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SUMMARY

Signals are characteristic system responses that are a critical help to
understand, validate and improve the physical model of the system as well as
the system design itself, by understanding the important parameters.

Calibration, in the sense asing field observations and simulation runs to
estimate simulation model parameters or to update the uncertainty regarding
these parameters, can be formulated as an optimization task where the output
parameters are signals and the target function isceonple the sum of the

square deviations of the signal from the testing and the signal from the
simulation.

The optimization task of identifying the right input parameters can then be
formulated for example to minimize the value of the target function by

sdecting the appropriate values for the input parameters. A simple example
however sbhws that this can lead to a ranique solution for the put

parameters. Therefore additional boundary conditions for the calibration can be
very useful.

Knowing from thecalibration the significance and sensitivity of input
parameters, further optimization can be used to improve the system or product
design. With the information from the calibration the design space can be
adapted and appropriate surrogate models candak it also respect

nonlinear system behaviour.

In the case of strong scattering of the test and/or simulation results the
identification task must be enhanced by stochastic analysis as the fit of single
signals by design variables are no longer s@fitiThen a parameter space has
to be used, where the input variables have also stochastic elements, like a
stochastic distribution.

The technique of identifying the input parameters within an optimization task
for the calibration of field datacluding neasured signandsignals

generated from the&imulation can be used across all industries where virtual
prototyping is important.
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In this paper wdirst introduce andliscuss some methods and measures used
for sensitivity analysis andptimizations, tha the parameter identification as a
special optimization task shown byusing two theoretical examples followed
by two industrial applications.
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1. Model Validation and Calibration with the Parameter lIdentification as
an Optimization Task

Optimization using numerical simulations can in general be classified into two
different categories: the first categorassociated with the target to improve

the functionalities of the product and the second category is to test and improve
the model toif in a better way the reality.

While the optimization is already in wide spread usage for the improvement of
product funtionalities the potential for the usage of similar optimization
techniques to improve tlgaality of the model, typically with paraneeization

and calibration, is often not realized. Therefore the main aim of this {sajoer
clarify that potential.

Theworkflows that areused or the calibration of a model asemilar to those
used for the improvement of functionalities of the product.

In both cases it is recommended to start with a sensitivity anadggiscially if
handling with a larger number of panetersA sensitivity analysiss used to
studywhich input parametsrhave significant importander which output
parametersThese studies ar@alsoused ¢ establish a meta model, that
approximates the output parameters as functions of the input paraniéis
step can help to reduce the design spaceetartportant parameters. For the
criteria of importancef parameters and quality of the meta matiffierent
statistical measures have been establightesgt and Will, 2011)It is

important that thee meta models also include nonlinear dependencies of the
parameters and that the prognosis quality is quantified. For the quantification
of the quality of progosis of such a model in (Most and Will, 20@&
coefficient of prognosisCoP, is introducedWith theseCoFs a nonlinear meta
model can be selectethat provides the best model with respect to the ability
for the besprognosisnot only the best fit for the daférying to provide only

a model that best fit the @aeasily can lead to an ovétifig, however unable

to explain further data’his model based on the b&xtFs is the meta model of
best prognosis, MOP.
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Figure 1. A typical workflow for an optimization, starting with a sensitivity
analysis for selecting the important parameters, followed by theptimization.
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A typical workflow for the optimization gbroductfunctionalities is shown in
Figure 1:After the definition of the Design Space X (the parameterization),
during the design of experiment (DOE), designs with different input
parameter¥; are created. These different designs are solved, generating the
values for theutput parameter;YThese dta samples can be used to establish
the MOP, that can significantly reduce the design space to the important
variablesXeq including nonlinear dependenciédso from the sensitivity
analysisa good initial parameter sep ¥or the optimization is seléed. For the
optimization it is necessary to define at te@se optimization function f(}<
Several optimization methods are available like gradient based, adaptive
response surface, orautionary and genetic methodé/{ll, 2006. Finally an
optimizedset of input parametersyxis found.

Theworkflow for the calibratiorcan be just similar, using as an optimization
function a difference to the measurements, i.e. the sum of squared deviations of
measured and calculated data for the correspomnidiegsteps, and the

identified parameter set is than the optied set of input parametergyX
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2. Two theoretical examples

That thepotentialof using optimization for the parameter identification

currently not realized is also associated with the fact, that there are not many
optimization tools available that can handle different field measurements, i.e.
time series for a pressure, or in general have the ability to include signals from
the realtest environment in an easy way for the tafgettion of the

optimization.

During the development of such a model for the simulation the
paramegrization is the key to ensure a realistic behavior of the model.

Our first example is asiple damped hanonic oscillator This example is

used to understand how signals can be handled and also that that different
optimization runs can lead to quite different values for the parameter, due to
the fact that the solution can be realized with different valuéseahput
parameters.

The basic input parameters for the calibration of the damped oscillatheare
mass m, the initial kinetic enerdi,, the damping ¢ and the stiffness k

Figure 2: The damped harmonic oscillator

X

Exin

The reference sign@ from thedisplacement x over time feome parameters,
that are the unknown parameters in this example (red curve)
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Figure 3: The reference signal and the signal calculated from the initial values
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Theequations for thelamped oscillatoare:
mi + ct + kx =0
k
¥+ L 4+ —2=0
m m
i+ 2Dwyd +wjz = 0
and theyhavethe analyticsolutionfor the displacement

2B 1
ZRR Z sin(wt),

w(t) = e~ Pwot
mo w

With theundamped eigefrequencyy:

k
Wy = J—
m

Lehrés damping ratio D:

2Dw0 = £
m

and the damped eigdnr e quency ¥

w = wyV1—D?
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The target for the optimization is to identify input parameters, that generate a
signal very close tthe reference signal, therefore the objective function is the
sum of squaredifferences between tliesplacement of the referenceand

the displacemant of the calculated solutionat n discrete time steps (signals

are in general discretized due to theasurement)

"Qd hHOHO W w

The sensitivity study for this case shows that all input variables are significant.
Showing the solutions for all the initial parameters of the sensitivity studiy, tha
are all the signals from the dgss of the design ofxperimentJike in the

figure below often already provides for real world applications insights into
interesting frequency rangas well as some information about the feasibility

of the parameter identification itself

Figure 4: The reference signal together with all signals from the sensitivity analysis.
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Running different optimizations lead to differesat of initialparameters like
show in figure 5.

Figure 5. Two different optimizations lead to rather different identified parameter
values
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Where bothoptimizationruns leaddespite the different values for the
parameterso good results with small diffences to the reference signal.

Figure 6: The identified parameter values from both optimizations lead to a good
approximation of the reference signal.

20 I I F{eflerence
1.5 Run 1
10 Run2 ——
0.5
0.0
-0.5
-1.0
-1.5

20 ] I 1 ]
0 2 4 6 8 10

Time t[s]

Displacement x [m]

This norrunique solution for the identified parametier due tathe fact that the
parameters & and m as well as m and k appear only paean the solution
for the displacement and it is only their ratio that matters for the solution.

Therefore a unique solution can be generated by hémirexamplea constant
mass value for the optimization.

This example is shown imore details also fdraining purposes with signals
in an optiSLang tutorial, available from Dynardo and currently included in the
software delivery of optiSLang.

The seconéxample is a simplified CFEest modelwhere a reference vector

of the 12outflow velocities exists atthe task of the optimization is to find the

set of 10 input parameters for thressure¢ Pr es s 1 ghattames s 1 0)
close tathe outflow velocities.
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Figure 7: A CFD example of a box with two obstacles.
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The optimization function to minimize, similar to the signal function for the
damped harmonic oscillator cagethe squared deviation of the reference
velocities'Y Q @ '(Z dand the velocities) 6 & ‘&dafrom the calculated
solution:

YQ@OGs § 6.6

Also in this case it is important to haadditional constraintsye choosehat
each output parameter is close enough within 10% to the corrésgond
reference output parameter:

OOIYQOGEF) 6 ®EFAzZp TP T p T

This problem was solved with optiSLang inside of ANSYS Workbench, the
completeworkflow is shown infigure 8:
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Figure 8: The ANSYS Workbench set up with optiSLang inside ANSY $Vorkbench for
the CFD example of a box with two obstacles.
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and the solution was found with an Adaptive Response Surface Method (in
general this method is recommended for a small number of continuous input
paramaters).

Figure 9: Reference Solution (top left), Initial Solution (top right) and Optimized
Solution (bottom right) showing the velocity vectors colored by velocity magnitude.

Velocty Vectors Calored By Velocity Magnitude (mis) 2012 | | Velocky Vectors Colored By Veiocty Magntude (mis)

Dec 11, 264
ANSYS FLUENT 14.0 (34, pbrs, 5pe. 5ko)

Dec 11,
ANSYS FLUENT 14.0 (34, pbrs. 5pe, sks)

Velocty Vectors Colored By Velacily Magntuds (ms) Dec 11,2012
ANSYS FLUENT 14.0 (3. pbis, 5pe, ske)




CALIBRATION OF FIELD DATA AND SIMULATION AS AN
OPTIMIZATION TASK WITH SIGNALS

3. Practical Applications

The field of practical applications for model calibration by parameter
identification cover a broad ranggome publicationare available from the
online library of Dynardpshaving applications frondifferent industrial areas
like civil engineering (Zabel and Brehm, 20Q&utomotive(Will, 2006) and

oil & gas (Will, 2010) In this paper we focus only on two applicasevith
signals, some progresses we madefdv/H automotive applicatioand a
new model calibratiofor a nuclear waste depository analysis.

Calibration and Optimization of Driving Comfort Behaviour

In product development of luxury cars Noise Vibration Harshr{BlVH) plays

a very important role. Drivercepilot and @mssenger on the back seats should
feel very comfortable during any driving conditions. Therefore the calibration
of virtual models to available test data and the reduction of noise levels inside
the car cabin is an important task of the virtual prototyping.

For the formulation of a successful calibration design space as well as a
successful objective function two challenges needs to be met. First a very large
number of variables may have an infige on the passenger car air vibration

and second the frequency signals show a very large number of vibration
modes.

As a result the selection of the main influencing pararaatet the signal
processing to extract response values which belong to oraigibmode are a
very important part of the calibration process. In the example we start with a
variation space of 485 sheet metal thicknesses of all body parts which might
have an influence. Fig0shows the variation of one of the sound pressure
signals of 200 Latin Hypercube samples of the sensitivity analysis.

Figure 10: Variation of sound level, greeri reference, ack i 200 samples ofhe
sensitivity analysis
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Having the signavariation window we define the frequency window to extract
the peak sound values which correspond to the vibration mode of interest. Note
that because of stiffness variation the frequency and the sound value are
varying at the same time and we need tostdjue extraction windows to avoid
mode switch of important vibration modes within one extraction window.

Unfortunately theCoPsfor the variatiorof the peak sound level abelow

30%, which indicate that only the important variables for less than 3@8& of

total variation were identifiedt is our experience for thidnd of identification

task, that increasing of sampling to 300 or 400 designs or alternative extraction
windows does not increase tGePlevels significantly. Main reason for the
smallCoP levels is that the pressure sound levels are influenced by
mechanisms of 10..20 variables. To identify these mechanisms out of 500
variables a very large number of sample points will be necessary.

Figure 11: CoP value of the peak sound level in the frguency window 110 to 140 Hz,
sensitivity study using 485 variables
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Therefore we use th@oPvalues fronthe first sensitivityanalysisto reduce

the design space manually. We saddc37 variables which showed significant
CoPfor any of the response values of interest and repeated the sensitivity study
in the reduced design spaddée variation interval of thpeak value in the
frequency window 110 to 140 Hz at the second sensitivity study using 37
variables is 80% comparedttee first sensitivity study using 48&riables.

That approved ouCoPbased selection of important paramegtér the reduced
spacehigherCoPvalue of the full model are close 40% and highe€CoP

values of mgle variables are identified.
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Figure 12 CoP value of the peak sound level in the frequency window 110 to 140 Hz,
sensitivity study using 37 variables
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In the reduced design space of 37 important variables also for the other
important frequencies and positions the main contributors couttehéfied
and the calibration to the reference signal was performed successfully.

Of courseafter having a model which shows sufficient forecast quality to
measurements, the next step in the virtual prototyping will be the optimization,
here the minimiation ofpeak sound @ssure levels as shown in Figd&

Figure 13. overview of the process foan optimization using the same sensitivity study
but selectingonly the 8 most important variablesfor the optimization.
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variables showslarge reduction potential of noise
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Calibration of a Nuclear WasteDepository Model

In the esearch for the safeness of nuclear waste depesitwgating
experiments are performé@dunderground laboratories in order to understand
the thermahydraulicmechanica(T-H-M) interactions.

In these experiments the chartyeeto the heat energy input over tirok
tempeature, porewater pressure and stress fields are measured.

TheDBE TECHNOLOGIE GmbHievelops in cooperation with the Dynardo
GmbH simulation modelthat are able to comprehend these interactions in
claystone.

An important component of these developments is the calibration of the models
with respect to the results of the measurements

The heating experimehtas been simulated withT-H-M coupled 3
dimensional finite kkement analysisvith ANSYS and multiPlas

Therefore pecial routines fronthe poreelasticity theory, thermdiydraulic
coupling and thermahechanical coupling in isotropic and anisotropic
claystone formationwere developed and implemented in ANSYS.

For the sensitivity analysis and for the parameédentification optiSLangvas
used. Due to the complexity of the-FH-M phenomena about 30 model
parameters are used.

In this case it wasssential for the successttalibration of mesurement and
simulatian to use th@owerful algorithns and filter strategies for large
parameter spaced optiSLangand the achieveshort calculation times due to
efficient numerical algorithms ANSY S with multiPlas

In the sensitivity analysis the material paramet@cluding parameters for the
coupling)have been variedithin physical possibleoundaries.

From the expriment temperature and pavaterpressure data are available for
17 measurement points during the heating as well as before the heating.

Due to uncertainties in the process Ibefthe heating, the calibration and
parameter identification was restricted to the heginogesstself.

For the evaluation of the sensitivititee relative porevater pressures discrete
time values & used. By the selection of themgput values staments became
possible for the sensitivity at the beginning ahtheend of the heating as well
as for the time when the popgessure reaches the maximum.
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Without going here in further details for single sensitivitiets, important to
note thathe btal CoPs show high values of above%3like in the figure
below). This underlines thahe physical phenomeraae very good explainable
through the identified correlations and ailsdicatesthat the right important
parameters for establishing the moded used.

Figure 14: high CoPsare a good indicator for the quality of the model
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By compari®n of thescatter rangef the calculatedignals with thesignals

from the measurement (s. figure) Blatements about the quality of the model
and the possible calibration thfe model with the measurement are possible. If
the scatter range of the calculated values is surrounding tsunee values,
then a successfahlibration within the selected bodaries of the parameters
can bepossible. The figure shows, that this is possible from the start of the
heating experiment (t=0).

Figure 15 Pore water pressure at measurement point TED1253, as a signal over time,
compared with the simulated signals oftie sensitivity analysis.
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For the parameter identificatidhe optimization selecteal set of iput
parameterdeadingto a good approximation dfie measuresignalsof the



CALIBRATION OF FIELD DATA AND SIMULATION AS AN
OPTIMIZATION TASK WITH SIGNALS

temperature and the ponater pressure over time. Parameters that only
showed a negligible sensitivity have not been varied through the optimization
for the parameter identification. They have been set to their reference values.

The comparison of the measd and calculatednie signat of temperare

and porewater pressurés.figure 16 shaws, that with the identified parameter

for the model the physical phenomena could be simulated very plausible and a
very good calibratin with temperature and pongater pressure was reach

Figure 16: Comparisonof measurement vs. simulation at measurement point TED1252
after parameter identification. Top: temperature over time, middle: total pore water
pressure, below: relative water pressure for the three phases of heating.
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OUTLOOK

In this paper we demonstrated with theoretical and practical cases how the
calibration of a model with parameter identification can be treated as an
optimization problem including signals. These techniques will become most
probably an important standarait@ology for the development of more
accurate models for the simulation.
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