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This article describes the calibration of the numerical model of a bowstring-arch railway bridge based on
modal parameters. An ambient vibration test allowed the identification of the natural frequencies, mode
shapes and damping coefficients of several global and local modes of vibration of the bridge by the appli-
cation of an output-only technique based on the enhanced frequency domain decomposition method. The
calibration was performed using a genetic algorithm that allowed obtaining the optimal values of fifteen
parameters of the numerical model. For the mode pairing, a new technique based on the calculation of
the modal strain energy was used. The stability of a significant number of parameters, considering differ-
ent initial populations, proved the robustness of the adopted algorithm in the scope of the optimization of
the numerical model. The updated numerical model was validated based on an experimental test for the
characterization of the modulus of deformability of the concrete and a dynamic test under railway traffic.
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The results showed an excellent agreement between numerical and experimental results.
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1. Introduction

Railway bridges are structures subjected to high intensity mov-
ing loads, where the dynamic effects can reach significant values.
At present, these effects are being given greater importance due
to the increase of the circulation speed, not only in conventional
lines but also in new lines, such as the case of high speed railway
lines.

In structures with complex behavior the evaluation of these
effects is performed by means of dynamic analyses using finite ele-
ment (FE) models. The process of developing a FE model of a struc-
ture involves assumptions and simplifications that may cause
errors. These errors are usually related to the inaccuracy in the
FE model discretisation, uncertainties in geometry and boundary
conditions and variation in the material properties.

Therefore, the accuracy of the FE model strongly depends on the
experimental validation of the numerical results that is usually
performed by means of static or quasi-static measurements based
on load tests [1,2], dynamic measurements based on ambient
vibration or forced vibration tests [3,4], or a combination of static
and dynamic measurements [5]. In recent years, in situ dynamic
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testing has been used and reported by several authors [3,6-9] in
the scope of the identification of the modal parameters of struc-
tures, namely the natural frequencies and mode shapes. Experi-
mental modal data is also perturbed by measurement errors
typically related with the environmental variability (such as tem-
perature and wind), the variability in operational conditions during
the measurements (e.g. traffic) and errors with measured signals
and post-processing techniques [10,11]. Despite the presence of
the referred errors it is generally assumed that the experimental
data is a better representation of the structural behavior than the
initial estimations from the FE model [12].

Finite element model updating, also known as calibration of a
finite element model, is a procedure to determine uncertain
parameters in the initial model based on experimental results to
achieve a more suitable updated model of the structure [13]. Up-
dated models can be used for the prediction of dynamic responses
under new load scenarios, for damage identification, to design
health monitoring systems, as well as for improved remaining life-
time predictions [8,14]. There are basically two distinct finite ele-
ment model updating methodologies in structural dynamics: the
direct [15] and the iterative methods [16-18]. The direct methods
directly update the elements of the stiffness and mass matrices in a
one-step procedure. In this method the experimental modal prop-
erties can be exactly represented by the updated system matrices.
Unfortunately, the updated system matrices have little physical
meaning, and cannot be related to physical properties of the finite
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Fig. 1. Sdo Lourengo bridge: (a) lateral view e (b) cross-section of the deck.

element model [13]. The iterative methods are typically related to
a penalty function, which is improved by a step-by-step approach.
This approach is more flexible in its application as the physical
properties of the finite element model can be updated.

Ref. [14] distinguished the solving algorithms for model
updating in sensitivity-based methods and optimization-based
methods. In the context of optimization-based model updating,
the penalty function denotes the objective function based on the
discrepancy between numerically obtained and experimentally
derived features, such as natural frequencies or modal deflections.
The uncertain parameters that need to be updated are material
properties or geometrical dimensions, for example. Applications
of such methods in the scope of model updating of railway bridges
were referred by Chellini and Salvatore [19], Liu et al. [20] and
Cantieni et al. [17,21].

Concerning the optimization algorithm, several methods are
available to solve the optimization problem. These include
gradient-based methods (quasi-Newton, sequential quadratic pro-
gramming, augmented Lagrangian, etc.) [22], response surface
methods [23] and nature inspired algorithms (e.g., genetic algo-
rithm, evolutionary strategies, particle swarm optimization)
[10,24]. The genetic algorithm, used in the present work, is not a
regularly reported and referenced methodology in the scope of
model updating, particularly in the field of model updating of
bridges based on experimental vibration data. In this specific re-
search topic, the research of Cantieni et al. [17,21] and Zabel and
Brehm [10] should be emphasized. Genetic algorithms have recog-
nized advantages such as the non-dependence of the initial starting
point, capability to manage a large number of parameters and con-
straints, possibility to handle with discrete and binary variables,
ability to find the global minimum in functions with several local
minima and the possibility to accept failed designs. On the other
hand, a low convergence rate in comparison to gradient-based
methods is generally agreed to be its main disadvantage.

This paper describes the finite element model updating of a
bowstring-arch railway bridge based on experimental modal data.

The detailed description of a three-dimensional FE model of the
bridge is presented. The dynamic properties of the bridge are
determined by an ambient vibration test that allows the identifica-
tion of the natural frequencies, mode shapes and damping coeffi-
cients of the bridge. This experimental test is basically focused
on the characterization of the overall dynamic behavior of the
structure, in particular of the bridge deck and arches. Additionally,
the local dynamic behavior of some elements of the arches is also
studied. This local dynamic behavior gives important information
to characterize the structural continuity between the deck and
the arches. The calibration of the numerical model involves a sen-
sitivity analysis and an optimization process. In the scope of the
model calibration special emphasis is given to the application of
an innovative mode pairing criteria based on modal strain energies
[25]. This criterion uses the so-called energy-based modal assur-
ance criteria (EMAC) to perform the correct pairing between the
numerical and experimental mode shapes. The efficiency of this
criterion, in comparison with the classical modal assurance criteria
(MAC), is demonstrated. A global sensitivity analysis, based on a
stochastic sampling strategy, is performed to identify the design
parameters that influence the modal results and consequently
may be used for updating the numerical model. The optimization
is performed by means of an iterative procedure using a genetic
algorithm. This phase is based on the minimization of an objective
function that includes terms related to the residuals of the fre-
quencies and mode shapes. These residuals include terms related
to the global and local dynamic behavior of the bridge. The valida-
tion of the model is performed based on the results of an ultrasonic
test for the confirmation of the modulus of deformability of the
concrete and a dynamic test for the passage of railway traffic.

2. Sao Lourenco railway bridge

Sdo Lourenco railway bridge is located at km +158.662 of the
Northern line of the Portuguese railways that establishes the rail
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(b)

Fig. 2. Structural connections: (a) between hanger and girder, (b) between hanger and arch.

connection between Lisbon and Porto, in a recently upgraded sec-
tion for the passage of trains which can travel at speeds up to
200 km/h.

The bridge is a bowstring arch consisting of two half-decks with
42 m span, each one carrying a single track. Each deck consists of a
0.40 m thick prestressed concrete slab suspended by two longitu-
dinal arches. The suspension is performed by means of metallic
hangers and diagonals. The arches are linked in the upper part by
transversal girders that assure the bracing of the arches.

The deck is supported at each abutment by two pot bearings. The
distance between the supports is 38.4 m, and the extremities of the
deck slab work as cantilevers with 1.8 m span. Each half-deck cross
section, with a total width of 7.35 m, consists of a concrete slab
laterally supported by two main girders, forming a U-section, and
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a side footway. In Fig. 1 a lateral view of Sdo Lourenco bridge and
a cross section of the deck are presented.

The arches are composed of several metallic parts with a
welded rectangular box-section. Metallic hangers connected to
the main girders perform the suspension of the deck. At both
extremities the arches are connected to concrete blocks, by means
of metallic plates and anchor bolts. The hangers are circular hollow
sections with a diameter of 168.3 mm and a thickness of 10 mm.
The diagonals are composed of two steel bars with a diameter of
50 mm.

Fig. 2 shows the details of the connections between the hanger
and the main girder and between the hanger and the arch.

The connection of the hangers to the main girders is performed
by means of metallic plates welded to the base of the hangers. These
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Fig. 3. Three-dimensional model of Sdo Lourengo railway bridge including the
track.

plates, connected at various levels with reinforcement plates, cross
the girder and are anchored to its lower surface (Fig. 2a). The con-
nection of the hangers to the arch is also performed through metal-
lic plates welded to the top of the hangers according to the details
presented in Fig. 2b.
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3. Numerical modelling
3.1. Description

The dynamic analysis of Sdo Lourenco railway bridge was per-
formed using a three-dimensional model, including the track,
developed in ANSYS® software [26]. A global view of the numerical
model of the bridge is presented in Fig. 3.

The deck slab was modelled with solid elements. The arches,
hangers, diagonals and bracings were modelled with beam ele-
ments. The track was modelled in an extension corresponding to
the bridge length and in a distance of about 10 m from each abut-
ment, in order to simulate the support of the track on the adjacent
embankments. The rails were modelled by beam elements levelled
with the center of gravity axis, and the sleepers and the ballast
layer were modelled using solid finite elements. The connections
related to the support bearings were located at their centers of
rotation. The structure was divided into 16,979 solid elements
and 1107 beam elements, with a total of 26,754 nodes and
80,029 degrees-of-freedom.

For modelling the structure, particular attention was given to
the connection between the ends of the arches and the support
blocks to guarantee a monolithic link. As the solid finite elements

Table 1
Characterization of the parameters of the numerical model of Sdo Lourenco bridge.
Parameter Designation Statistical properties Limits Adopted Unit References
(lower/ value
upper)
Distribution Mean value/
type standard
deviation
E. Modulus deformability Normal 38.7/3.87 31.0/46.4  38.7 GPa [27-29]
concrete
Pe Density concrete Normal 2446.5/97.9 2286/ 2446.5 kg/m> [30,31]
2607
Ve Poisson ratio concrete - -/~ -/- 0.20 - [32]
Epal Modulus deformability - -/- -/- 130 MPa [33]
ballast
Pbal Density ballast Uniform 1885/147.2 1630/ 1733 kg/m? [10,30,34]
2140
Vbal Poisson ratio ballast - -[- -/- 0.20 - [32]
Es Modulus deformability Normal 202/8.1 188.7/ 202 GPa [35]
steel 2153
Ps Density steel - -/- -/~ 7850 kg/m> [32]
Vs Poisson ratio steel - -/- -/- 0.30 -
K, Vertical stiffness of the Log-normal  7419/6929 -/- 3847 MN/m -
supports
Kpaim Vertical stiffness of the rail - -[- -/- 400 MN/m [36]
pads
Avaitllrait Area/inertia of rail UIC 54 - -/~ -/- 69.3/2346 cm?/cm*  [37]
Aaenllaren Areafinertia of arch - -/- -/ 3744/ cm?/cm*  [38]
(current section) 275,700
Aully Area/inertia of hangers - -/- -/~ 49.7/1560  cm?/cm?*
Adiagllaicg ~ Areafinertia of diagonals - -/- -/- 39.3/614  cm?/cm*
I‘diag Inertia of the connection Diagonal-deck and Axle x* Uniform 3101/1754.7 61.4/6140 500 cm?
diagonal-arch
Itdiag Axle z°
IL Hanger-deck and Axle x* Uniform 3125/903.6 1560/ 2000 cm*
hanger-arch 4690
L Axle 22 16,420/8579.4 1560/
31,280
e Initial stress DL® outer 1 Uniform 37.5/21.7 0/75 0 MPa -
oDLE? DL outer 2
oD DL inner 1
oDL2 DL® inner 2
all H
5%t DS outer Uniform 100/28.9 50/150 0 MPa

2 The axles are according to the cartesian referential presented in Fig. 3.
b DL - diagonal longer; DS - diagonal shorter; H - hangers.
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Fig. 4. Numerical model of the support: (a) general view; (b) detail.

Table 2

Characterization of the parameters of the numerical model of the support.
Parameter Designation Statistical properties Adopted value Unit References

Distribution type Limits (lower/upper)

Erup Modulus deformability rubber Uniform 10/100 50 MPa [39,40]
Viub Poisson ratio rubber 0.47/0.4999 0.48 [41-43]
Hst-rub Friction coefficient steel-rubber 0.005/0.20 0.10 [39]
Erer Modulus deformability Teflon 600/700 650 - [44]
Veef Poisson ratio Teflon 0.44/0.47 0.46 [44,45]
Hst-tef Friction coefficient steel-Teflon 0.06/0.10 0.07 [44]

of the support blocks do not have rotational degrees of freedom,
the beam elements of the arch were extended inside the solid ele-
ments in order to guarantee the continuity of the rotations in these
connections. Identical procedure was adopted for the connections
between the hangers and diagonals with the deck slab.

To correctly reproduce the deformability length of the hangers
and diagonals, rigid elements were introduced in the extremities
of the beam elements.

3.2. Geometrical and mechanical properties

Table 1 describes the geometric and mechanical parameters of
the numerical model of the bridge, including its designation, the
adopted value and the respective unit and some references. Addi-
tionally, the statistical properties of some of the parameters that
will be used later in the model calibration phase are listed. The
lower and upper limits of the normal statistical distributions were
obtained by subtracting or adding to the average value, a value
equal to two times the standard deviation.

Due to the inexistence of information in the project about the
vertical stiffness of the supports, the evaluation of this parameter
was based on the FE numerical model presented in Fig. 4. The mod-
el includes the metallic pot (1), the elastomeric rubber pad (2), the
piston (3), the Teflon layer (4) and the upper metallic plate (5). All
components were modelled by finite elements in axisymmetric
conditions, with exception of the interfaces between rubber-steel
and Teflon-steel that were modelled by Coulomb friction elements
with a resistance dependent of the normal load on sliding surface.

In Table 2 several parameters of the numerical model of the
support are characterized with the indication of the adopted values
and respective units. The lower and upper limits for each parame-
ter and some references are also presented.

The vertical stiffness of the support was calculated considering
the adopted values of the parameters listed in Table 2, by dividing
the force in correspondence to the application of a unit uniformly

distributed vertical load in the upper plate for the average dis-
placement of the plate, resulting 3847 MN/m.

The characterization of the statistical distribution of the vertical
stiffness of the support was based on a stochastic sampling tech-
nique, using the Latin Hypercube method [46,47], and considering
the uniform distributions indicated in Table 2. The distribution of
the vertical stiffness of the support, based on 750 samples, proved
to be particularly sensitive to changes in the modulus of deforma-
bility and Poisson’s ratio of the rubber. The distribution of the sam-
ples was adjusted by means of a log-normal probability density
function with an average value equal to 0.7419 x 10* MN/m and
a standard deviation equal to 0.6929 x 10* MN/m.

The dynamic behavior of the diagonals and hangers is signifi-
cantly influenced by the stresses on these elements, which are de-
rived not only from the permanent loads of the structure, but also
from the construction stage and the temperature variations. The
parameters o take into account the possible variations of the stres-
ses installed in these elements.

The masses of non-structural elements such as coatings, lateral
parapets, and footway slabs were calculated and added on the
nodes of the finite element mesh in correspondence with the loca-
tions of each of those elements.

3.3. Modal parameters

The natural frequencies of S3o Lourenco bridge are associated
with different types of modes of vibration, namely global modes
(G) and local modes (L).

The global modes involve global modal deflections of the bridge
deck or arches. The local modes are associated with local vibrations
of diagonals and hangers, with no significant modal deflections of
the deck or arches. Some global modes are coupled with local
modes. These particular modes are characterized by common
movements, with similar amplitude, of the deck or arches with
the diagonals or hangers. The modal analysis of the bridge was
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Mode 1G -2.30 Hz

Mode 2G - 4.13 Hz

Mode 3G - 5.88 Hz

S

Mode 5G -9.19 Hz

Mode 7G - 11.33 Hz

Mode 4G - 6.78 Hz

Mode 6G —9.92 Hz

Mode 8G - 13.39 Hz

Fig. 5. Numerical global natural frequencies and mode shapes.

performed considering the stress stiffening due to the permanent
loads.

In Fig. 5 the natural frequencies of the most relevant calculated
global modes of the bridge and the corresponding mode shapes are
presented. Modes 1G, 4G and 8G essentially involve the transversal

bending of the arches. Modes 2G, 3G, 5G, 9G and 11G are flexural
modes of the deck; on the other hand, modes 6G, 7G, 10G and 12G
are torsional modes of the deck.

Fig. 6 shows the values of the natural frequencies and mode
shapes of some of the local modes mainly associated with modal
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Mode 9G - 14.17 Hz

Mode 11G - 19.96 Hz

Mode 12G —20.23 Hz

Fig. 5 (continued)

deflections of the longer diagonals (DL), shorter diagonals (DS), and
the hangers located at mid-span of the deck (H). It should be noted
that in the figure are only represented the modes of the elements
for which sensors were placed in the ambient vibration test (see
Section 4). For a better visualization only the deformed shape of
the arches (3D view and lateral view) are represented, attending
that the modal deflections of the deck are negligible.

4. Ambient vibration test
4.1. Description

The ambient vibration test enabled to identify the modal prop-
erties of the bridge, namely, the natural frequencies, the mode
shapes and the damping coefficients. This test was implemented
using a technique that considers fixed reference points and mobile
measuring points and involved the use of 12 piezoelectric acceler-
ometers model PCB” 393A03. The ambient response was evaluated
in terms of accelerations in the vertical, transverse and longitudi-
nal directions, in successive setups in a total of 55 measurement
points located on the main girders of the deck, on the footway can-
tilever, on the arches and in some hangers and diagonals (Fig. 7).
The reference sensors were located in the sections between 1/3
and 1/4 span of the deck (positions 11, 12, 23 and 24).

The data acquisition was performed using the cDAQ-9172® sys-
tem from National Instruments, equipped with IEPE analog input
modules with 24-bit resolution (NI 9233®). The acceleration series
were acquired over periods of 10 min, with a sampling frequency
of 2000 Hz and decimated to a frequency of 100 Hz.

The connection of the accelerometers to the girders of the deck
was performed by means of metallic plates bonded to the surface
of the concrete. The connection of the accelerometers to the ele-
ments of the arches was performed with plates fixed by means

of magnetic bases, in the case of the arch, or through clamped
metallic double angles, in the case of the hangers and diagonals.
The details of these connections are shown in Fig. 8. The installa-
tion of sensors in the arches was limited to a height of 2.80 m, with
respect to the level of the footway, in order to satisfy the safety dis-
tance to the catenary.

Due to the reduced acceleration levels of the bridge under
ambient conditions, a random external excitation was provided,
in time and space, by means of a group of people jumping in
several locations of the deck. This technique guarantees higher
signal-to-noise ratios and consequently an increase of the coher-
ence between the measured signals.

4.2. Modal parameters identification

4.2.1. Natural frequencies and mode shapes

The identification of the frequencies and modes of vibration of
the bridge was performed by the application of the Enhanced Fre-
quency Domain Decomposition method (EFDD) available in the
software ARTeMIS® [48]. Fig. 9 shows the curves of the average
normalized singular values of the spectral density matrices of all
experimental setups.

The marked peaks correspond to global modes, coupled and
uncoupled, and local modes of the bridge.

The local modes refer to the elements of the arches where the
sensors were installed. The local modes of the longer diagonals,
the most flexible elements of the arches have frequencies equal
to 6.82, 7.76, 6.98, 8.59, 7.48, 9.09 and 8.24 Hz in correspondence
with modes 1L to 7L. The modes of the mid-span hangers of the ar-
ches have frequencies equal to 11.64, 11.93 and 10.48 Hz, in corre-
spondence with modes 8L to 10L. The modes of the shorter
diagonals of the outer arch have frequencies equal to 18.86 and
19.23 Hz and correspond to modes 11L and 12L respectively.
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Mode 1L (f = 7.47 Hz)

Mode 2L (f = 7.48 Hz)

Mode 3L (f =7.52 Hz)

Mode 5L (f=7.85 Hz

Mode 9L (f = 11.44 Hz)

Mode 4L (f = 7.52 Hz)

Mode 10L (f = 11.72 Hz)

Fig. 6. Numerical local natural frequencies and mode shapes.

Fig. 10 illustrates the configurations of the identified global
modes of vibration, indicating the respective frequencies. For a bet-
ter understanding of the configuration of each mode, only the
modal deflections of the main girders of the deck are represented.

Fig. 11 shows the values of the autoMAC correlation matrix of
the experimental mode shapes obtained by the application of the
EFDD method, and considering only the modal information of the

deck (Fig. 11a) and the modal information from the deck and ar-
ches (Fig. 11b).

The observation of the figure shows significant correlations be-
tween the pairs of modes 1G-6G, 4G-7G and 8G-10G, because of
the similarity between the configurations of these modes when
considering only the modal information of the deck. The measure-
ment points located at the arches, diagonals and hangers allowed
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Mode 11L (f = 17.44 Hz)

Mode 12L (f = 17.58 Hz)

Fig. 6 (continued)
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Fig. 7. Measuring points of the ambient vibration test: (a) arches and (b) deck.

scaling the modal deflections of the deck, in order to correctly
assess the nature of the modes.

4.2.2. Damping coefficients

Fig. 12 presents the damping coefficients estimates obtained by
EFDD method for the different experimental setups. The estimates
of damping coefficients of the global modes show an overall
decrease with the increase of the frequency of vibration. Mode
2G shows the highest damping values, between 1.15% and 1.60%,
and also the highest dispersion of results. Modes 1G, 3G and 4G
have damping coefficients between 0.50% and 1.00%, and the
remaining global modes have damping values lower than 0.50%.
The damping coefficients of the local modes have lower dispersion
and are generally located between 0.10% and 0.30%.

5. Calibration of the numerical model

The calibration of the numerical model of the bridge was based
on the results of the ambient vibration test and involved two
stages: a sensitivity analysis and an optimization process. The
technique adopted for the mode pairing between numerical and
experimental modes of vibration is also discussed.

5.1. Mode pairing criteria

The mode pairing technique establishes the correspondence be-
tween each experimentally obtained mode and a numerically de-
rived mode. Brehm et al. [25] stressed that a correct assignment
is important to assure a correct sensitivity analysis and a well-
shaped objective function applied in the optimization-based model
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Fig. 8. Installation of the accelerometers: (a) deck, (b) start of the arch and (c) hanger.
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Fig. 9. EFDD method: average normalized singular values of the spectral density matrices.

updating. However, the definition of a stable pairing criterion is a
complex task due to the usually limited number of measurement
points. Additionally, changes of the updating parameters can lead
to switches of modes with close frequencies.

In this paper, the energy-based modal assurance criterion
EMAC;; = ijMAc,j 1)
proposed by Brehm et al. [25], has been applied. This criterion en-
hances the traditional modal assurance criterion MAC [49]

(@] )
(07 &;)(@T

by the relative modal strain energy (II;) of a certain cluster k of
numerical degrees-of-freedom related to a numerical mode j, where
@; is the numerically derived vector containing the coordinates
from the numerical mode j corresponding to the experimental
degrees-of-freedom and @; is the experimentally obtained vector
containing the experimental information of mode i. The clusters k
should reflect the information extracted from the distribution of

MAC; = (2)

51-)

measurement points and their measurement directions related to
a specific mode. Further discussions were presented in Refs. [14,25].

In this specific application, the clusters are related to the trans-
lational degrees-of-freedom of the six element groups indicated in
Fig. 13. The other elements cluster contains all remaining degrees-
of-freedom, such as, the remaining rotational degrees-of-freedom
of all element groups and the translational degrees-of-freedom in
y direction of the hangers %2 span.

Fig. 14 shows the values of the relative modal strain energy of
each cluster related to all numerical modes in the range between
2.3 and 29.4 Hz of the initial finite element model.

The global modes are associated with higher energy values of
the clusters deck and arches. The local modes have higher energy
values in the clusters diagonals and hangers %2 span. Therefore,
the EMAC related to the global modes 1G to 4G, 7G and 9G are
based on a joint cluster of deck and arches, while for the remaining
global modes only the relative modal strain energy of the deck
cluster is considered. Depending on the involved elements in each
particular local mode, the clusters diagonals and/or hangers %2 span
are applied to calculate the EMAC value. The cluster footway was
not useful at all for the mode pairing.
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Fig. 10. Experimental global natural frequencies and mode shapes.

Fig. 15a and b illustrate the MAC and EMAC matrices between
experimental and numerical modes of the initial finite element
model, respectively. For a simple visualization, each matrix is di-
vided into two submatrices, referring to the global and local
modes. Using these matrices, the most likely numerical mode can
be assigned to each experimental mode, which is indicated by
the highest value in each row. Of course, the final paired modes
can be different, whether the MAC or EMAC is applied as mode
assignment criteria. For this specific input parameter set, the cor-
rect mode pairing can be determined by visual inspection. These
results can be used to assess the ability of both criteria to find
the most likely mode pairing.

In general, the EMAC is more reliable for the detection of the
correct mode pairing than the simple MAC criterion. This can be,

for example, observed for the experimental mode 6G. The MAC is
assigning the 9th numerical mode, which is mainly characterized
by the simultaneous vibration of the two longer diagonals of the
outer arch. The modal torsional deflection of the main structure
is of minor order in this mode. Therefore, the wrong mode would
be assigned if using the MAC criterion. Based on the EMAC param-
eter, a correspondence between the experimental mode 6G and the
correct numerical mode 15 was established. This numerical mode
essentially mobilizes the modal energy of the deck. Concerning
the local modes, it is important to emphasize the importance of
the EMAC parameter for the correct pairing of modes 8L and 11L.
To improve the efficiency of the pairing of modes 1L and 7L in addi-
tion to the adoption of EMAC values, frequency limits were
imposed to avoid pairing with higher order modes. For example
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Fig. 11. AutoMAC correlation matrix of the experimental modes shapes obtained by the application of the EFDD method, and considering only the modal information of the:
(a) deck (b) deck and arches.
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Fig. 12. Damping coefficients estimated by EFDD method for the different experimental setups.
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in the case of experimental mode 3L, which tends to pair with the
numerical mode 55 based on the MAC value, is paired with the
numerical mode 7 using the EMAC value and the frequency
restrictions.

5.2. Sensitivity analysis

The sensitivity analysis allows for the selection of the parame-
ters that most influence the frequencies and MAC values of the glo-
bal and local modes, and consequently should be included in the
subsequent optimization phase. In contrast to sensitivity analyses,
in which only one parameter is varied at one time (e.g., Saltelli
et al. [50]), all uncertain input parameters are varied simulta-
neously in this study. This has the advantage of obtaining global
sensitivities for all pairs of parameters with a single sample set.
The multivariate samples are generated by a stochastic sampling
technique, the Latin hypercube sampling, which outperforms tradi-
tional design-of-experiment sampling schemes, such as the full
factorial design. The samples are related to a multivariate uniform
distribution with the limits given in Table 1. The automatic mode
pairing criteria, based on the EMAC, was crucial for the correct
identification of the most suitable set of parameters.

Fig. 16 shows the results of a global sensitivity analysis through
a Spearman linear correlation matrix [25]. The sensitivity analysis
was based on 750 Latin hypercube samples. The samples related to

(b)

Fig. 15. (a) Modal assurance criterion (MAC) between numerically derived and experimentally obtained modes shapes, (b) energy-based modal assurance criterion (EMAC)

between numerically derived and experimentally obtained modes shapes.
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Fig. 16. Spearman correlation matrix between the parameters and the responses of the numerical model of the bridge.

a MAC value below 0.50 were removed. The correlation coefficients
located in the interval [-0.25; 0.25] were excluded from the graph-
ical representation.

The correlation matrix shows that the modulus of deformability
of concrete and steel, the density of concrete, the density of ballast
and the vertical stiffness of supports have a significant influence on
the frequencies and MAC values of the global modes. Furthermore,
the parameters associated with the initial stress of the hangers and
diagonals and the stiffness of the connections between these
elements and the deck and arches have an important influence
on the frequencies and MAC values of the local modes. All the
analyzed numerical parameters revealed important sensitivities
and consequently will be used in the optimization process.

5.3. Optimization

The optimization phase allowed obtaining the parameter values
that minimize the differences between the numerical and experi-
mental modal responses, and involved the definition of an objec-
tive function and the application of an optimization technique
based on a genetic algorithm.

Fig. 17 presents a flowchart that illustrates the iterative process
of calibration of the numerical model. The process involves the use
of three software packages: ANSYS® [26] MATLAB® [51] and
OptiSlang® [52].

In ANSYS® environment the FE numerical model is developed
based on a set of initial parameter values, and the mass and stiffness
matrices are extracted. In MATLAB® software, the eigenvalues and
eigenvectors problem is solved, and based on the experimental
modal information, the mode pairing between numerical and
experimental modes using the EMAC is performed. The values of

the natural frequencies and MAC values are exported in text format.
Finally, the OptiSlang® software, based on an objective function and
on the application of an optimization technique supported by a
genetic algorithm, estimates a new set of parameters focused on
the minimization of the objective function residuals. This procedure
is repeated iteratively until the maximum number of generations is
reached.

The objective function (f) comprises two terms, one related to
the natural frequencies of global and local modes, and another
related to the MAC values of global and local modes:

nmodes | fEXP _fnum| nmodes
i

f=a ¥ F——+b by IMAC (¢, ™) = 1] G3)

= fiexp

where f** and f™™ are the experimental and numerical frequencies
for mode i, ¢;"" and ¢]“™ are the vectors containing the experimen-
tal and numerical modal information regarding the mode i, a and b
are weighing factors of the terms of the objective function, assumed
in this case equal to 1.0, and nmodes is the total number of modes
equal to 24.

The optimization of the bridge model involved the use of 15
design variables and 48 modal responses. The genetic algorithm
was based on an initial population consisting of 30 individuals
and 150 generations, for a total of 4500 individuals. The initial pop-
ulation was randomly generated by Latin Hypercube method. In
this algorithm the number of elites was equal to 1 and the number
of substitute individuals was also defined equal to 1. The crossing
rate was considered equal to 50 % and the mutation rate was set
equal to 15% with a standard deviation, variable along the optimi-
zation, between 0.10 and 0.01.
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The optimal values of the parameters were obtained based on different initial populations. The computational time spent in the
the results of four independent optimization runs (GA1-GA4) with calculation of each individual was approximately 105 s, on a
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computer with two processors Intel® XEON E5430 at 2.67 GHz and
28 Gb RAM.

Fig. 18 shows the optimization results in the terms of ratios, in
percentage, between the values of numerical and experimental
natural frequencies (Fig. 18a), and MAC values (Fig. 18b), for the
cases GA1 to GA4.

The figure shows that the errors associated with the frequencies
are less than 5%, for the majority of the modes of vibration. Gener-
ally, the MAC values are higher than 0.90, and the values associated
with the local modes are higher than the values of the global
modes. The larger variability of the MAC values are associated with
modes 4G, 6G and 11G.
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In general, the results for the different optimization runs are In Fig. 19 are represented the ratios of the values of each numer-

very similar, demonstrating the robustness of the genetic ical parameter relative to the limits indicated in Table 1 for optimi-

algorithm.

zation runs GA1-GA4. A ratio of 0% means that the parameter
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coincides with the lower limit. A ratio of 100% means that it coin-
cides with the upper limit. The parameters that control the global
modes are shown in Fig. 19a, with the values of the numerical
parameters indicated in brackets.

The parameters that most influence the local modes are shown
in Fig. 19b and c. The parameters that basically control the global
modes, the modulus of deformability of concrete (E.) and steel
(Es) and the vertical stiffness of the supports (K,) presented lower
variations, usually below 10%.

Concerning the densities of concrete and ballast, the different
estimates showed higher variation, close to 20%. This is likely to
be related to the fact that these parameters contribute similarly
to the mass of the deck, and different combinations of these
parameters may occur, leading to the same solution in terms of
optimization of the problem.

Fig. 20 shows the error values between numerical and experi-
mental frequencies, before and after calibration, taking as refer-
ence the values of the experimental frequencies. The results after
calibration refer to the optimization run GA2, which is associated
with the lowest residual of the objective function. The average er-
ror of the frequencies of global modes decreased from 4.7% before
calibration, to 1.9% after calibration. In terms of the frequencies of
local modes, the average error decreased from 7.5% before calibra-
tion, to 3.7% after calibration.

Fig. 21 shows a comparison of the MAC values of global modes
(Fig. 21a) and local modes (Fig. 21b), before and after calibration of
the numerical model.

For the case of the global modes, the average MAC value changed
from 0.880, before calibration, to 0.908 after calibration. With regard
to the local modes, the improvement was even more significant, as
the average MAC value passed from 0.765, before the calibration,
to a value of 0.974 after calibration. Fig. 22 presents a comparison
of the experimental and numerical mode shapes after calibration.

6. Experimental validation

The validation of the numerical model of the bridge was carried
out by ultrasonic tests, to characterize the modulus of deformabi-
lity of concrete, and by a dynamic test under railway traffic.

6.1. Characterization of the modulus of deformability of concrete

The ultrasonic test [53] was performed based on a direct trans-
mission technique [54]. Fig. 23a illustrates the execution of the test
in the concrete block, with the schematic identification of the
transmission mechanism.

The equipment consisted of an ultrasonic transmitter and recei-
ver controlled by a central unit, model Proceq® Tico. The test was
performed in seven different locations of the concrete block in a
total of 19 individual measurements. The detection of the steel
reinforcement rebars was performed using a laser system.

The distribution of the modulus of deformability of concrete (E.)
was estimated from the expression (adapted from [55]):

1 {pcu +0e)(1 = 20c) [I_H
t

Effk

(1-0v) @)

by means of a stochastic simulation, based on 10°> samples, and
considering the density of concrete (p.) and the wave propagation
time (t) as random variables. The estimated density of concrete as-
sumed the values in the interval presented in Table 1. The dynamic
Poisson’s ratio of concrete was considered equal to 0.20. The width
of the element had a value equal to 0.60 m. The measured wave
propagation time varied between 127.3 and 127.6 ps. The constant
k performs the conversion of dynamic to static modulus of
deformability of concrete and takes values between 1.12 and
1.25 [55].

The obtained results, presented in Fig. 23b, show that the
modulus of deformability of concrete follows a normal distribu-
tion with mean value equal to 43.1 GPa and a coefficient of var-
iation of 4.0%. Additional tests performed in the main girders of
the deck conducted to estimates of the modulus of deformability
of concrete similar to those obtained in the concrete block. In the
same figure is included the distribution considered in the calibra-
tion of the numerical model (see Table 1) for concrete of the class
C35/45 including the fly-ash addition. It can be pointed out that
the values of the modulus of deformability of the concrete result-
ing from the optimization, with values between 44 and 45 GPa,
fit the range of the most frequent values of the experimental
distribution.

6.2. Dynamic test under railway traffic

The validation of the numerical model was also performed
based on a dynamic test under railway traffic that consisted on
the measurement of the dynamic response in terms of displace-
ments and accelerations at several locations of the bridge deck.

Fig. 24 presents some details of the positioning of LVDTs for
measuring the displacement in the reference section of the deck
and in one of the supports (Fig. 24a), as well as an accelerometer
also in the reference section of the deck (Fig. 24b).

The dynamic analyses were performed by the modal superposi-
tion method, using a moving loads methodology, considering the
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modes of vibration with frequencies up to 30 Hz and an integration
time increment equal to 0.001 s. The adopted modal damping coef-
ficients were those experimentally obtained. The experimental
acceleration records were filtered based on a low-pass digital filter
with a cut-off frequency equal to 30 Hz.

Fig. 25 shows the load scheme of the alfa pendular tilting train.
This conventional train has a total length of approximately 150 m
and is composed by four motor vehicles (BAS, BBS, BBN and BAN)
and two hauled vehicles (RNB and RNH). The axle loads varies be-
tween 128.8 and 138.4 kN.

Fig. 26 compares the dynamic responses of the bridge obtained
by experimental and numerical calibration, before and after updat-
ing, for the passage of alfa pendular train at a speed (v) of 181 km/
h. The dynamic response is compared in terms of displacement and
acceleration in the position 11 of the bridge deck and also in terms
of the displacement in the support.

The figures show a very good agreement between numerical,
after updating, and experimental records. The dynamic responses,
in particular in terms of displacement of the deck, are clearly dom-
inated by the frequency associated with the passage of the regu-
larly spaced groups of axles (fy) with a spacing (dy) of 25.9 m
(fe=v/dg=181/3.6/25.9 = 1.96 Hz). The response in terms of dis-
placement of the support is also influenced by the frequency asso-
ciated with the passage of successive axles (f,) with constant
distance (d,) equal to 2.7 m (f; = v/d, = 181/3.6/2.7 = 18.6 Hz).

Regarding the response in terms of acceleration, it should be
noted the important contribution of the frequency of the 2nd mode
of vibration of the deck. In the experimental record, it is also pos-
sible to identify the contributions of frequencies above 20 Hz, pos-
sibly related with the irregularities of the track or wheels, causing
the excitation of the axles or the bogies of the vehicles, which can
only be simulated in a dynamic analysis including train-bridge
interaction. The numerical results after updating revealed a better
approximation to the experimental results, in comparison with the
results before updating.

7. Conclusions

This paper described the calibration and experimental validation
of a numerical model of a bowstring-arch railway bridge based on
modal parameters. Based on an ambient vibration test and by the
application of the EFDD method, the frequencies, mode shapes
and damping coefficients of twelve global and local modes of vibra-
tion of the bridge were identified. A sensitivity analysis revealed
that global modes are essentially influenced by the modulus of
deformability and density of the concrete and by the modulus of
deformability of the steel, the density of the ballast and the vertical
stiffness of the supports. In contrast, the local modes are particu-
larly sensitive to parameters related to the stress of the hangers
and diagonals and to the stiffness of the elements that connect
these elements to the arches and deck. The optimization of the
numerical model was performed using a genetic algorithm and in-
volved 15 numerical parameters and 48 modal responses (24 natu-
ral frequencies and 24 MAC values). The results of 4 optimization
runs, based on different initial populations, led to very similar
values of the frequencies, MAC and numerical parameters, which
demonstrates the robustness of the genetic algorithm. The fre-
quency differences with respect to the experimental values were
generally below 5%. MAC values were found to be always above
0.85, and in the case of local modes, above 0.90. Concerning the
numerical parameters, it is important to emphasize the stability
of certain parameters, in particular the modulus of deformability
of concrete and steel and the vertical stiffness of the supports,
which presented variations of less than 10% within the considered
range. Other parameters, such as the density of concrete and ballast,
showed larger variability, close to 20%, which is related to the fact

that these parameters had a similar influence on the mass of the
deck, and different combinations of these parameters may occur
in order to obtain the same solution in terms of the optimization
problem. The parameters related to the initial stress of the hangers
and diagonals and the stiffness of the elements that make the con-
nection to the arches and deck, with an important influence in the
local modes, also showed variations below 20%. Comparing the val-
ues of the numerical frequencies of vibration before and after cali-
bration, with the corresponding experimental values, significant
improvements in the numerical model were found. The average
error of the frequencies of vibration of global modes decreased from
4.7% before calibration to 1.9% after calibration. In the case of local
modes there was also a significant improvement, considering the
error evolution from 7.5% before calibration to 3.7% after calibra-
tion. In order to validate the optimization results, an ultrasound test
was performed, which allowed measuring the modulus of deforma-
bility of the concrete, as well as a dynamic test under railway traffic,
which allowed obtaining dynamic responses in terms of displace-
ments, on the deck and support, and of acceleration of the deck. It
was found that the values of the modulus of deformability of the
concrete resulting from the optimization, between 44 and 45 GPa,
fit in the range of most frequent values of the experimental distri-
bution. A comparison of dynamic responses of the bridge for the
passage of alfa pendular train at 181 km/h showed a very good
agreement between numerical and experimental results. The small
differences in the acceleration records are due to the contribution of
frequencies above 20 Hz in the experimental record that were not
present in the numerical record. This is possibly related with the
irregularities of the track or wheels, causing excitation of the axis
or bogies of the vehicles, and can only be simulated in a dynamic
analysis with train-bridge interaction. The comparison between
the experimental and numerical, before and after updating, dy-
namic responses revealed an important improvement of the corre-
lation between records after updating.

The updated model will be used in the numerical simulation of
the dynamic response for high-speed railway traffic in order to
draw conclusions regarding the performance of the bridge in terms
of structural safety (dynamic amplification and fatigue), track
safety (track and wheel-track contact stability) and passengers
comfort. Further research work in model updating is currently
being developed namely in what concerns the inclusion of the dy-
namic responses in the objective function and also in the consider-
ation of the uncertainties of the experimental data, such as
frequencies and mode shapes, in the optimization problem.
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