
 

presented at the NAFEMS World Congress 2013  

Source: www.dynardo.de/en/library 

Lectures 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Calibration of Field Data and 

Simulation as an Optimization 

Task with Signals 

T. Most, R. Niemeier, R. Schlegel, J. Will 



CALIBRATION OF FIELD DATA AND 

SIMULATION AS AN OPTIMIZATION TASK WITH 

SIGNALS  

Dr.-Ing. Thomas Most, Dr. Roland Niemeier, Dr.-Ing. Roger Schlegel, Dr.-Ing. 

Johannes Will  (Dynardo GmbH, Germany) 

Dynamics and Testing: Combining Physical & Virtual Testing  

SUMMARY  

Signals are characteristic system responses that are a critical help to 

understand, validate and improve the physical model of the system as well as 

the system design itself, by understanding the important parameters. 

Calibration, in the sense of using field observations and simulation runs to 

estimate simulation model parameters or to update the uncertainty regarding 

these parameters, can be formulated as an optimization task where the output 

parameters are signals and the target function is for example the sum of the 

square deviations of the signal from the testing and the signal from the 

simulation. 

The optimization task of identifying the right input parameters can then be 

formulated for example to minimize the value of the target function by 

selecting the appropriate values for the input parameters. A simple example 

however shows that this can lead to a non-unique solution for the input 

parameters. Therefore additional boundary conditions for the calibration can be 

very useful. 

Knowing from the calibration the significance and sensitivity of input 

parameters, further optimization can be used to improve the system or product 

design. With the information from the calibration the design space can be 

adapted and appropriate surrogate models can be used, that also respect 

nonlinear system behaviour.  

In the case of strong scattering of the test and/or simulation results the 

identification task must be enhanced by stochastic analysis as the fit of single 

signals by design variables are no longer sufficient. Then a parameter space has 

to be used, where the input variables have also stochastic elements, like a 

stochastic distribution. 

The technique of identifying the input parameters within an optimization task 

for the calibration of field data including measured signals and signals 

generated from the simulation can be used across all industries where virtual 

prototyping is important.  
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In this paper we first introduce and discuss some methods and measures used 

for sensitivity analysis and optimizations, than the parameter identification as a 

special optimization task is shown by using two theoretical examples followed 

by two industrial applications.   

KEYWORDS 

Dynamics and Testing: Combining Physical & Virtual Testing; Calibration, 

Parameter Identification, NVH, nuclear waste depository 

 

1. Model Validation and Calibration with the Parameter Identification as 

an Optimization Task 

Optimization using numerical simulations can in general be classified into two 

different categories: the first category is associated with the target to improve 

the functionalities of the product and the second category is to test and improve 

the model to fit in a better way the reality. 

While the optimization is already in wide spread usage for the improvement of 

product functionalities the potential for the usage of similar optimization 

techniques to improve the quality of the model, typically with parameterization 

and calibration, is often not realized. Therefore the main aim of this paper is to 

clarify that potential.  

The workflows that are used for the calibration of a model are similar to those 

used for the improvement of functionalities of the product. 

In both cases it is recommended to start with a sensitivity analysis, especially if 

handling with a larger number of parameters. A sensitivity analysis is used to 

study which input parameters have significant importance for which output 

parameters. These studies are also used to establish a meta model, that 

approximates the output parameters as functions of the input parameters. This 

step can help to reduce the design space to the important parameters. For the 

criteria of importance of parameters and quality of the meta model different 

statistical measures have been established (Most and Will, 2011). It is 

important that these meta models also include nonlinear dependencies of the 

parameters and that the prognosis quality is quantified. For the quantification 

of the quality of prognosis of such a model in (Most and Will, 2008) the 

coefficient of prognosis, CoP, is introduced. With these CoPs a nonlinear meta 

model can be selected, that provides the best model with respect to the ability 

for the best prognosis, not only the best fit for the data. Trying to provide only 

a model that best fit the data easily can lead to an overfitting, however unable 

to explain further data. This model based on the best CoPs is the meta model of 

best prognosis, MOP. 
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Figure 1: A typical workflow for an optimization, starting with a sensitivity 

analysis for selecting the important parameters, followed by the optimization. 

 

 

 

 

 

 

 

 

 

 

 

A typical workflow for the optimization of product functionalities is shown in 

Figure 1: After the definition of the Design Space X (the parameterization), 

during the design of experiment (DOE), designs with different input 

parameters Xi are created. These different designs are solved, generating the 

values for the output parameter Yi. These data samples can be used to establish 

the MOP, that can significantly reduce the design space to the important 

variables Xred, including nonlinear dependencies. Also from the sensitivity 

analysis a good initial parameter set X0 for the optimization is selected. For the 

optimization it is necessary to define at least one optimization function f(Xi). 

Several optimization methods are available like gradient based, adaptive 

response surface, or evolutionary and genetic methods (Will, 2006). Finally an 

optimized set of input parameters Xopt is found.      

The workflow for the calibration can be just similar, using as an optimization 

function a difference to the measurements, i.e. the sum of squared deviations of 

measured  and calculated data for the corresponding time steps, and the 

identified parameter set is than the optimized set of input parameters Xopt.  
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2. Two theoretical examples 

That the potential of using optimization for the parameter identification is 

currently not realized is also associated with the fact, that there are not many 

optimization tools available that can handle different field measurements, i.e. 

time series for a pressure, or in general have the ability to include signals from 

the real test environment in an easy way for the target function of the 

optimization.     

During the development of such a model for the simulation the 

parameterization is the key to ensure a realistic behavior of the model. 

Our first example is a simple damped harmonic oscillator. This example is 

used to understand how signals can be handled and also that that different 

optimization runs can lead to quite different values for the parameter, due to 

the fact that the solution can be realized with different values of the input 

parameters. 

The basic input parameters for the calibration of the damped oscillator are the 

mass m, the initial kinetic energy Ekin, the damping c and the stiffness k. 

Figure 2: The damped harmonic oscillator. 

 

 

The reference signal is from the displacement x over time for some parameters, 

that are the unknown parameters in this example (red curve): 
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Figure 3:  The reference signal and the signal calculated from the initial values. 

 

The equations for the damped oscillator are:  

 

and they have the analytic solution for the displacement 

 

With the undamped eigen-frequency ω0: 

 

Lehr’s damping ratio D: 

 

and the damped eigen-frequency ω: 
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The target for the optimization is to identify input parameters, that generate a 

signal very close to the reference signal, therefore the objective function is the 

sum of squared differences between the displacement of the reference x* and 

the displacement of the calculated solution x at n discrete time steps  (signals 

are in general discretized due to the measurement) 

 (          )   ∑(  
    )

 

 

   

 

The sensitivity study for this case shows that all input variables are significant. 

Showing the solutions for all the initial parameters of the sensitivity study, that 

are all the signals from the designs of the design of experiment, like in the 

figure below, often already provides for real world applications insights into 

interesting frequency ranges as well as some information about the feasibility 

of the parameter identification itself. 

 Figure 4:  The reference signal together with all signals from the sensitivity analysis. 

 

  

Running different optimizations lead to different set of initial parameters like 

show in figure 5. 

Figure 5:  Two different optimizations lead to rather different identified parameter 

values. 
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Where both optimization runs lead despite the different values for the 

parameters to good results with small differences to the reference signal. 

Figure 6:  The identified parameter values from both optimizations lead to a good 

approximation of the reference signal. 

 

This non-unique solution for the identified parameters is due to the fact that the 

parameters Ekin and m as well as m and k appear only pairwise in the solution 

for the displacement and it is only their ratio that matters for the solution. 

Therefore a unique solution can be generated by having for example a constant 

mass value for the optimization. 

This example is shown in more details also for training purposes with signals 

in an optiSLang tutorial, available from Dynardo and currently included in the 

software delivery of optiSLang. 

The second example is a simplified CFD test model, where a reference vector 

of the 12 outflow velocities exists and the task of the optimization is to find the 

set of 10 input parameters for the pressures (Press_1 … Press_10), that come 

close to the outflow velocities. 
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Figure 7:  A CFD example of a box with two obstacles. 

 

 

 

The optimization function to minimize, similar to the signal function for the 

damped harmonic oscillator case, is the squared deviation of the reference 

velocities           and the velocities            from the calculated 

solution: 

∑(                   )
 

  

   

 

Also in this case it is important to have additional constraints, we choose that 

each output parameter is close enough within 10% to the corresponding 

reference output parameter: 

   ((                   )         )     

This problem was solved with optiSLang inside of ANSYS Workbench, the 

complete workflow is shown in figure 8: 
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Figure 8:  The ANSYS Workbench set up with optiSLang inside ANSYS Workbench for 

the CFD example of a box with two obstacles. 

 

and the solution was found with an Adaptive Response Surface Method (in 

general this method is recommended for a small number of continuous input 

paramaters). 

Figure 9:  Reference Solution (top left), Initial Solution (top right) and Optimized 

Solution (bottom right) showing the velocity vectors colored by velocity magnitude. 
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3. Practical Applications 

The field of practical applications for model calibration by parameter 

identification cover a broad range. Some publications are available from the 

online library of Dynardo, showing applications from different industrial areas 

like civil engineering (Zabel and Brehm, 2008), automotive (Will, 2006) and 

oil & gas (Will, 2010). In this paper we focus only on two applications with 

signals, some progresses we made for a NVH automotive application and a 

new model calibration for a nuclear waste depository analysis.  

Calibration and Optimization of Driving Comfort Behaviour 

In product development of luxury cars Noise Vibration Harshness (NVH) plays 

a very important role. Driver, co-pilot and passenger on the back seats should 

feel very comfortable during any driving conditions. Therefore the calibration 

of virtual models to available test data and the reduction of noise levels inside 

the car cabin is an important task of the virtual prototyping.  

For the formulation of a successful calibration design space as well as a 

successful objective function two challenges needs to be met. First a very large 

number of variables may have an influence on the passenger car air vibration 

and second the frequency signals show a very large number of vibration 

modes.  

As a result the selection of the main influencing parameters and the signal 

processing to extract response values which belong to one vibration mode are a 

very important part of the calibration process. In the example we start with a 

variation space of 485 sheet metal thicknesses of all body parts which might 

have an influence. Fig. 10 shows the variation of one of the sound pressure 

signals of 200 Latin Hypercube samples of the sensitivity analysis.  

Figure 10:  Variation of sound level, green – reference, black – 200 samples of the 

sensitivity analysis 
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Having the signal variation window we define the frequency window to extract 

the peak sound values which correspond to the vibration mode of interest. Note 

that because of stiffness variation the frequency and the sound value are 

varying at the same time and we need to adjust the extraction windows to avoid 

mode switch of important vibration modes within one extraction window. 

Unfortunately the CoPs for the variation of the peak sound level are below 

30%, which indicate that only the important variables for less than 30% of the 

total variation were identified. It is our experience for this kind of identification 

task, that increasing of sampling to 300 or 400 designs or alternative extraction 

windows does not increase the CoP levels significantly. Main reason for the 

small CoP levels is that the pressure sound levels are influenced by 

mechanisms of 10..20 variables. To identify these mechanisms out of 500 

variables a very large number of sample points will be necessary.  

Figure 11:  CoP value of the peak sound level in the frequency window 110 to 140 Hz, 

sensitivity study using 485 variables 

 

Therefore we use the CoP values from the first sensitivity analysis to reduce 

the design space manually. We selected 37 variables which showed significant 

CoP for any of the response values of interest and repeated the sensitivity study 

in the reduced design space. The variation interval of the peak value in the 

frequency window 110 to 140 Hz at the second sensitivity study using 37 

variables is 80% compared to the first sensitivity study using 485 variables. 

That approved our CoP based selection of important parameters. In the reduced 

space higher CoP value of the full model are close to 40%  and higher CoP 

values of single variables are identified. 
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Figure 12:  CoP value of the peak sound level in the frequency window 110 to 140 Hz, 

sensitivity study using 37 variables 

 

 

In the reduced design space of 37 important variables also for the other 

important frequencies and positions the main contributors could be identified 

and the calibration to the reference signal was performed successfully.  

Of course, after having a model which shows sufficient forecast quality to 

measurements, the next step in the virtual prototyping will be the optimization, 

here the minimization of peak sound pressure levels as shown in Figure 13.  

Figure 13:  overview of the process for an optimization using the same sensitivity study 

but selecting only the 8 most important variables for the optimization. 
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Calibration of a Nuclear Waste Depository Model 

In the research for the safeness of nuclear waste depositories heating 

experiments are performed in underground laboratories in order to understand 

the thermal-hydraulic-mechanical (T-H-M) interactions. 

In these experiments the change due to the heat energy input over time of 

temperature, pore water pressure and stress fields are measured.  

The DBE TECHNOLOGIE GmbH develops in cooperation with the Dynardo 

GmbH simulation models that are able to comprehend these interactions in 

claystone. 

An important component of these developments is the calibration of the models 

with respect to the results of the measurements.  

The heating experiment has been simulated with a T-H-M coupled 3-

dimensional finite element analysis with ANSYS and multiPlas. 

Therefore special routines from the poro-elasticity theory, thermal-hydraulic 

coupling and thermal-mechanical coupling in isotropic and anisotropic 

claystone formations were developed and implemented in ANSYS.  

For the sensitivity analysis and for the parameter identification optiSLang
  
was 

used.  Due to the complexity of the T-H-M phenomena about 30 model 

parameters are used.   

In this case it was essential for the successful calibration of measurement and 

simulation to use the powerful algorithms and filter strategies for large 

parameter spaces of optiSLang
  
and the achieved short calculation times due to 

efficient numerical algorithms of ANSYS with multiPlas. 

In the sensitivity analysis the material parameters (including parameters for the 

coupling) have been varied within physical possible boundaries.  

From the experiment temperature and pore water pressure data are available for 

17 measurement points during the heating as well as before the heating. 

Due to uncertainties in the process before the heating, the calibration and 

parameter identification was restricted to the heating process itself. 

For the evaluation of the sensitivities the relative pore water pressures discrete 

time values are used. By the selection of these output values statements became 

possible for the sensitivity at the beginning and at the end of the heating as well 

as for the time when the pore pressure reaches the maximum. 
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Without going here in further details for single sensitivities, it is important to 

note that the total CoPs show high values of above 85% (like in the figure 

below). This underlines that the physical phenomena are very good explainable 

through the identified correlations and also indicates that the right important 

parameters for establishing the model are used. 

Figure 14:  high CoPs are a good indicator for the quality of the model 

  

By comparison of the scatter range of the calculated signals with the signals 

from the measurement (s. figure 15) statements about the quality of the model 

and the possible calibration of the model with the measurement are possible. If 

the scatter range of the calculated values is surrounding the measured values, 

then a successful calibration within the selected boundaries of the parameters 

can be possible. The figure shows, that this is possible from the start of the 

heating experiment (t=0). 

Figure 15:  Pore water pressure at measurement point TED1253, as a signal over time, 

compared with the simulated signals of the sensitivity analysis. 

 

For the parameter identification the optimization selected a set of input 

parameters, leading to a good approximation of the measured signals of the 
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temperature and the pore water pressure over time. Parameters that only 

showed a negligible sensitivity have not been varied through the optimization 

for the parameter identification. They have been set to their reference values.   

The comparison of the measured and calculated time signals of temperature 

and pore water pressure (s. figure 16) shows, that with the identified parameter 

for the model the physical phenomena could be simulated very plausible and a 

very good calibration with temperature and pore water pressure was reached. 

Figure 16: Comparison of measurement vs. simulation at measurement point TED1252 

after parameter identification. Top: temperature over time, middle: total pore water 

pressure, below: relative water pressure for the three phases of heating. 
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OUTLOOK 

In this paper we demonstrated with theoretical and practical cases how the 

calibration of a model with parameter identification can be treated as an 

optimization problem including signals. These techniques will become most 

probably an important standard technology for the development of more 

accurate models for the simulation.  
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