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In this study the common least-squares minimization approach is compared to the Bayesian updating procedure.
In the content of material parameter identification the posterior parameter density function is obtained from its
prior and the likelihood function of the measurements. By using Markov Chain Monte Carlo methods, such
as the Metropolis-Hastings algorithm (Hastings 1970), the global density function including local peaks can be
computed. Thus this procedure enables an accurate evaluation of the global parameter quality. However, the
computational effort is remarkable larger compared to the minimization approach. Thus several methodologies
for an efficient approximation of the likelihood function are discussed in the present study.

1 INTRODUCTION
In all fields of computational mechanics numerical models are used to analyze engineering problems. In material
modeling many types of constitutive formulations exist for a wide range of materials. Generally the parameters
of these models are identified from experimental data. Beside manual identification by try and error or based on
experiences fully automatic identification procedures using optimization strategies have become popular in the
last years. Nevertheless, not only the parameter values itself are of interest for a later numerical analysis, but
also their accuracy which is mainly influenced by the measurement errors and the type of experiments. For very
complex constitutive models it is very difficult to judge in advance which experiments are required to enable a
sufficient identifiability of all parameters. Therefor an estimation of the parameter uncertainties is very useful.
Based on the determined optimal parameter set as the result of a least squares minimization, where the gap
between experimental and numerical response data is minimized, the parameter covariances can be estimated
based on the measurement errors and a linearization of the model (Ledesma et al. 1996). This approach was
derived for a convex optimization problem. Applications for non-convex problems using complex material
models in geomechanical applications can be found in (Hofmann et al. 2009), (Knabe et al. 2009).

Alternatively to the ordinary least squares formulation Kalman filter identification has been introduced (Ci-
vidini et al. 1983), (Bittani et al. 1984). This technique is a Bayesian estimator using prior information to identify
the parameters. Similar to the covariance analysis in least squares minimization the model itself is linearized
and the parameter distributions are taken as Gaussian which implies a convex optimization problem.

Another method uses Bayesian inference to estimate the parameters including their statistical properties
(Beck and Arnold 1977). This approach can be applied for non-convex problems and arbitrary parameter and
measurement error distributions and works without any linearization of the numerical model.

Recently inverse approximation schemes using neural networks have been proposed to identify the consti-
tutive parameters (Novák and Lehký 2006),(Most et al. 2007). In (Unger and Könke 2010) this approach has
been extended using Bayesian neural networks in order to estimate the parameter accuracy. In opposite to the
other procedures there measurement errors are neglected and the parameter uncertainty arises only from the
identification procedure. This results in a vanishing uncertainty if the number of training samples is increased
dramatically. Therefor this procedure is not discussed further in this study.
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2 LEAST SQUARES MINIMIZATION
2.1 Maximum Likelihood formulation
A deterministic models which relates a set of responses x = x(p) with the model parameters p is assumed to
be given. In the parameter identification procedure the measurements x∗ = [x∗1 . . . x

∗
m]T are obtained by experi-

ments.
The likelihood of the parameters is proportional to the conditional probability of measurements x∗ from a

given parameter set p (Ledesma et al. 1996):

L = k · f(x∗|p). (1)

If the chosen model is correct the gap between numerical responses and measurements (x∗ − x) is caused only
by the measurement errors. Thus P (x∗|p) is equivalent to the probability of reproducing the measurement errors.
Assuming a multivariate normal distribution we obtain

P (x∗ − x) =
1√

(2π)m|Cxx|
exp

[
−1

2
(x∗ − x)TC−1

xx (x∗ − x)

]
. (2)

Maximizing the likelihood L is equivalent to minimize S =−2 lnL. This yields to the well known least squares
objective function:

J = (x∗ − x)T C−1
xx (x∗ − x) , (3)

where Cxx is the covariance matrix of the measurements. In (Ledesma et al. 1996) it is shown, that the optimal
weights used in the objective function are

W = C−1
xx . (4)

If the objective function is linearized, the following update scheme is obtained

∆p =
(
ATC−1

xx A
)−1 ATC−1

xx ∆x, (5)

where A is the sensitivity matrix of the parameters with respect to the model responses

A =
∂x
∂p
. (6)

The update scheme can be used to obtain the optimal parameter set with the minimum objective function value.
This approach is a gradient based method which leads to the global minimum without fail only for a convex
optimization problem. If this method is applied for a non-convex problem, it may stuck in a local minimum.
This is the case for more complex constitutive models. For this reason often global optimization schemes are
used to identify the optimal parameter set. One of these methods is presented in the next section.

If the optimal parameter set is finally identified, the covariances of the parameters Cpp can be estimated by
using the linearized relation from Eq.(5) which leads to the so-called Markov estimator

Cpp =
(
AT
optC

−1
xx Aopt

)−1
. (7)

In (Hofmann et al. 2009) and (Knabe et al. 2009) this estimator is applied also for non-convex optimization
problem, which means that around the global optimum a local convex problem is assumed and the model is
linearized at this optimum. Both, parameter and measurement distributions are assumed to be Gaussian within
this approach.

2.2 Particle swarm optimization
In our study a population based global optimization algorithm, the particle swarm optimization (PSO), is applied
which enables detecting the global optimum even if several local minima exist. Each population consists of a
given number of particles where each particle position is equivalent to a set of parameters pki and is updated in
each iteration step k by the simple scheme (Kennedy and Eberhart 1995)

pk+1
i = pki + vk+1

i

vk+1
i = ωvki + c1r1(Pki − pki ) + c2r2(Pkg − pki )

(8)
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where c1 and c2 are constants and r1 and r2 are vectors of uniformly distributed random variables between zero
and one. Pki is the best position of a single particle and Pkg is the global best position. We extend the original
concept with passive congregation (He et al. 2004)

vk+1
i = ωvki + c1r1(Pki − pki ) + c2r2(Pkg − pki ) + c3r3(Rk

i − pki ) (9)

where an additional term is added to the original scheme to decrease the risk of running into a local minimum.
This term Rk

i is defined as the best position of a randomly chosen particle. The required constants c1, c2 and c3
are given in (He et al. 2004). If new particle positions are outside the parameter boundaries they are corrected
by a harmony search scheme according to (Li et al. 2007).

3 BAYESIAN ESTIMATORS
3.1 Kalman filter
Kalman filter technology was firstly applied for parameter identification in (Cividini et al. 1983), (Bittani et al.
1984). More recent applications can be found in (Bolzon et al. 2002), (Fedele et al. 2006), (Furukawa and
Pan 2009). In this approach the measurement noise is assumed to be a time-dependent white Gaussian random
process characterized by zero mean, zero cross-correlation, and a time-dependent covariance matrix

E(ε(t)) = 0,

E(ε(t)ε(s)T

) = 0, s 6= t

E(ε(t)ε(t)T

) = C(t)
xx .

(10)

Using a linearization of the model the following update scheme can be derived

p̂(t) = p̂(t−1) + K(t)(x∗ − x(p̂(t−1)))

Ĉ(t)
pp = Ĉ(t−1)

pp −K(t)A(t)Ĉ(t−1)
pp

(11)

where K is the Kalman gain matrix

K(t) = Ĉ(t−1)
pp A(t)T

[
A(t)Ĉ(t−1)

pp A(t)T

+ C(t)
xx

]−1

(12)

and A is again the sensitivity matrix. As initial setting generally the prior information is taken

p̂(0) = p0, Ĉ(0)
pp = Cpp0

. (13)

Due to the linearization of the model and the assumed Gaussian measurement noise, the parameter distributions
are implicitly assumed to be Gaussian. In a static approach the time-step t is equivalent to the iteration step and
the measurement covariance matrix remains constant.

(Cividini et al. 1983) has shown, that for vanishing prior information, where (Cpp0
)−1 tends to zero, the

estimated parameter covariance is equivalent to the Markov estimator.

3.2 Bayesian updating
Bayesian updating is based on the well-known Bayes’ theorem which shows the relation between one condi-
tional probability and its inverse

P (A|B) =
P (B|A)P (A)

P (B)
. (14)

Assuming a prior multivariate distribution of the parameters πprior(p) and a likelihood-function π(x∗|p) for the
distribution of the measurements the conditional probability of the parameters can be obtained as (Beck and
Arnold 1977)

πposterior(p) = π(p|x∗) =
πprior(p) · π(x∗|p)

π(x∗)
. (15)

Since the normalization constant π(x∗) is difficult to determine due to the only implicitly given distribution
function, realizations of πposterior(p) are obtained by Markov-Chain Monte Carlo Simulation (Hastings 1970).
For jointly Gaussian measurement errors the likelihood function is equivalent to Eq.(2).
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3.3 Metropolis-Hastings algorithm
The Metropolis-Hastings algorithm (Hastings 1970) enables the sampling of an implicitly given not necessarily
scaled density function. Therefor it is very important in interferential problems. This method is a Monte Carlo
Simulation using a first order Markov chain, where the next sample depends only on the current state.

The algorithm generates a sequence of samples {p(1),p(2), . . . ,p(n)}which statistically converge to the given
distribution, which is in our case the Bayesian posterior multivariate parameter distribution. The algorithm
works as follows:

1. Sample candidate p∗ from jumping distribution q(p∗,p(t−1))

2. Calculate

α = min

[
1,

π(p∗|x∗)
π(p(t−1)|x∗)

q(p(t−1),p∗)
q(p∗,p(t−1))

]
(16)

3. Sample uniformly distributed U ∈ (0.0; 1.0)

4. If U ≤ α accept p(t) = p∗, otherwise p(t) = p(t−1)

5. Return to step 1

The jumping distribution is taken generally to be a Gaussian or uniform distribution. If it is symmetric
q(p(t−1),p∗)/q(p∗,p(t−1)) is equal to one. The initial parameter set is chosen randomly in the given parameter
ranges. In this study the prior parameter distribution is taken as a uniform distribution in these parameter ranges.
Thus the Metropolis-Hastings algorithm will only accept samples inside this boundaries. At the beginning the
generated sequence is biased depending on the starting point and the jumping distribution. But after a certain
burn-in phase it turns into an ergodic process. Thus the statistical evaluation of the parameter distributions is
done be neglecting a given number of the first samples.

The variances of the jumping distribution strongly influences acceptance rate (AR) and convergence speed.
If the distribution variances are taken too small, the convergence is very low and almost all samples will be
accepted. An optimal statistical evaluation is enabled if the acceptance rate is between 10 and 30 % as shown in
(Unger 2009).

For non-convex problems the variances of the jumping distribution have to be chosen in that way, that the
peaks of the likelihood function are sufficiently covered. This is shown in Figure 1 and Table 1 depending on
the measurement errors. If the measurement errors are small and the variances of the jumping distribution are
to small, only one local optimum is covered by the sampling procedure. But if the variances are chosen large
enough the acceptance rate is very small and a large number of samples is necessary to obtain statistically
accurate results.

Bayes’ updating
σε σq AR No. samples σ̃X1 σ̃X2

0.05 1.0 0.02 100000 0.81 0.80
0.10 1.5 0.05 44000 0.77 0.76
0.20 1.5 0.15 13000 0.79 0.81
0.05 0.5 0.04 44000 0.13 0.12
0.10 0.5 0.20 10000 0.78 0.78
0.20 0.5 0.50 4000 0.79 0.79

Table 1: Estimated parameter variation for a non-convex problem with different measurement errors and vari-
ances of the jumping distribution

3.4 Scaling of measurement errors
In the previous section it was mentioned, that for small measurement errors a large number of samples may be
required if the optimization problem is non-convex. For this reason two possibilities to reduce this numerical
effort are discussed.

The first idea is to scale the covariances of the measurement errors by a constant factor a

Cscaled
xx = a ·Corig

xx . (17)
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Figure 1: Samples from Metropolis-Hastings algorithm for a non-convex problem with different measurement
errors

Based on the scaled likelihood function a sequence of samples is computed with the Metropolis-Hastings algo-
rithm. The estimates of the parameter mean values and covariances of the original distribution can be computed
as follows

p̄k =
1

n

n∑
i=1

p
(i)
k

forig(p(i))

fscaled(p(i))

Ckl =
1

n− 1

n∑
i=1

(p
(i)
k − p̄k)(p

(i)
l − p̄l)

forig(p(i))

fscaled(p(i))

(18)

where the joint densities functions forig and fscaled have to be known. Both are equivalent to the corresponding
likelihood function scaled by the normalization constant. Since this normalization constant is not known it has to
be estimated from the samples. In our opinion this is only possible by assuming a certain distribution type. This
would suspend the advances of the Bayesian updating approach and would limit the method again to convex
optimization problems. Therefor this scaling procedure is not investigated further in this study.

3.5 Approximation of the likelihood function
Another approach to reduce the numerical effort is to approximate the likelihood function by a suitable meta-
model and using this approximation function instead of real model solutions. In (Orlande et al. 2008) this was
shown by using radial basis function approximation. Dependent on the variance of the measurement noise the
likelihood function contains sharp peaks around the local optima as shown in Figure 2. This requires an in-
creased number of support points in the meta-model approach. For this reason in this study only the exponential
term is approximated, which is equivalent to the objective function in Eq.(3). Then the measurement noise
variance is only a scaling factor with no influence on the approximation quality. As meta-model approach inter-
polating Moving Least Squares (Most and Bucher 2008) is applied, since it can handle clustered support points
and high gradients in the approximation function.

In Figure 3 and Table 2 the results with original and approximated likelihood function are compared for
the non-convex problem. The results indicate a very good agreement in the parameter estimates. The numerical
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Figure 2: Likelihood function with sharp peaks and corresponding exponential term for small measurement
errors
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Figure 3: Computed parameter samples by using the original and approximated likelihood function

effort is reduced dramatically, since only 100 evaluations of the real model are required instead of 44000 by
using the original likelihood function.

MLS approximation σε = 0.10, σq = 1.5
µ̃X1 µ̃X2 σ̃X1 σ̃X2

Original likelihood 7.22 3.83 0.77 0.76
MLS 100 supports 7.23 3.98 0.71 0.70
MLS 200 supports 6.91 4.08 0.78 0.73
MLS 500 supports 7.05 3.95 0.73 0.73

Table 2: Estimated parameters by using the original and approximated likelihood function

4 NUMERICAL EXAMPLES
4.1 1D elasto-plastic model without hardening
In this analytical example an one-dimensional elasto-plastic model with two parameters, the Young’s modulus
E and the yield stress σY is investigated. As reference values Eref = 2.1 · 1011N/m2 and σY,ref = 5.0 · 108N/m2

are chosen. By applying constant Gaussian measurement noise σε for all observations 1000 samples are gener-
ated and for each sample the optimal parameter set is obtained by a gradient-based optimization method. The
resulting variations of the identified parameters are shown in Table 3.

Additionally the Markov estimator is used at the parameter reference values and the Kalman filter approach
is applied by using a large prior covariance C0

pp = diag[100,100] · 108N/m2 in order to reduce the effect of the
prior information. The results of both methods coincide excellent with the sample values due to the convexity
of the problem. In Figure 5 the resulting parameter samples are shown.

Finally the Bayesian updating procedure is used whereby the prior distributions are chosen to be uniform
between the optimization bounds E ∈ (1.0; 3.0), σY ∈ (2.0; 10.0). The resulting estimates are given in Table 3.
In Figure 5 the samples from the Metropolis-Hastings algorithm are shown, where the burn-in phase can be seen.
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σε[108N/m2]
0.05 0.10 0.20

Sample variation σE [1011N/m2] 0.025 0.052 0.157
σσY [108N/m2] 0.019 0.036 0.117

Markov estimator σ̃E [1011N/m2] 0.025 0.050 0.151
σ̃σY [108N/m2] 0.019 0.038 0.113

Kalman filter σ̃E [1011N/m2] 0.025 0.050 0.151
σ̃σY [108N/m2] 0.019 0.038 0.113

Bayes’ updating σ̃E [1011N/m2] 0.025 0.050 0.145
σ̃σY [108N/m2] 0.019 0.038 0.115

Table 3: Estimated parameter variations for the 1D elasto-plastic model

The first 1000 samples are not considered in the statistical evaluation in order to get unbiased estimates. The
results agree very well with the other approaches. Only for a larger measurement noise minor deviation can been
observed which might be caused by the linearization in the Markov estimator and Kalman filter approaches.

4.2 Bilinear interface model for concrete cracking
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0

100200100

17
5

[mm]

∆uN1 ∆uNc
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Figure 6: Wedge splitting test with system geometry and bilinear interface model

In this example the parameters of a cohesive crack model are identified. The investigations are based on the
experimental program of (Trunk 1999). In Figure 6 the concrete specimen is shown with the corresponding di-
mensions. The numerical analysis is carried out using a finite element model with a predefined crack discretized
by finite interface elements. Further details about the numerical suimulation can be found in (Most 2005). For
the interface elements a bilinear softening law is used shown in principle in Figure 6. The remaining base ma-
terial is assumed to be linear elastic. The following parameters have been indentified within the experimental
program

• Young’s modulus E = 2.83 · 1010 N/m2

• Tensile strength ft = 2.27 · 106 N/m2

• Specific fracture energy Gf = 285 Nm/m2

• Softening shape parameters ασ = σ1/ft = 0.163, αu = ∆uN1/∆uNc = 0.242

The corresponding measurements and the numerical load displacement curve is shown in Figure 7
In a first step the measurements are taken as deterministic and 100 optimization runs with random start

points using a gradient based and the particle swarm approach are carried out. The results are given in Table
4. Due to the existence of several local minima the gradient based methods does not converge to the global
optimum in almost the half of the runs, whereby the PSO method is successfull in almost all cases . In Table 4
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Figure 7: Load displacement curves for the wedge splitting test using the identified parameters

Global Total
Best Mean Std. Mean Std.

Gradient (success rate 51%) E [1010 N/m2] 3.85 3.89 0.11 3.72 0.39
ft [106 N/m2] 2.04 2.03 0.02 2.18 0.38
Gf [102 Nm/m2] 2.84 2.84 0.01 2.81 0.07
ασ [10−1] 1.57 1.58 0.05 1.86 0.51
αu [10−1] 2.54 2.55 0.07 2.46 0.41

PSO (success rate 89%) E [1010 N/m2] 3.85 3.82 0.05 3.74 0.28
ft [106 N/m2] 2.04 2.05 0.01 2.13 0.31
Gf [102 Nm/m2] 2.84 2.84 0.00 2.82 0.05
ασ [10−1] 1.57 1.57 0.02 1.70 0.42
αu [10−1] 2.54 2.53 0.03 2.44 0.32

Table 4: Optimization results for the wedge splitting test

the statistics of the runs ending close to the global optimum and of all runs are compared. The results indicate a
very good accuracy of the PSO method which is even better than the gradient based approach.

In the next step the parameter uncertainties are estimated with the different approaches by assuming a
constant measurement noise of σε = 0.5 · 106N/m2. In Table 5 and Figure 8 the results of these analyses are
shown. They indicate are very good agreement of the Bayes’ estimates with the variation from the sample
analysis. The Markov estimator gives a good approximation of the variation, but some parameter dependencies
are estimated not correct.

Samples Markov Bayes
Mean Std. Mean Std. Mean Std.

E 3.78 0.30 3.85 0.24 3.79 0.24
ft 2.07 0.07 2.04 0.06 2.07 0.05
Gf 2.84 0.08 2.84 0.07 2.83 0.08
ασ 1.62 0.32 1.57 0.18 1.62 0.26
αu 2.51 0.26 2.54 0.17 2.52 0.24

CorrSamplespp =


1.00 -0.65 0.29 -0.26 0.16

1.00 -0.13 0.40 -0.34
1.00 -0.31 -0.65

1.00 0.41
1.00



CorrMarkov
pp =


1.00 -0.59 0.29 -0.83 -0.40

1.00 -0.05 0.57 -0.09
1.00 0.02 -0.79

1.00 0.00
1.00

 CorrBayespp =


1.00 -0.56 0.17 -0.09 0.12

1.00 -0.02 0.21 -0.24
1.00 -0.21 -0.69

1.00 0.49
1.00


Table 5: Parameter estimates and correlations for the wedge splitting test

5 CONCLUSIONS
The approximation of parameter uncertainties and dependencies by Bayes’ updating is more accurate then
using the Markov estimator. However, the Markov estimator is suitable as a rough estimate even for non-convex
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Figure 8: Estimated parameter distributions for the wedge splitting test

problems. A remarkable reduction of the numerical effort is possible by using meta-model approach to represent
the likelihood function.
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