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1. Introduction  

In the field of numerical simulation a variety of abstract physical models 
is used to describe observable phenomena. An important class of these 
models are material or constitutive models that represent the 
phenomenological behavior of different materials and material 
combinations. To apply these models within a complex 3D FEM model, 
one of the main questions is often how the model parameters have to 
be chosen. Simple models like isotropic elasticity allow to directly 
determine model parameters like Young’s modulus and Poisson ratio 
from measurements. For more complex models, like deterioration or 
crack models of brittle materials, model approximations are often 
chosen that can only be described with a greater amount of model 
parameters. For these models it is often not possible to decouple the 
influence of each single parameter from each other and to determine 
these by direct measurements. For those problems an inverse 
approach is suitable in which a simulation model is used that represents 
the real geometry, boundary conditions and the sequence of the 
measurement setup. The unknown parameters are than determined by 
an iterative approach by comparison between measurement and 
simulation data. This process is called model calibration. 

In this paper the basics of this approach and their practical realization 
will be discussed. An important aspect additional to the standard 
method is the analysis of the identifiability of the parameters. Due to 
very efficient sensitivity analysis methods, it is first detected which 
parameters actually have an influence on the simulation results and the 
calibration procedure. Furthermore, the analysis helps to define suitable 
measures to quantify the difference between measurement and 
simulation. If such a measure can be described by the unknown model 
parameters with high certainty, the successful calibration with global 
and local optimization methods can be performed in a next step. Finally, 
it has to be analyzed whether the inverse problem can be solved 
nonambiguously, that means there is a unique parameter combination 
that allows optimal matching between measurement and simulation. In 



this paper approaches for this kind of calibration tasks and the software 
based realization by means of several examples will be presented. 

 

2. Basic concept 

Minimization of Least Squares  

In the field of parameter identification several methods have been 
established. Very well-known is the minimization of the sum of squared 
errors. This approach assumes that the simulation model can 
accurately represent the physical properties. In this case, the only 
deviation between simulation and measurement were caused by 
measurement errors. If these measurement errors are considered as 
multidimensional normal distribution the following objection function can 
be formulated using the maximum likelihood estimation [Beck 1977]: 

 

where Cyy is the covariance matrix of the measurement points. As this 
measure is often unknown, the measurement errors are considered as 
independent. This leads to weighted squared errors. Assuming a 
constant measurement error for all measurement points the well-known 
sum of squared errors is obtained: 

 

For the identification task this sum of squared errors is to be minimized. 
In the case of many experiments the corresponding measurement 
curves can be merged additively in one objective function. 

For complex models the objective function is often a highly non-linear 
function with multiple local minimums. For this reason for the search of 
the optimal parameter set it is recommended to couple a global 
optimization algorithm, like evolutionary algorithms, with a local 
algorithm like Simplex- or gradient based methods. 

Alternative approaches for the minimization of the sum of squared 
errors like Kalman filter or Bayesian Updating consider the parameters 
as statistical measures but more information about the covariance of 
the measurement points are necessary. Often, these methods are 
extensive why they are not considered in this study. A methodical 
comparison can be found in [Most 2010]. 
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Identifiability of parameters 

The minimization of squared errors is an inverse approach where the 
model parameters are matched indirectly to the measurement results. If 
the model parameters have no influence on the model responses it is 
not possible to identify them. This can be evaluated with an initial 
sensitivity analysis. In this case it is important to examine not only one-
dimensional dependencies like local derivatives or correlation 
coefficients, but also parameter interactions. 

In this study a multivariate sensitivity analysis was applied that has 
been based on response surfaces and variance based sensitivity 
indices to evaluate the influence of each parameter [Most 2011]. The 
response surface based so called Metamodel of Optimal Prognosis 
(MOP) acts as surrogate model to approximate the solver response. Its 
algorithm automatically determines the most appropriate approximation 
model and reduces the number of input parameters to the important 
ones. As quality measure serves the Coefficient of Prognosis (CoP) 
which allows to validate the model concerning its ability to predict 
upcoming design points. This approach is very efficient and can 
evaluate the sensitivities with only 50-100 simulation runs. 

Furthermore, the unambiguousness of the parameters to be identified 
will be investigated. In complex models different parameter 
combinations can lead to similar simulation results. This ambiguity can 
be analyzed after a global optimization run. Alternatively, several 
optimization runs can be performed to compare the identified 
parameters afterwards. 

 

3. Example: Identification of concrete fracture parameters from 
a wedge splitting test 

The following example will explain the basic procedure using a wedge 
splitting test regarding Trunk [Trunk1999]. During this experiment, a 
pre-slotted specimen was loaded vertically along a predefined crack 
edge (Figure 1). With this setup, the experimental measurement of the 
post-cracking behavior was possible.  

The simulation model represents the specimen as a linear elastic 
continuum containing 2D plane-stress elements (Figure 2). The 
theoretical crack evolution was represented by 2D interface elements, 
whereby the softening behavior was modeled using a common bilinear 
softening law. The tensile strength ft and the specific fracture energy Gf, 

as well as the two shape parameters ft and wc describing the kink of 



the bilinear curve, serve as fracture parameters. The simulation was 
conducted path-controlled causing a steadily increased crack opening 
width. 

 

Figure 1:  Wedge splitting test regarding Trunk, experimental setup and 
measured load displacement curves for different specimen.  
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Figure 2:  2D simulation model (left) 
with stress history vertical to the crack 

surface, bilinear softening 
model (top right) and simulative load-crack opening curve (bottom right).  

In the first step, a sensitivity analysis was performed. Here, the Young's 

modulus E, the Poisson's ratio   and the four fracture parameters were 
varied. As design-of-experiments scheme, a correlation-optimized Latin 
Hypercube Sampling was used [optiSLang 2014]. The simulation 
curves were calculated and imported in optiSLang via a signal module 
for each of the 100 samples. The reference signal is covered by the 
curves which indicates that the chosen range of parameters is well 
adjusted (Figure 3). An identification with the estimated parameter 
ranges seems possible. 

 

Figure 3:  The range of 100 
simulation curves from the Latin 
Hypercube Sampling covers the 

reference signal from the 
measurements sufficiently. 

 



 

Figure 4:  Approximation of the sum of 
squared errors using Moving Least 
Squares (left) and variance-based 

sensitivity indices of the parameters 
to be identified (right). 

Furthermore, the influence of the 
model parameters on the response 
variables was analyzed using the 
Metamodel of Optimal Prognosis 
(MOP) [Most 2011]. Figure 4 shows 
the meta-model and the parameter 
influence concerning the sum squared 
errors. It can be seen that the Poisson's ratio and one of the form 
parameters most likely cause no effect. However, the approximation 
quality was not ideal and less important factors were not identified due 
to insufficient sampling points. 

To ensure that only parameters without influence were excluded from 
the identification, effects occurring during the softening process were 
analyzed more detailed. The loads at the reference points (Figure 2) 
were extracted from the signals of the simulation model and, for each 
value, a sensitivity analysis was conducted. This could be done without 
any further simulation runs because the additional scalar values were 
just extracted from the calculated response signals. The displacement 
dependent sensitivity indices are shown in Figure 5. 

 

Figure 5:  Sensitivity indices for all input parameters depending on the crack 
opening width. 
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Figure 5 illustrates that the Poisson's ratio had no influence. Apart from 
that, all parameters caused at least a partial effect during the 
displacement process. Thus, the conclusion can be drawn that all 
parameters except the Poisson's ratio were identifiable from the 
measurement data. 

The next step was the conduction of a global optimization using an 
Evolutionary Algorithm with the 10 best designs of the sensitivity study 
as a start population. This improves the convergence of the optimization 
process significantly. The best design was then used as a start design 
for a local optimization. For the local search, the Simplex-Nelder-Mead 
method was used. 

 

Figure 6:  Flow chart of identification: the sensitivity analysis generated the DoE 
designs as well as a response surface model using the Metamodel of Optimal 
Prognosis. For global search, the best designs served as a start population for 

the Evolutionary Algorithm. The resulting best design was then used as the 
starting point of the local search using Simplex Nelder-Mead. 

 

 

 



 

 

 

 

 

Figure 7:  Locally optimized simulation curves (upper panel) and optimal 
parameters (lower panel) showing a very good agreement between 

measurement and simulation. 

In Figure 7 the optimized simulation curves and the optimized 
parameters are illustrated. The figure shows a good matching between 
measurement and simulation. 

Finally, the issue of ambiguity was verified in detail. For this purpose, 
the designs of the local optimization were depicted as a parallel 
coordinates plot. The range of the sum of squared errors was tightly 
restricted. Thus, only simulation curves with a very similar course were 
shown. In reference to the accompanying parameter ranges, it was 
illustrated that the modulus of elasticity, the tensile strength as well as 
the fracture energy show very small intervals. Consequently, they were 
sufficiently identifiable. The two shape parameters showed very similar 
results but with a larger deviation. Therefore, they were identifiable with 
less accuracy using the available measurement points. Here, the 
consideration of further experimental data would certainly improve the 
validity. 

 

Figure 8:  Parallel coordinates plot of the best optimization designs for all 
considered material parameters and the sum of the least squares. 
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4. Example: Target optimization of the frequencies of a tuning 
fork 

Target optimization is a special identification task. With the simple 
example of a tuning fork the whole parameter identification workflow is 
presented comprising sensitivity analysis and optimization in optiSLang. 
A modal analysis with a fixed support of the tuning fork and an 
undamped oscillation is performed. 

   

Figure 9:  Geometry input parameters of the tuning fork design. 

For the sensitivity analysis and optimization 6 input parameters were 
considered. Namely, these are the geometry parameters rod length, rod 
width, grip length, grip width, radius and depth (Figure 9). At the same 
time four output parameters are evaluated: the three lowest 
eigenfrequencies obtained by the modal analysis and the mass. 

The aim of the optimization was to equalize the first eigenfrequency to 
440 Hz and the higher frequencies to the duplicate and triplicate 
respectively. Thus, we performed a single objective target optimization 
by taking the sum of the quadratic deviation to the target value and the 
mass. The objective function which should be minimized is 
(frequency_1-440)2+(frequency_2-880)2+ (frequency_3-1320)2+mass.  

As a pre-optimization step and for the identification of the most 
important inputs a sensitivity analysis was performed by means of the 
MOP. Figure 10 (A) shows the matrix of the estimated sensitivity indices 
and the total CoP values of the corresponding approximation models. It 
can be seen that the rod length and the grip width of the tuning fork 
have a main influence on the eigenfrequencies. On the other hand, the 



rod width and depth have a major impact on the mass. The radius has a 
low influence on all outputs. Therefore, its identifiability is expected to 
be low. As an example, the metamodel for the first eigen-frequency is 
illustrated in Figure 10 (B) showing the dependency on the two inputs 
that influence this eigenfrequency most.  

 

  

Figure 10:  Results of the sensitivity analysis: Matrix of the variance based 
sensitivity indices (upper panel) and Metamodel of Optimal Prognosis for the 

first eigenfrequency as a function of the two most important inputs (lower 
panel). All design points are projected to this subspace, the other input 

parameters are set to their mean value. 
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First, a gradient-based optimization on the MOP was performed to 
determine a good start design for the subsequent optimization with 
direct solver calls. As optimizer the Adaptive Response Surface Method 
(ARSM) was applied due to its robustness to failed solver calls and 
noise. The optimizer converged in eight iterations with 112 solver calls. 
A comparison between initial and optimized design is illustrated in 
Figure 11.  

 

Figure 11:  Comparison of the initial versus optimal design of the tuning fork. 

5. Example: Effective signal extraction to analyze a complex 
material model for copper thin films  

Metallic thin films often show a different physical behavior than bulk 
solids made of the same material. This requires the determination of 
new parameters of corresponding material models. One example is thin 
film copper produced by electro-chemical deposition (ECD). It is widely 
used in semiconductor industry because of its excellent electrical and 
thermal conductivity. The functionality of semiconductor products 
depends strongly on mechanical performance of ECD-Cu under broad 
temperature range. Therefore, the stress-strain response of this special 
copper is measured at different temperatures. To this end, the wafer 
curvature approach serves as standard method [Wimmer 2014]. It 
measures the change of curvature radius due to mismatch in thermal 
extension coefficients between the film and substrate for a temperature 
profile. Silicon is often used as substrate since its mechanical properties 
are well defined and well-known. 



In the following example an inelastic material model consisting of seven 
parameters was validated for ECD copper of 10 µm thickness subjected 
to cyclic thermal loading (Figure 12). 

 

 

 

Figure 12:  Bimetallic strip in top view and cross section, silicon in grey, copper in 
yellow. 

The raw measured quantity is the curvature radius. It is usually used for 
the calculation of the bow (maximal deflection of sample) and stress in 
the film using Stoney’s formula which is valid for the elastic and non-
elastic range: 

 

where 𝝈𝑪𝒖 describes the average film stress in the direction of the 
length side of the strip, 𝒉𝑺𝒊 is the substrate thickness, 𝑹 is the radius of 
the curvature and 𝑬𝑺𝒊 is the Young‘s modulus of the substrate. 

 

Figure 13:  Curvature radius a Cu-Si bimetallic strip is the raw measured quantity. 
The bow is calculated afterwards and compared with simulation results.  

 

The measurement of the mechanical properties of the Cu-Si bimetallic 
strip was performed by a cyclical thermal exposure that is illustrated in 
Figure 14. The corresponding measurement data deduced from the 
curvature of the substrate is shown in Figure 15. 
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Figure 14:  A typical cyclical heating and cooling process during a measurement 
of a Cu-Si bimetallic strip. 

 

Figure 15:  Bow evolution displayed as a function of temperature clearly 
demonstrates complex the inelastic behavior of ECD copper. 

The aim of optimization was to match the reference signal (bow vs. 
time) from the experiment with the simulated signal from the FEM 
calculations. A “manual” validation was extremely time-consuming: it 
took about 3 weeks for 70 simulations. Problem was not a time for one 
run (it was less than 10 min), but the analysis of results and decision 
how to change the parameters values in order get closer to 
experimental results. Before every run it had to be decided in which 
extent each parameter should be changed. For this purpose, gradients 
of the objective function were built manually as sensitivity measures 
using Excel. And even after achieving a satisfactory result it was not 
clear, if the parameter set can be improved further or not.  



In comparison to that, the optimization has been performed with 
optiSLang applying the least squares approach. Within one day, the 
automated optimization was finished after 284 simulation runs. It can be 
seen that the agreement of the curves of the automated optimization is 
significantly better than the agreement of the manual optimization 
(Figure 16, right panel). Additional advantage is the possibility to repeat 
parameter fitting, if, for example, some model parameters will become 
known from independent experiments. For manual validation such 
situation would be a real nightmare, because simulation engineer would 
have to start from the beginning.  

 

Figure 16:  Bow vs. 
time. Left panel: 
The outcome of 

the manual 
optimization 
was a good 
agreement 
between 

reference and 
simulation 

signal but with 
much effort. 

Right panel: The automated optimization resulted in an almost perfect match 
within a shorter time (green - simulation, red - experiment). 
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