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In the current industrial development, an increasing number of sensors
is applied for monitoring of any kind of appliances and machines. A
predictive mathematical model allows for realistic assessment of the
health state of the appliance, indication of service requirements, as well
as control of the appliance, serving as so-called digital twin on a control
device.

Completely analogous modeling can be used for virtual testing, i.e. a
(partial) substitution of physical experiments. The software-in-the-loop
model provides realistic feedback to the physical specimen on the test
rig and helps to increase the representativeness of the experiment and to
reduce costs.

In a joint research project partially sponsored by the German Federal
Ministry of Economics and Energy, the authors developed an approach
for meta-modeling of dynamic systems. While the modeling process is fed
by results from sophisticated simulations, or even test results as input
data, the resulting model can be used for fast stochastic analyses as well
as software-in-the-loop in dynamic real-time experiments. The approach
was verified on tests of an aircraft high lift system.

1 Motivation and Objective

The prediction of test results is especially important
for very expensive tests like in aerospace industrial
applications, e.g. testing of high lift systems. As a
matter of costs and manageability, the test specimen
usually represents only a partial system. A realistic
feedback of reactions from the remaining system by
software driven actuators increases the representative-
ness of test results. Sophisticated procedures for re-
alistic modeling of physical systems, e.g. algorithms
for multi-body dynamics simulation, are available, but
they require significant computation time and lack the
ability of real-time performance. Therefore, there is a
need to reduce computational cost maintaining high
fidelity modeling.

Purely mathematical models can be established
which are fast to compute, yet maintain accurate re-
sults. The authors’ approach, which has been pre-
sented initially in [1], yields meta-models that approx-
imate the dynamic response of the tested object. Mod-

els are built on the basis of physical simulations that
represent the test results accurately, but require a com-
putation time that would be prohibitive as for the ap-
plications indicated above. The results of real experi-
ments can be used as input data as well. The proposed
meta-models, having short response times, enable fast
robustness analysis to assess the influences of uncer-
tain parameters such as damping or friction and can
be used as software-in-the-loop even in real-time dy-
namic experiments [2, 3], where often fast but simpli-
fied physics-based models are applied [4]. The require-
ments for development of the methodology, which will
be presented in the following sections, are summa-
rized as: speed in performance, flexibility to change of
parameters, versatility and accuracy.

The combination of physical testing and virtual
testing serves several purposes: evaluation of the test
rig without risk of damage; substitution of parts of the
tested system —or augmentation of the existing test—;
more realistic and more complex tests and reduction
of costs.
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Other applications of this approach can be thought
of: fast meta-models can be implemented as digital
twin on data acquisition and control devices for on-
line monitoring of a system; in the development of a
product, fast but accurate models are important for
stochastic analyses such as predictive reliability assess-
ment.

2 Methodology

Basis of the methodology proposed here is Dynardo’s
algorithm Metamodel of Optimal Prognosis (MOP). The
procedure fits the best available model to given data
points and avoids so-called over-fitting. It first starts
a filtering of parameters by statistical criteria. Input
parameters with negligible influence on the observed
results are canceled from the data set, thus the dimen-
sion of the problem can be reduced effectively. Several
model approaches, such as polynomials, moving least
squares, kriging, are built up and tested by cross vali-
dation. The resulting Coefficient of Prognosis (CoP) is
the complimentary value to the sum of squared resid-
uals over the variation of result data. The CoP gives
information, what amount of data variation is explain-
able by the meta-model, based on independent test
data. The MOP result is the chosen model out of the
set of available models with the largest CoP. The MOP
is also used for sensitivity analysis [5, 6]. Conditional
variances are computed by holding systematically one
parameter at fixed values, indicating the relative con-
tribution of this parameter to the total variation of the
response.

The MOP deals with scalar response quantities only.
For the intended application, results are time series,
e.g. from a multi-body dynamics simulation. Hence a
representation of the time series by scalar values has
to be found, while avoiding to adopt the total set of
discrete time steps. The approach makes use of a spe-
cific topic in probability theory, namely the random
fields methodology [7, 8]. A random field is a quantity
defined on a spatial domain, where the value at any
point of observation is a random variable. Here, the
domain is time instead of space. The training data for
the model are produced by first sampling input values,
either by design of experiments or quasi-random sam-
pling, then computing the results for each input data
set. The time-dependent results are then interpreted
as random process or 1-D random field.

The key to a parametrization of the random pro-
cess is the eigenvalue decomposition of the covariance
matrix CXX of the discretized time series X,

ΨTCXXΨ = diag{λi} , (1)

wherein Ψ is the matrix of eigenvectors, and diag{λi}
holds the eigenvalues of the covariance matrix. From
this, the so-called spectral representation of the random
field can be derived [9]. Assuming that X are nor-
mal distributed with zero mean values (which can be
subtracted for the analysis and added later again for

synthesis of time series), new random variables Y are
defined as

Y = ΨTX , (2)

which are normal distributed, independent, zero-mean
and with a standard deviation given by

σYi =
√
λi . (3)

For synthesis of the original time series X, one makes
use of the Karhunen–Loève series expansion

X = ΨY . (4)

A typical property of eigenvalue solvers is, that eigen-
values are stored in descending order. Since the eigen-
value of order i defines the amount of variation con-
tributed by parameter Yi to the total variation of the
data, this gives a criterion for truncation of the series
expansion and therefore a drastic reduction of the di-
mension [10, 11].

Summarizing, for generation of a time series X
one needs the modal base Ψ of the covariance ma-
trix, which we may call the set of “shape functions”
in the following, and the respective “amplitudes” Yi .
Figure 1 shall illustrate the series expansion of (4) with
an added mean value signal.

The shape functions are an unchangeable property
of the data. Properties of the parameters Yi have to be
determined such that, the series expansion optimally
represents the physical time series X. For this purpose,
MOP is applied to a training data set, from which
the corresponding sample of amplitudes is calculated.
This leads to the Field-Metamodel of Optimal Prognosis
(F-MOP). Figure 2 shows the flow of analysis. Using
these dynamic meta-models, we obtain a simplified
and reduced parametric of the dynamic signal based
on a statistical meta-model. The user does not need to
find a parametrization himself.

In analogy to the sensitivity analysis of scalar data
[5, 6], the Coefficient of Prognosis of the F-MOP can be
plotted against the time axis, called F-CoP here. More-
over, sensitivity measures over time can be computed,
such that it is possible to assess the model quality and
the relative influence of input parameters on the re-
sponse, locally within the entire observed time range.
The procedure is realized by connecting the function-
alities of the programs offered by Dynardo, optiSLang
and Statistics on Structures (SoS).

3 Application Example: Aircraft
High Lift System

The methodology which is described in the previous
section is validated by the example of an aircraft high
lift system. Instead of real experiments, virtual tests
using a detailed model serve for generating the train-
ing data. The simulation model in MSC Adams/Flex
comprises the inboard flap, outboard flap, transmis-
sion and actuators as well as the test rig. With that,
model wing position, flap positions, loadings as well as
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Figure 1: Illustration of Karhunen–Loève series expansion of a signal.

Figure 2: Overview of the approach of decomposing signals and generating meta-models for dynamic signals.

Figure 3: Adams/Flex model of the high lift system on a test rig.
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actuator action and backlash can be simulated. Since
friction is taken into account in the simulation, the
model is actually non-linear. Figure 3 visualizes the
tested system.

For the virtual test, wing and flap positions and
loadings are given. The test case is a simulated rupture
of two actuators simultaneously, one at the inboard
flap, one outboard. As uncertain parameters, the stiff-
ness of all actuators, backlash of all actuators, damping
and friction parameters are sampled as input to the
meta-modeling procedure. 200 parameter sets are sim-
ulated using MSC Adams/Flex, yielding signals over
time of the dynamic responses. The responses observed
are all actuator moments, drive strut forces and angles
at the station position pickup units (SPPU). For these
responses, dynamic meta-models shall be built.

4 Discussion of Results

Figure 4 –top– shows 4 typical signals picked out of
the whole sample, here of the moment at actuator #2.
Below, the prediction capability expressed as F-CoP
is plotted. It can be observed that, the Coefficient of
Prognosis of the model F-CoP [Total] is able to reach
nearly 100% at the peaks of the signal, while its value
drops where the oscillation passes the stationary value.
At such points, scatter in data is rather numerical noise
than information and cannot be explained by the meta-
model. The relative influences of input parameters can
be observed, too (largest: F-CoP[DV Fric Mue PP dyn]
for Coulomb friction parameter).

Another signal, the angle at SPPU #2, is exam-
ined in the same way, results are displayed in Figure
5. There is a constant shift for each sample. The F-
CoP[Total] values are near 100% throughout the entire
time range. The model quality is considered excellent
by means of the statistical F-CoP criterion.

Finally, the original simulated time series and the
series synthesized with help of the field meta-model
shall be compared. Again, a few time series are arbi-
trarily picked from the whole sample. In Figure 6, the
signals of the moment at actuator #2 are compared,
and Figure 7 shows the comparison for the angles at
the station position pickup unit #2. The left plots
in both figures are the original simulation results ob-
tained by MSC Adams/Flex, which serve as reference.
The right plots are the signals which were synthesized
by the field meta-models using the same input param-
eters as for the original simulations. The coincidence
of original signals and meta-model results is excellent,
particularly in the peaks. When the signals tend to
be damped out, some artificial oscillations in the field
meta-model results can be observed. These will vanish
if the series expansion (refeq:KLseries) is truncated at a
later position, thus more shape functions will be taken
into account.

Figure 4: Top—Sample time series of moments at actu-
ator #2. Bottom—Prediction capability of the model
for the time dependent signal (F-CoP [Total]) and the
impact of each input parameter on the total variation
of the signal.

Figure 5: Top—Sample time series of angles at SPPU
#2. Bottom—Prediction capability of the model for the
time dependent signal (F-CoP [Total]) and the impact
of each input parameter on the total variation of the
signal.
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Figure 6: Sample time series of moments at actuator
#2. Top—original results obtained from Adams/Flex.
Bottom—synthesized signals by F-MOP.

Figure 7: Sample time series of angles at SPPU
#2. Top—original results obtained from Adams/Flex.
Bottom—synthesized signals by F-MOP.

The proposed procedure has been applied also to
other applications, e.g. for the parameter identifica-
tion of non-linear material models in finite element
analysis. The “signal” here is the load–displacement
curve of a test specimen. In previous approaches [12],
the signal was discretized into few equidistant steps,
then meta-models were established by MOP for the
single values on the curve. The squared residuals at

these discrete points were used as criteria in a fast opti-
mization procedure using MOP. For longer signals this
approach is infeasible, moreover, it requires manual
interference to identify characteristic points or rele-
vant ranges. With the proposed approach, this is not
necessary anymore. The field meta-model is valid for
all points according to the raster of the original data,
and one easily sees in which regions the parameters
have what amount of influence.

5 Summary and Outlook

A new procedure is proposed in this article for meta-
modeling of dynamic (time series) signals. It is based
on the decomposition of a sample set of signals into a
series consisting of shape functions scaled by ampli-
tudes for each summand. The algorithm Metamodel
of Optimal Prognosis is then applied to find the best
fitting model for each amplitude. The Coefficient of
Prognosis, which does an assessment of models with
the statistical method of cross validation, is used as the
selection criterion. It is possible to assess the model
prediction capability even locally along the time axis.
Moreover, sensitivity measures reveal the relative in-
fluence of parameters (as input to the dynamic analysis
or experiment), also locally along the time axis.

The procedure has been applied to an aircraft high
lift system. The training data were generated by virtual
experiments, i.e. multi-body dynamics simulations.
The surrogate models proved to be very accurate, by
the CoP criterion as well as by direct comparison of
the reference to the model time series. Unlike the high-
fidelity simulation, the meta-models are very fast to
compute, allowing e.g. for fast stochastic analyses in
the scope of predictive reliability analysis. The models
were also successfully implemented as software-in-the-
loop into an experimental environment for real-time
dynamic tests at the Airbus site.

Further developments are planned which will fo-
cus on more detailed model assessment and model
improvement, locally in the time and parameter space.
The range of application for this procedure is not lim-
ited to the above mentioned. Signals can be any xy-
data, so fast surrogate models can be obtained, e.g.,
also for spectral analyses both in the low and high fre-
quency domains, stress-strain curves of a material law
etc. The field meta-models can also serve as digital
twins which, fed by sensor data, monitor or control
electronic appliances or machines.
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Strukturen unter Berücksichtigung von Systemuntersuchun-
gen mit Hilfe der Methode der Stochastischen Finite Elemente”,
Ph.D. (Dr. tech.) Thesis, Leopold Franzens Universität Inns-
bruck, 1995.

[11] V. Bayer, J. Will, “Random Fields in Robustness and Reliability
Assessment of Structural Parts” in 15. VDI Kongress Berech-
nung und Simulation im Fahrzeugbau SIMVEC (in German
with English abstract), Baden-Baden Germany 2010.

[12] T. Most, “Effiziente Parameteridentifikation fr numerische Sim-
ulationsmodelle”, in NAFEMS Konferenz: Berechnung und
Simulation, Bamberg Germany, 2014 (in German)

www.astesj.com 347

http://www.astesj.com

	Motivation and Objective
	Methodology
	Application Example: Aircraft High Lift System
	Discussion of Results
	Summary and Outlook

