the most important structural responses is evaluated. Especially for nonlinear 
structural behavior it is mandatory to analyze the robustness with respect to the most important
random variations of the design parameters. Robustness evaluation is restricted to relatively 
frequently occurring events. To cover rare events, methods of reliability analysis have to be employed.
Additionally, methods for a simultaneous performance of the optimization and the robustness
evaluation task are introduced. Two practical applications serve to point out potential application areas 
of optimization and robustness evaluation. 
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1 Introduction 
Optimization and stochastic analysis – meaning robustness evaluation as well as reliability analysis – 
are key technologies of virtual prototyping. The optimization, i.e. improvement of product 
characteristics, has been an integral part of this development for several years now. On the other 
hand, the robustness of a construction, i.e. the reliable function within admissible boundaries, is 
becoming more and more focused on, recently. In fact, robustness is an additional demand on 
„optimized“ designs. 
The optimization and robustness evaluation are either performed consecutively or iteratively, and 
numerous methods are available for this. Nevertheless, their suitability and cost effectiveness– the 
latter expressed in the number of CAE-solver runs – can not be guaranteed a priori. Besides 
considerable necessary computational resources, the integration of these methods into the existing 
prototyping process is likely to necessitate a considerable effort. 
Nevertheless, there is a consensus on the fact that a combination of optimization and stochastic 
analysis is of vital importance, taking into account that the development cycles are becoming more 
and more short. A great innovation potential and competitive advantage is seen here. 
 
In the following, methods of optimization and of robustness evaluation will be introduced and 
discussed from a practical point of view, on the basis of applications in the virtual prototyping process. 
Here, the focus will lie less on the details of the methods but on demands, restrictions, and application 
areas. For details of the methods reference to literature is made.  
Evidently, an evaluation as concrete as possible of the numerous algorithms that shall be 
comprehensible not only to the specialists in this field inevitably necessitates simplifications and the 
concentration of hitherto successful applications.  
Because of hybrid approaches, specializations, and enhancements of single methods, the areas of 
application of the methods are no longer exactly outlined but appear to be movable. Nevertheless, it 
can not be expected for the near future that one single algorithm effectively, i.e. economically, and 
satisfyingly solving the majority of the optimization and reliability tasks. 
 

2 Optimization 
In optimization tasks, the variation space or design space is defined by optimization variables. These 
can take continuous values between an upper and lower boundary as well as discrete values. The 
desired properties of an optimal design are defined by objective functions and constraints. Then, 
optimization methods search the design space for as good an approximation as possible of both 
objective functions and constraints. When this process involves more than one calculation discipline, 
the term “multidisciplinary optimization” is applied. When more than one objective function is used, the 
term “multicriteria optimization” is used. Generally, at least three method classes are available to 
perform the optimization task: mathematical optimization by means of gradients, response surface 
methods, and stochastic search strategies. 

2.1 Mathematical optimization methods by means of gradients 

Mathematical optimization methods [11,12] determining search direction by means of gradient 
information possess the best convergence behavior towards the optimum of the aforementioned 
methods. However, they do pose the strictest demands on the mathematical formulation of the 
problem regarding continuity, differentiability, smoothness, and scalability. Additionally, a highly 
accurate determination of the gradients is needed. 
The most critical point from a practical point of view is the determination of the gradients. For many 
tasks, gradients of important response variables can not be determined analytically or semi 
analytically; and a numerical determination often fails, for example for noisy, or non differentiable 
tasks, or simply cannot provide sufficient accuracy. 
Therefore, a successful practical application is restricted mainly on optimization tasks with continuous 
optimization variables and well posed mathematical problem formulations permitting to determine 
appropriate gradients, such as linear or nonlinear implicit finite element analyses. Gradient methods 
should if possible start in admissible design areas, i.e. those areas fulfilling all constraints. To identify 
local optima, several optimizations starting from different points are recommended. 
 

2.2 Response Surface Methods 

For tasks that are not appropriate for mathematical optimization methods and do not involve more 
than 5 to 15 optimization variables, response surface methods [6] are an attractive alternative. These 
methods generate an approximation of the design space based on an appropriate set of samples of 
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the design space by means of approximation functions. The samples should be determined by means 
of sample patterns (design of experiments – DOE) that are fitted for the applied approximation 
functions. Generally, the approximation functions possess good mathematical properties, so 
mathematical optimization tasks can be used for the optimum search in the substitute space. 
However, it is not a trivial task to prove that the approximation is utilizable at the interesting regions of 
the design space as well as sufficiently accurate for the optimization. Therefore, adaption schemes are 
used to assure the approximation quality. Adaptive response surface methods, zooming and shifting 
the approximation space until the optimum converges on the response surface, prove to be most 
successful [13].  
A practical use of these methods is restricted mainly by the number of optimization variables. 
Nowadays, adaptive response surface methods are successfully applied e.g. for noisy tasks with up to 
10, in some applications up to 15 optimization variables. This problem class is frequently found in 
explicit finite element analyses, multibody simulation, crash simulation etc. 
 

2.3 Evolutionary Search Strategies 

When neither mathematical method alone nor in combination with response surface methods 
succeeds, stochastic search strategies remain to solve the optimization task. Of all methods belonging 
to this class, evolutionary methods in its two forms, genetic algorithms [5] and evolutionary strategies 
[9], are the most successful ones. The term “stochastic search strategies” is applied here because 
random events lead to design modification. 
Frequently, the application of stochastic search strategies is called design improvement rather than 
optimization. That is because these methods have a much worse convergence towards the optimum 
than mathematical methods and necessitate a very large amount of design evaluations to converge. 
The main difference between genetic algorithms and evolutionary strategies lies in how the 
optimization variables evolve. For genetic algorithms, the most important evolutionary process is the 
random interchange of genes, i.e. optimization variables, between two parent designs in order to 
create descendents. On the other hand, for evolutionary search strategies, mutation, i.e. random 
modification, of single genes of a parent design in order to create one descendent is the most 
important process. 
This leads to different advantages and recommendable application areas of both methods. Genetic 
algorithms are especially suitable for a relatively wide search of the design space. That is why they are 
often employed for the search of different design areas of comparably good performance (island 
search) [17] or for a design improvement without any previous knowledge entered into the evolution. 
In contrast, evolutionary strategies are most appropriate for a design improvement of „pre-optimized“ 
design islands or for construction states for which previous knowledge can be integrated into the start 
generation or into the evolution operators. 
The advantages of both genetic and evolutionary strategies can be combined by using hybrid 
algorithms, self-adjusting or adaptive evolutionary methods, and thus the speed of design 
improvement can be increased. 
 

2.4 Sensitivity Studies 

As has been pointed out hitherto, profound knowledge of the characteristics of the variation space are 
is vital for the choice of an appropriate optimization method. It is also a prerequisite for the definition of 
constraints and objective functions. If this knowledge is not available, sensitivity studies are 
recommended. 
Parameter studies varying single parameters have long since been a common task for the engineer. 
Similarly, in small parameter spaces, design of experiment methods which systematically calculate 
single parameters and parameter combinations can be applied. With increasing dimension or 
nonlinearity of the parameter space, stochastic sampling strategies are preferred to generate the 
sample set. 
An additional advantage of the stochastic sampling strategies compared to the design of experiments 
is, that they permit a statistical evaluation in the form of correlation and variation analysis of the 
sensitivities in the variation space. So, instable areas in the design space, hints on the variation 
potentials of the response variables, or global correlation structures showing which optimization 
variable has which influence on which response variable, etc. can be identified by means of sensitivity 
analysis. In this way, sensitivity studies may permit a reduction of the parameter space for subsequent 
optimization tasks. Moreover, the previous knowledge drawn from the sensitivity studies regarding the 
properties of the design space often is most helpful for an appropriate formulation of the constraints 
and the objective functions. 
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2.5 Pareto Optimization Strategies 

It has been pointed out earlier that optimization problems may possess more than one objective 
criterion (multicriteria optimization).  
When these criteria are not conflicting weight strategies can be used to combine several criteria to one 
objective function. Mathematically, assigning different weights to the single criteria should only have 
an influence on the convergence speed. In reality, even in cases where the objective criteria are not in 
conflict, different weights can indeed lead to different optimization results. The reasons for this may be 
that a local optimum has been found, the optimal area has a very small gradient, or the solution is not 
converged. 
In case the criteria are in conflict, even from a mathematical point of view, there is no longer one 
single optimum. Instead of that, a number of possible compromise solutions exists. In this case, the 
weights of the different objective criteria is influencing the optimal compromise in a much stronger 
way. 
As an alternative of calculation single compromise solution, Pareto optimization methods can be 
applied to determine the compromise set. By means of a posteriori weighting, they permit to choose 
the optimal compromise solution not before but after the optimization. Successful methods of Pareto 
optimization generally apply evolutionary methods such as Strength Evolutionary Pareto Algorithms 
[18].  
Practically, a successful application is restricted to two- and three-dimensional multicriteria tasks. This 
is not so much due to a restriction of the underlying algorithms but to the failure of representation 
possibilities of the compromise solution. However, a proper representation is essential for a good a 
posteriori choice. 
Taking into account that, instead of one optimal point, a set of optimal points is to be determined, it is 
hardly surprising that generally the computational expense is considerably increased. That leads to 
the recommendation that Pareto optimization strategies not be used to start the work on an 
optimization task. They should be applied at a work stage when the structure of the optimization 
problem (important input and response variables) is well known, and it can be taken for sure that two 
or three important objective criteria are in conflict. 
 

3 Robustness Evaluation 
As an introduction of the term „robustness evaluation“, the concept of stochastic computation methods 
shall very shortly be described.  

3.1 Stochastic Computation Methods  

The previous remarks were based on a purely deterministic concept.  This concept does not take into 
account any uncertainties, i.e. scatters, and thus describes and analyzes but one possible state of the 
design, the boundary conditions and the loads, which is taken as the base for the evaluation. 
Speaking in terms of stochastic methods, this is equivalent to a mean value analysis (expected 
values). In case the scatter around the mean values of the input variables is small and the resulting 
scatter of important response variables are small, a deterministic analysis describes the task with 
sufficient accuracy. This does not hold for cases, when knowledge of resistance or loads is uncertain 
or highly scattering, or when a nonlinear scatter transmission behavior leads to response variables 
outside of tolerance areas. Here, the influence of scattering input variables has to be investigated. 
Obviously, engineers have taken this into account even before the introduction of stochastic 
computation concepts, e.g. by means of variant studies or worst case scenarios. However, 
considering the increasingly complex computation models and the increasing demands on quality and 
reliability, and last but not least for economical reasons, a quantitative evaluation of the scatter by 
means of stochastic computation methods is required.  
Such a quantitative evaluation necessitates basic knowledge of the in reality existing scatters of input 
variables, which is than described statistically by distribution functions. Then, the scatter of the result 
variables or the probability of events in the result spaced is assessed by means of stochastic and 
statistical computation methods. 
 
Basically, the achievable level of accuracy, expressed here as the achievable level of probability in the 
result space, depends on the accuracy of the knowledge of the scattering input variables, in this case 
the knowledge of the distribution functions. That means, if events shall be excluded with a probability 
of 5%, relatively coarse knowledge of the uncertainties and input scatter may suffice. If a rare event 
(e.g. one of a million) shall be covered a much more detailed knowledge of the input scatter is needed.  
Additionally, the chosen stochastic computation method must be capable of guaranteeing a desired 
accuracy of the estimation of the statistical variables. While the computation engineer is able to check 
the result of an optimization using his previous assessment standards, the statistical measures of 
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stochastic computations often cannot be checked in a conventional way. For these reasons it is 
recommendable to introduce stochastic analyses into virtual prototyping processes step by step 
beginning with robustness evaluations [16]. The results of robustness evaluations should be brought 
into agreement with experiences, and the underlying scatter transmission mechanisms should be 
understood. With robustness evaluation relatively coarse knowledge of assumed input scatters 
already permits the determination of their sensitivity towards the scatter of the result variables. At the 
same time, relatively frequent events, i.e. with a probability of occurrence in the order of magnitude of 
5% or more, can be covered. 
 
If reliability of less frequent events is desired methods of reliability analysis are necessary. These 
methods estimate small probabilities by means of approximation of the limit state function 
(FORM/SORM [8]), or using special sampling strategies (adaptive sampling [2], directional sampling 
[4]), or combining both (ISPUD [1]). As an economical use of reliability analysis methods often is 
restricted to small parameter spaces, robustness evaluations are often an essential preliminary stage 
to reduce this space. Note that, generally, for small probabilities of occurrence, a much higher 
computational expense will be necessary and the distribution functions of the scattering input variables 
have to known much more accurately. 
 

3.2 Robustness Evaluations 

Robustness evaluations evaluate scatters around mean values of input variables and their influence 
on the scatter of the result variables. Additionally to the estimation of the response scatter, robustness 
evaluations can serve to identify the scattering input variables that most contribute to the response 
scatter, and, as has already been mentioned, to cover relatively frequent events.  
In contrast to sensitivity analyses as presented in section 2.4, the scatter of input variables is not 
described by an upper and lower boundary. In robustness analyses, this is done by distribution 
functions representing the assumed existing scatters around the mean values. A number of possible 
designs are generated by means of sampling methods. After determination of the sample set with 
CAE-solver runs, mean values, variation coefficients and distribution functions are estimated from the 
histograms of the response variables. These serve to quantitatively evaluate the scatter of the 
response variables. 
The next step is the determination of the correlation structures. To this end, correlation coefficients are 
computed, and a principal component analysis (PCA) is performed. The linear correlation coefficients 
serve to evaluate the linear interconnection between the variations of two variables, i.e. of one input 
variable to one response variable. Contrary, a principal component analysis of the linear correlation 
matrix investigate correlations of higher dimensions, i.e. significant correlations between one group of 
input variables and a group of response variables. Additionally, the principal component analysis 
extracts the single scatter transmission mechanisms from the linear correlation structure. Hence, it 
permits to decompose the problem into several subspaces, if necessary. 
 
The sample number should be chosen depending on the statistical measures to be interpreted. There 
are two main classes of sampling strategies: firstly Monte Carlo sampling, and secondly variants of 
Latin Hypercube sampling. These last are generally preferred because much less samples are needed 
to achieve comparable confidence interval of the statistical measures compared to Monte Carlo 
sampling. If Latin Hypercube sampling is used, the following approximate sample numbers may serve 
as a guideline: A minimum sample number of two times the number of random responses should be 
generated for a statistical evaluation of the individual variables, such as mean values, histograms, or 
variation coefficients. If a statistical coverage of the linear correlation structure is desired a minimum 
sample number of two times the sum of input and response variables is recommended. This is to be 
regarded as a starting value because the necessary sample numbers for a determination of the linear 
correlation coefficients can in some cases be considerably higher. Such cases may be problems with 
small dimensions (i.e. less than 20 input and response variables), and highly nonlinear or noisy 
problems. Therefore, convergence studies for important correlation coefficients are recommended. A 
more precise estimation of the sample number is possible if the order of magnitude of the correlation 
coefficients, the desired confidence level, and the desired tolerance interval is provided. 
 
 

3.3 Combination of Optimization and Robustness Evaluation  

When optimization and robustness evaluation are first introduced into the virtual prototyping process, 
an iterative execution of both is probably a good starting point. That means robustness evaluations are 
performed for optimized designs. It is possible that these have retroactive effects on the optimization 
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task in case robustness improvement become necessary. In the simplest case input scatter must be 
decreased or pre-optimized variables are shifted into more robust areas. 
A combination of optimization and stochastic analysis may be preferable in order to solve the 
optimization task as completely as possible. That means that the optimization task additionally 
includes the scatter minimization of important response variables. Depending on the probability level, 
two classes of stochastic optimization [10] can be distinguished. 
 
Firstly, variance minimization tasks can be solved using methods of the Robust Design Optimization. 
Generally, these combine response surface approximations of the deterministic optimization variables, 
of the scattering optimization variables, and of further scattering design variables, e.g. boundary 
conditions or loads. 
Note that the demands made on the response surface approximation for the variance estimation are 
not the same as made on those possibly used for the optimization task. If the response space is too 
strongly smoothed, in case of doubt this leads to much smaller variance estimations on the response 
surface compared to the real design space. Hence, response surface approximations conserving local 
information are preferred, e.g. Krigin models, weighted radii, and moving least square approaches. 
Again, the practical application of response surface methods is limited by the relatively small possible 
variable number, aggravated by the fact that this number includes both optimization and scattering 
variables. 
Thus, it is again obvious that conflicts between optimization and robustness should be known, and that 
often a reduction of the parameter spaces by means of sensitivity analyses and robustness evaluation 
may prove necessary. It is recommendable to perform robustness evaluations for final designs in the 
original design space. Thus, it can be verified, whether the variance estimation on the response 
surface corresponds to the variance in the original design space. 
 
Secondly, if an optimization tasks includes probabilities of occurrence, this is called reliability-based 
optimization. Besides responses surface methods, gradient based methods, i.e. FORM/SORM, are 
available [3]. In some cases, both response surface methods and gradient based methods fail, 
because it is neither possible to determine appropriate gradients in both the optimization variable and 
the scattering variable space, nor is the number of optimization and scattering variables sufficiently 
small for a response surface use. For these cases combinations of stochastic methods and 
optimization methods can be applied, e.g. genetic optimization for the optimization variables and 
FORM for the stochastic variables.  However, these methods lead to a further increase of the 
computational expense and frequently, they are only applicable to problems with small parameter 
numbers or tend to an exorbitant increase the number of required external CAE solver runs. 
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4 Applications 
In the following, potential application areas of optimization methods and robustness evaluations shall 
be pointed out on the basis of two application examples. In booth examples the software OptiSLang 
[7] was used to perform optimization and robustness evaluation. 
 

4.1 Optimization and Robustness Evaluation of an Occupant Restraint System 

In the framework of a verification project of optimization methods and robustness evaluations, two 
parameters seat belt reaction forces and the vent hole size of an occupant restraint system have been 
optimized. The aim was to increase the number of stars that could be achieved in a Euro NCAP as 
well as in an US NCAP evaluation. The response space of the multi body simulations was noisy, so 
genetic optimization strategies as well adaptive response surface strategies were used. Both 
strategies yielded very similar “optima”, the adaptive response surface strategies showing better 
convergence, as was expected for a problem with an as little dimension. 

 
Fig. 1 Occupant restraint system and convergence of the adaptive response surface. After ten 
approximations, all parameters had converged.  
 
A subsequent robustness evaluation of the optimized design took into account scattering of the 
optimized variables as well as of dummy position and of airbag characteristics. Robustness problems 
regarding the Euro NCAP evaluation were found. The input variables responsible for this could be 
identified from the correlation structures. Additionally, a conflict between the optimization of the seat 
belt force and the criteria following Euro NCAP and US NCAP was detected. By shifting the mean 
values of the optimized seat belt forces a design with a somewhat lower performance but with a better 
mean value and less scatter could be found. 
Considering the small dimension of the optimization space with only three variables, a Pareto 
optimization would have been applicable to determine the compromise set of seat belt force 
adjustment regarding the achievable number of stars Euro NCAP and US NCAP. It proved more 
advantageous, though, to include additional variables of the occupant restraint system into the 
optimization. The conflict regarding the adjustment of the seat belt force could be almost completely 
dissolved in a parameter space including eleven variables. Moreover, the performance of the occupant 
restraint system could be increased further. 
 

Cluster with seatbelt force /vent hole  

Cluster with seatbelt force  

 
 
Fig. 2 Anthill plot seat belt force versus EURO NCAP evaluation. The two decreasing clusters illustrate 
two mechanisms of performance loss.  
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4.2 Robustness Evaluations of the Driving Comfort Behaviour 

In the second example robustness evaluations have been performed for the driving comfort behaviour 
r iables has been investigated for of ca models [16]. The sensitivity of a great number of scattering var

different load cases. To describe the input scatter Gaussian distribution functions were estimated 
based on existing knowledge of possible scatter percentages around the mean values. 
During the computation, the convergence of the correlation structures, i.e. the linear correlation matrix 
as well as the principal component structure, have been observed. The correlation structures could be 
regarded as reliably determined when an increasing number of computations did not yield significant 
changes. So, the necessary sample number was reached, and the statistical measures are reliable. 
Fortunately, very stable correlation structures could be observed and the robustness of all load cases 
could be proofed. In the different load cases only a few variables dominate the correlation and 
variation structures, and some few dominating nonlinearities of the transmission behaviour can be 
identified in the anthill plots. Then, robustness evaluations can reliably identify the most important 
scattering input variables. At the same time, robustness evaluations can give precious hints on the 
transmission ways of the scatters as well as on their optimization potential. 
 

 
Fig. 3: Finite element vehicle model (explosion view) 

 
In the here presented ca e sound pressure levels 
t four different positions in the passenger compartment considering 76 scattering stiffness of the 

se, robustness evaluations have been executed for th
a
suspension system. Two engine excitations were investigated. A total of 199 samples have been 
computed. In the first load case, all response variables show high correlation coefficients to only one 
scattering input variable (stiffness of transmission system bearing). That means the scattering of that 
variable dominates the whole scatter of all response variables. 
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Fig. 4: Matrix of linear correlation 
 

 

Amplitude of 
comfort variable 

Variation of design variable 

 
Fig. 5: Anthill plot stiffness of transmission system bearing versus response 

 
In the second load case, also significant correlation coefficients of the response variables to the 
engine bearing stiffness are found. All in all, the scatters of the sound pressure levels are moderate 
and below undesired amplitudes. The two dominating input variables could be reliably determined by 
analyzing the correlation and variation structures. So, these two load cases can be influenced 
significantly by a variation of these few characteristics. 
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Red  Reference design 
Black  199 Robustness runs 
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Frequency [Hz] 

Fig. 6: Scatter visualisation of sound pressure level  
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