
 

 

 

 

 

Using Statistical Methods for Rock Parameter 

Identification to analyse the THM Behaviour of Callovo-

Oxfordian Claystone 

Introduction 

To study the thermo-hydro-mechanical effects of the thermal transient phase on the clay host rock of a 

deep repository, ANDRA (the French National Radioactive Waste Management Agency) performed 

an in-situ heating test called TED experiment. This experiment was the second one carried out in the 

Meuse/Haute-Marne Underground Research Laboratory focusing on determining the thermo-hydro-

mechanical behavior of the Callovo-Oxfordian claystone. The aim of the TED experiment was to 

measure the temperature, deformation, and pore-pressure field evolution around heaters and to back-

analyze the thermo-hydro-mechanical properties of the Callovo-Oxfordian claystone. The TED 

experiment was also designed to study the evolution of the damaged zone due to heating. The 

analyses of the TED experiment results will help to calibrate the numerical models that will be 

applied to the French disposal cell concept (ANDRA 2005). An automatic parameter identification 

process has been applied, and the results are presented in this paper.  

The heating experiment 

The test set-up consists of 3 heater boreholes and 21 instrumented observation boreholes. Each heater 

is 4 m long and generates a thermal power of 1500 W. The distance between the heaters is 2.6 m in 

order to approximate the geometry of the planned disposal cells. The surrounding boreholes were 

strategically located to take into account the anisotropic THM behavior of the claystone (Figure 1). 

There are 12 boreholes for pore pressure measurements, 9 boreholes for temperature measurements, 

and 2 boreholes for deformation measurements. To optimize and simplify the inverse problem 

analysis, special attention was paid to the reduction of uncertainties regarding the sensors’ locations in 

the boreholes. 

 

Figure 1:  Location of boreholes in the TED experiment. 

The central heater was activated on January 25, 2010, starting with a relatively low heating power of 

150 W. Subsequently, the heating power was increased to 300 W and finally to 600 W. Each step was 

about four months long. After one year, the two surrounding heaters were activated, and the same heat 

load was applied. 

Methodology for rock parameter identification  



 

 

 

 

 

Dynardo developed a 3D THM simulator by coupling ANSYS parametric modeling and implicit FEM 

simulation environment with multiPlas (DYNARDO 2010). To calibrate the numerical model to the 

in-situ experimental results, the software tool optiSLang (DYNARDO 2015) was coupled to the THM 

simulator for CAE-based sensitivity analysis and optimization. The uncertain input parameters for the 

numerical model from the best in-situ and laboratory data available need to be calibrated to the in-situ 

measurements. Here, efficient ways of performing sensitivity analyses to identify the most important 

input parameters and to calibrate the numerical models to experimental data become important. With 

optiSLang, we perform numerical sensitivity studies for nonlinear problems using optimized 

stochastic sampling strategies. In Figure 2 the workflow for parameter calibration is shown. 

 

Figure 2:  Work flow of parameter calibration. 

With Latin Hypercube sampling, the design space will be scanned followed by statistical 

measurements of the importance of individual model parameters using the Coefficient of Prognosis 

(CoP). The CoP measures the amount of response parameter variation which results from the input 

variation of every single uncertain parameter. The basis of this determination measurement is the 

correlation analysis including linear and nonlinear correlation hypotheses. The detection of nonlinear 

correlations that have a large number of uncertain parameters with a minimum number of design 

evaluations is conducted by the Meta-model of Optimal Prognosis (MOP) algorithm (DYNARDO 

2015). 

Numerical model  

In view of calculation time, the geometric model size and mesh discretization of the model have to be 

chosen carefully because dozens of simulations are needed for calibration procedure. At the same 

time, the boundary conditions have to be placed far enough so they have only insignificant influence  

 

Figure 3:  a) Model domain.    b) FE Model 



 

 

 

 

 

on the results. Therefore, different model sizes and discretization levels were tested to find a model 

that shows the best compromise between accuracy of the results and adequate calculation time. The 

total model domain and the mesh are shown in Figure 3a and 3b. In total, 300.000 elements are used. 

The model domain contains the tunnel and the niche at the URL with shotcrete surfaces, the three 

boreholes with the heaters, and two observation boreholes intended for mechanical deformation 

measurements. The latter act as hydraulic sinks in the domain and have therefore been considered in 

the model. 

Simulation of the heater test - Temperature evolution 

The basic THM simulation carefully modeled the experiment including the tunnel excavation, the 

heater boreholes, and all heating phases. The thermal analysis does not depend much on hydraulic or 

mechanical processes but is the driving force for all the hydro-mechanical processes in the 

experimental area. Therefore, the thermal rock material properties were calibrated separately at the 

beginning to ensure a good representation of the temperature evolution in the model. The initial input 

parameters as starting values for the parameter identification were taken from laboratory 

investigations on drill core samples and are given in (Jobmann 2010). In Figure 4 (left), the 

comparison of measured and calculated temperature evolutions for three selected sensors after 

parameter identification is shown. The good fitting is evident.  

Simulation of the heater test - Porewater pressure evolution 

For the sensitivity analysis, 80 designs were generated. The important results of the sensitivity 

analysis are CoP values (Coefficient of Prognosis) which show the significance of input parameters. 

The CoPs at the beginning of heating (time 0) indicate that during tunnel excavation and borehole 

drilling for the measurement points 1251, 1252, 1253 and 1255, which are located in the so-called 

“reference plane” at a depth of 14 m, the most important parameter is permeability parallel to bedding 

plane. For measurement points 1258 and 1259, which are located out of the reference plane, the most 

important parameter is permeability perpendicular to bedding plane. At some points, especially 1251, 

which is very close to the middle heater, the important influence of the strength parameters φg, cg 

(effect of plasticity) can be seen. The CoPs at time 295 and 400 days identify the important input 

parameters regarding the maximum pore pressure during the 3rd heating phase and the end value of the 

3rd heating phase. Here, the factor of the thermal expansion function (pore water expansion) αf,factor, 

the porosity n, and the Biot modulus M are very important as well. 

For solving the calibration problem of minimizing the difference between simulation and 

measurement, two optimization algorithms were used. Starting from the best design of the sensitivity 

analysis, we used optiSLang’s adaptive response surface method. This methodology follows the main 

trends to improve the fitting. In a second step, we used evolutionary algorithms for further local 

refinement of parameter values. Figure 4 (right) compares the results of the best design after 

calibration with the measurements at a selected borehole. The pore pressures fit quite well at this 

location and represent a good fitting quality for horizontal and vertical flow.  

 

Figure 4: Comparison of calculated best design with measured signal: left) temperature evolutions 

for three selected sensors. right) relative pore pressures versus time at TED 1258 



 

 

 

 

 

As result of the parameter identification, the following parameters of the Callovo-Oxfordian claystone 

were identified:  

 density: 2333 kg m-3, specific heat capacity: 695 J kg-1 K-1, 

 horizontal thermal conductivity: 2.02 W m-1 K-1, vertical thermal conductivity 1.37 W m-1 K-1, 

 friction angle (intact): 28.79°, cohesion: 3.79 MPa, friction angle (bedding plane): 23.54°, 

 ratios of residual to initial strength factors (intact): friction angle 0.84, cohesion 0.444, 

 porosity: 0.16, biot modulus: 3.9 GPa, biot coefficient: 0.65, 

constants of permeability functions for an exponential relation between intrinsic permeability 

and stress state (parallel to bedding plane kσ,x = kσ,y and perpendicular to bedding plane kσ,z): 
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 where σ0 = 1 MPa, k0,p = 5.87E-19 m², np = 1.07871, k0,n = 1.5E-20, nn = 0.15363 

Evaluation and conclusions 

Using ANSYS and multiPlas, a 3-dimensional parametric THM simulator was set up that could be 

calibrated to in-situ measurement results of a heater experiment. A high numerical efficiency of the 

simulator was achieved. The simulator needed 32 hours to calculate one design of the calibration 

process running in-situ stress generation and three heating periods with an up-to-date dual core 

workstation in 2011.  

OptiSLang’s functionality for sensitivity analysis and calibration dealing with a large amount of 

uncertainties was linked to the simulator and, with a correlation analysis the main rock parameters 

were identified, making visible the mechanism of how the rock parameter variation effects important 

THM simulation results. This knowledge is essential for defining appropriate boundary conditions for 

the calibration, appropriate parameter space, constraints, and an objective function. Depending on the 

number of important parameters that can be calibrated and on the non-linearity of the calibration 

results, we chose between gradient-based, adaptive response surface-based, or natural inspired 

optimization algorithms as well as a mix of them. 

Based on well determined laboratory data of the thermal rock properties, which were used as input 

data and for determining the uncertainty range, a good fit between measurement results and the 

simulation of the temperature evolution around the heaters could be achieved and, thus, the 

identification of the thermal in-situ rock properties was successful. Taking the correct simulated 

temperature evolution as a sound basis for calculating the porewater pressure evolution, a good fit 

between measurement and simulation results during the heating phases could be achieved as well. The 

newly implemented constitutive laws that describe the permeability as functions of anisotropic stress 

and plastic strain have proven their suitability. In general, a material model is available that allows the 

description of the THM rock behaviour in response to heating for temperatures ≤ 100°C.  
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