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Summary: 
 
The calibration of measurement and computation is one of the classic problems of model validation. If 
the difference between measured and computed data is too large, an optimization problem for 
minimizing the difference can be formulated. Optimization problems of calibration of measurement and 
computation are often also called identification problems. In the past this problem was normally solved 
via iterative calibration of single variables. Through the availability of parameter optimization programs 
the iterative calibration can be automated and more complex problems can be handled. Such 
automated identification procedures become more and more important due to today’s speed of 
innovation in product development. Within virtual prototyping virtual testing is the key to reduction of 
hardware tests. Only if calibration of measurement and simulation is successful in reference 
experiments then one can assume that all of the phenomena relevant for the real testing results are 
included in the virtual model and therefore models that produce competent results of prognosis are 
available for virtual testing. 
In this paper a short overview of methods of sensitivity studies and optimization strategies is given. 
Their applicability for as automated identification as possible is then discussed using practical 
examples. 
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1 Introduction 
The comparison between results of measurements and corresponding result values of the numerical 
model will always stand at the beginning of the calibration. If the difference is too large, then the 
search for a better calibration can be formulated as an optimization problem. The “optimization 
variables” are the variables of the numerical model in which the differences between measurement 
and computation are assumed and respectively those whose values are unknown or uncertain. Then a 
calibration between simulation and experimental result in a design space, which is defined by varying 
“input variables” of the numerical models, is computed using optimization routines. Such a conceptual 
formulation demands specific requirements from the optimization method, as discussed in the first part 
of this paper. 
 
The complexity of such a problem varies from calibration of a single variable to the identification of 
unknown system properties. Whereas the calibration of single result variables by “adjusting” single 
variables is a process which every designer is probably familiar with, identification problems of 
unknown variables and the corresponding system properties can become very complex. 
 
In addition the calibration of single values loses significance when dealing with heavily scattering 
results of measurements. If one has to assume, that the scatter of results of measurements also has 
to be expected in reality, the question comes up, which of the possible results of measurements is to 
be identified. A first step in order to consider scatter of result variables is the averaging of the 
scattering variables using the mean value theorem. Then at least is made sure that the calibration of 
the expectation (mean value) is realized and that at average the prognosis ability is given. 
 
A calibration with the mean values of the measurements is insufficient if prognosis ability of the 
simulation is to be insured beyond the expected interval of scatter. Then validations should also be 
made at the considered interval borders. 
 
The observed scatter of the result variables naturally includes important information, beyond the 
problem of the ability of prognosis of all possible results, about the scatter which is to be expected in 
reality. Such details about the input scatter to expect which leads to the observed output scatter are 
necessary for example for robustness evaluations in virtual product design [9]. The problem is then 
broadened by the identification of statistical properties of the input variables which are connected with 
the resulting scatter. Therefore strictly speaking statistical measures of the scattering input and output 
variables have to be identified. If the ability of prognosis of an area of scatter is to be secured, the 
identification of the associated areas of input scatter that are responsible for the output scatter would 
be sufficient. If however statements about the probabilities of the transgression of limits of the result 
variables are of interest then the distribution functions of the input variables, which lead to the 
observed output scatter, have to be identified. In the extreme case this leads to the identification of n-
variable-sets to n-experiment-results. The histograms of the n-identified variables of each set form the 
base of the distribution function. 
 
From our practical experience the key to the success of an identification often lies in the definition of 
the design space as well as the objective function in addition to efficient optimization algorithms. A 
promising optimization problem often can only be formulated if the design space can be assembled 
from sensitive parameters. Therefore it is recommended to perform a sensitivity analysis of the 
potential design space and to constrict the variable set to the sensitive parameters of significant input 
variables before optimization. It shall be pointed out that sometimes when solving identification 
problems the phenomena arises that with increasing number of optimization variables the quality of 
calibration only increases at first view. The optimizer is able to minimize the objective function more 
easily by having more degrees of freedom but also provides a number of variables which obtain 
random values. A translation of the variable set to plausible physical variable and respectively the 
“filtering” of identified variables and random or “misaligned” variables is not trivial. Therefore a 90% 
calibration with a few variables which are identified as sensible physical variables is better than a 95% 
calibration with a multitude of random or misaligned parameters. 
 
At the same time within the sensitivity analysis it should be tested if the result which is to be calibrated 
is situated in the design space of the virtual model. If it can be assumed with a high probability, that 
the measurements which are to be calibrated lie beyond the variation space of the sensitivity study 
then the reasons should be discussed. Either further differences between measurement and 
simulation can be identified and obtained as “optimization variable” or the numerical model does not 
include the underlying functional mechanism or the measurements are afflicted with errors. 
 

 

2
NAFEMS Seminar:  
„Virtual Testing – Simulationsverfahren als integrierter 
Baustein einer effizienten Produktentwicklung“ 

Mai 10 - 11, 2006 
Wiesbaden, Germany



2 Sensitivity Studies 
Sensitivity studies are recommended in order to verify, if the design space was chosen from “sensitive” 
parameters to identify and if a calibration with results of measurement seems realistic. Parameter 
studies, that is the variation of single parameters, belong to the everyday life of an engineer for a long 
time now. In analogy thereto design of experiment methods, which systematically calculate single 
parameters and combinations of parameters, can be used in small parameter spaces. If the dimension 
or the nonlinearly of the parameter space increases, stochastical sampling strategies are to be 
favoured for creating supporting point sets.  
A further advantage of stochastical sampling strategies compared to design of experiments is, that 
they furthermore permit a statistical evaluation of sensitivities via correlation hypothesis (which 
optimization variables operate on which result variable and how) an variation analysis (estimate the 
possible variations of the result to align in the chosen design space). Most important statistical variable 
for sensitivity of the optimization variables on significant result variables is the measure of 
determination. In figure 1 for example the measure of determination shows, that 95% of the variation 
of the maximum force in section 35 results from linear correlation and the “most sensitive” input 
variables are the yield stress as well as the thickness of two sheet blanks (Part 1007 and 1009 ). 
Consequently the sub space of identification of this result variable can be reduced to the four sensitive 
parameters. From the histogram one can read off, that the result variables in the design space varies 
at least between 69515 N and 85756 N. If the measurement result to identify lies in this variation 
space one can assume with high probability that a calibration in the subspace of the four sensitive 
variables is possible. For description of further statistical measures [10] shall be referred. 
 

 
 

Fig. 1 Measures of determination and histogram of a single result variable  
 
Therefore sensitivity studies enable a reduction of the parameter space for subsequent optimization 
problems. The previous knowledge obtained from the sensitivity studies about properties of the design 
space in addition is very helpful for an adequate formulation of constraints and objective function. 
From the computation of the sensitivity studies adequate starting points for gradient optimization, 
adequate starting approximation spaces for adaptive response surface methods or input information 
for starting generations of evolutionary search strategies can be obtained. 
 

3 Solving of the Identification Problem using Methods of Optimization 
Basically at least three categories of algorithms are available for solving the optimization problem: 
mathematical methods of optimization using gradients (gradient method), response surface methods 
(RSN) and stochastic search strategies. 

3.1 Mathematical Optimization Methods using Gradient Information 

Mathematical optimization methods [7], which determine the search direction using gradient 
information, offer the best convergence behaviour of the above mentioned methods. But they also 
have the greatest requirements on the mathematical composition of the numerical problem 
formulation, on continuity, differentiability, smoothness, scalability as well as the accuracy of the 
gradient determination.  
Most critical from a practical point of view is the unavailability of analytical or semi-analytical gradients 
adverse important result variables to estimate and respectively the impracticality of numerical 
gradients for example when dealing with heavily noise afflicted problems, non differentiable problems 
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or problems of accuracy when determining numerical gradients. Successful practical application is 
consequentially concentrated on optimization problems with continues optimization variables with 
mathematically adequate problem formulations where suited gradients can be calculated. Ideally 
gradient methods should start close to the optimum.  Therefore gradient methods are often used in 
order to verify if the pre-optimized parameter set can be further optimized. 
 

3.2 Response Surface Methods 

If the amount of optimization variables is limited to a few variables (5 to 15) then response surface 
methods [4] offer attractive possibilities of optimization. This method create an approximation of the 
design space using an approximation function on a suitable set of supporting points (samples of the 
variable space). The support points thereby should be determined using optimal support point pattern 
(Design of Experiments –DOE) for the approximation function. The approximation function usually has 
smooth mathematical properties that for the search for the optimum in the subspace mathematical 
methods of optimization can be used. Weak point of the response surface methods is the proof that 
the approximation at points of interest in the design space is sufficient and respectively accurate 
enough for the optimization. To secure the approximation quality adaptation Response Surface   
schemes are used. Hereby adaptive response surface methods (ARSM) which zoom and scroll the 
approximation space until the optimum converges on the response surface are the most successful 
[8]. The critical value from practical view first of all is the number of optimization variables. Therefore 
response surface methods are used in small dimension of the most sensitive optimization variables 
which have been determined before using sensitivity studies. Designs which have been pre-optimized 
in such a manner can be used as starting point for gradient optimization or as input information of 
evolutionary search strategies. 
 

3.3 Evolutionary Search strategies 

If the aforementioned algorithms do not lead to the desired goal stochastic search methods, of which 
the evolutionary algorithms with the subdivisions genetic algorithms [1] and evolutionary strategies [6] 
are the most successful, remain for solving the problem. The term stochastic search method is used 
as “random” events lead to the change in design. Important differentiating factor between genetic 
algorithms and evolutionary strategies is the method of evolutionary development of the optimization 
variables. Most important evolutionary process of the genetic algorithms is the random substitution of 
genes (optimization variables) between two parent designs to produce a descendant. Most important 
evolutionary process of evolutionary search strategies is mutation (random change) of single genes of 
a parental design to produce a descendant. 
Genetic algorithms thereby are especially useful for a relatively wide-ranging search in the design 
space. Therefore they are often used as a “global” search of a possible calibration. Evolutionary 
strategies are especially useful if a proper previous knowledge is available in the starting generation. 
Starting with pre-optimized designs from genetic search strategies or ARSM runs evolutionary 
strategies can be used for local optimization for fine-tuning. Depending on the settings of the 
replacement and mutation operators hybrids between genetic and evolutionary search strategies can 
be presented and used for combined global and local optimization. 
 

4 Applications 
In the following the potential application area of optimization methods for the calibration of 
measurement and computation shall be shown using practical examples. In all applications the 
software OptiSLang [5] was used for the optimization.  
 

4.1 Identification of the Dynamic Behaviour of Bell Towers [11] 

Bell towers of historic churches are a good example for structures whose dynamic behaviour is 
unknown. Most important dynamic animation of the structures is the ringing of the bell. At the Saint 
Michael  church in Jena the stability of the bell tower under the loading case “ringing of the bell” was 
researched using dynamic measurements. Furthermore the reconstruction of the bell tower was 
accompanied by measurements and computations and it was tested if the reconstruction measures 
contribute to the desired strengthening of the bell tower.  
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Fig. 2. Left – Bell tower during reconstruction, Middle – building history, Right – Positions of the 
vibration generator and the positions of the accelerometer. 
 
The bell tower was dynamically animated using servo-hydraulic vibration generators. The velocity 
signals were recorded on different planes and from the calibration between transfer function of the 
measurement results and the numerical model eigenfrequency and eigenmode were identified. 
 
For the calibration of the bell tower before reconstruction 39 mechanical properties (elasticity modules, 
raw densities, Poisson ratios, rigidity of connections/connection mediums and modal damping 
coefficients) were varied. The objective function was defined by differences in the eigenvalues and 
eigenmode (over a MAC-calibration). As optimization routine a genetic optimization algorithm was 
used. Different combinations of the objective function definition were used which all lead to similar 
calibration levels (fig. 4). In all variants of the objective function the frequency of the second mode 
could not be calibrated well. Near the third to fifth mode the calibration is moderately successful but 
depends strongly on the objective function, which leads to the conclusion that their weight in the 
objective function is relatively small compared to the first and second. 
 

 
Fig. 3 Finite element model  
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Fig. 4 Calibration not yet reconstructed bell tower 
 
For the calibration of the reconstructed tower 60 mechanical properties were varied. The objective 
function was defined by using differences between eigenvalues and eigenmode. In the first case 
(model1) only the first and second eigenmode were calibrated, in the second case (model 2) the first 5 
eigenmodes were calibrated. It could be shown, that a calibration of eigenfrequency and eigenmodes 
1 to 4 is possible, but that in the defined design space conflicts between exist (Fig. 5). A satisfying 
calibration of all 4 first eigenmodes with one identified variable set could not be attained.  
 

 
Fig. 5 Calibration reconstructed bell tower  
 
From the authors view [11] the primary objective, that the reconstruction measure significantly 
increases the bearing strength and that the eigenfrequency of the bells have a significant distance to 
the eigenfrequency of the tower could be proven.  
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Room for improvement is seen at the definition of the design space, the definition of the objective 
function as well as the optimization algorithm. Probably however also with increased complexity in the 
description of the objective function no significantly better calibration can be found in the design 
space. Facing the unknown mechanic properties of the masonry structures of historical bell towers it 
seems promising also to improve the FEM-modelling of the bell tower for properties whose calibration 
seems unsatisfactory. In order to verify the eligibility of the subspace for the identification sensitivity 
studies which consider all potentially differing mechanical properties are recommended. 
 

4.2 Identification of material properties of visco-elastic adhesives in automotive engineering 
[2] 

For the simulation of visco-elastic adhesives for adhesive joints of electronic components material 
models are needed which can consider the dependency of mechanical properties of the adhesive 
joints from loading velocity and loading duration from a temperature range of –40 to 150 °C. 
 

 
Fig. 6 Adhesive joints of electric components 

 
For the adhesives DMA (dynamic mechanic analysis) master measurements as well as relaxation and 
creep tests were done. The measurements are done in the frequency range of 0.1 to 100 Hz as well 
as the temperature range from –40 to 150 °C. The material model for the simulation is described by a 
PRONY-series approach with 52 variables to identify overall. For computation of the experiments a 
mathematical model in a Fortran implementation with a small computation time was used. As objective 
function the integral sum of the quadratic calibration between measurement and computation were 
used. In addition energy conserving constraints have to be followed strictly. From the view of the 
authors [2] the optimization problem is characterized through a bad convergence of the calibration 
because of the large amount of local minima. For the calibration genetic optimization strategies were 
chosen. As is known genetic search strategies are suited to find as global optimums as possible in 
design spaces with lots of local optima. The identification ought to be used as automated routine for 
identification of the material characteristic by default. Most important requirement of the optimization 
algorithm therefore was to find as robust parameters as possible with an optimized adjustment of the 
evolutionary parameters for a good calibration for different adhesives. With a genetic optimization 
algorithm the boundary conditions could be fulfilled and a calibration was found which was better than 
the one found by hand.  
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Fig. 7 Calibration of measurement and computation using an automated genetic optimization strategy  
 
By coupling of the genetic algorithm with a subsequent gradient based mathematical algorithm the 
calibration could be improved even further. Thereby the advantages of the genetic algorithm to get 
close to the global optimum in a robust way could be successfully combined with the advantage of the 
mathematic optimization algorithm to converge fast when started close to the optimum.  

 
Fig. 8 Calibration between measurement and computation via automated genetic optimization strategy 
and subsequent gradient based mathematical  
 
The automated identification of the PRONY-components could successfully be integrated into the 
normal process. Using the automated identification computation the variables for a material routine for 
the FEM program Abaqus for computation is given. Thereby the beforehand necessary operating 
expense of a stepwise calibration of single PRONY-coefficients by hand could be significantly reduced 
and a better calibration could be found. 
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4.3 Automated Validating of Airbag Models [3] 

 
In order to secure the prognosis ability of numerical computation models of airbags the airbags are 
validated by computing several configurations and component experiments. In fig. 9 a configuration of 
an impactor test case and the resulting acceleration characteristic can be seen. The impactor test 
were done repeatedly with identical configuration and the scattering result values were averaged. The 
validation results from the expectation (mean value) of the experiment. The computation of the 
component experiments was done using MADYMO. 

 
Abb. 9: Impactor test (left) und acceleration characteristics (right) 
 
The design space of the calibration is described using six parameters, gas temperature, permeability 
as well as size and efficiency of airbag opening. Important evaluation parameters are the acceleration, 
the path and the pressure signal. Maxima and the points in time of the maxima as well as the temporal 
progression were observed. Beforehand a sensitivity study was carried out in which the matrix of 
linear coefficients of correlation was evaluated. The significant linear correlation between gas 
temperature, bag permeability and efficiency of the airbag opening to the other result variables is 
physical plausible and corresponds to the expectations. The other parameters of the design space 
show no significant connection to the result variables and therefore are not varied in the following 
identification. Furthermore it could be shown, that the averaged test curve lie within the set of curves 
of the sensitivity study. Therefore it can be assumed that a calibration with an as automized 
optimization method as possible seems contingent. 
 

 
Fig. 10 Grey - 100 computations of the sensitivity study, green – mean value curve of the experiment 
 
The objective function of the optimization is assembled from the deviance of the acceleration run over 
time, the maximum value of the acceleration as well as with less weighting from the deviance of the 
pressure run over time [3]. Because of the insensitivity adverse local optima a genetic optimization 
algorithm was used. A population size of 10 individuals and 15 generations of 7 configurations 
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resulted in a total of 1050 computations. With a simulation time of 3 minutes per configuration and 5 
computations running parallel the whole optimization took 11 hours. 
 

 
Fig. 11 Comparison of the acceleration and pressure runs from the experiment (coloured, drawn 
through) computation (black, dashed) 
 
Figure 8 show the computation results of the optimal design compared to the experimental data. As 
well as the matching of the accelerations and the matching of the pressures is of high grade. The 
automated validation of the airbag models ought to be transferred to further airbag models and 
complete restraint systems. With increasing number of possible parameters of the design space the 
importance of the sensitivity study in order to reduce the parameters to identify and for validating the 
applicability of the design space for the sought after calibration increases. With increasing computation 
times furthermore ought to be checked how far adaptive response surface methods can contribute to 
reduction of the computation time. 
 

5 Summary 
Problems of identification and respectively calibration between measurement and simulation are 
processed in increasing manor using optimization algorithms. Hereby genetic and evolutionary 
strategies distinguish themselves through their robustness for global search of the best possible 
calibration. Gradient based optimization strategies are very useful, when they are started close to the 
optimum and therefore for the fine tuning of pre-optimized parameter sets. Response surface 
strategies further more offer an attractive alternative for small parameter spaces. 
 
Besides the choice of the optimization algorithm the definition of the design space for the calibration 
search is of crucial importance for the identification problem. For this sensitivity studies are 
recommended, in order to identify as sensitive variables as possible and validate if they are accepted 
in the design space for which the calibration is made. Details on the definition of adequate objective 
functions and should the situation arise provides good starting designs for optimization. 
 
For practical applications as robust settings of the optimization strategies and objective functions as 
possible are ought after. The calibration should be automated for repetitive problems and be 
repeatable with default-settings.  
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