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This article describes the experimental calibration of a three-dimensional numerical model of an Alfa
Pendular train vehicle based on modal parameters. The dynamic tests of the carbody and bogie of
the vehicle allowed the determination of the frequencies and modal configurations of 13 vibration
modes, by applying the data-driven stochastic subspace identification method. In addition, a dynamic
characterisation test of the passenger-seat system was also conducted. The calibration of the model
was performed using a submodelling/multistep approach involving two phases, the first one focused
on the calibration of the model of the bogie under test conditions and the second one focused on the
calibration of the complete model of the vehicle. The calibration was performed through an iterative
method based on a genetic algorithm and allowed to obtain optimal values of 17 parameters of the
numerical model. For the pairing of the vibration modes, real and complex, a recent technique was
used based on the calculation of the modal strain energy. The stability of a significant number of
parameters considering different initial populations demonstrated the robustness of the algorithm. The
comparison of experimental and numerical responses before and after calibration revealed significant
improvements in the numerical model and a very good correlation between the responses obtained
with the calibrated model and the experimental responses.

Keywords: finite-element model updating; railway vehicle; dynamic tests; modal identification; mode
pairing criteria; genetic algorithm

1. Introduction

When interacting with the railway track, moving trains induce vibrations that can affect the
structural stability of the infrastructure and rolling stock components, the stability of the
track and of the wheel–rail contact and passengers’ comfort. Problems can occur on the plain
track [1], on bridges [2–5] or on transition zones [6,7].

Dynamic models of the train-track coupled system are developed in order to perform an
accurate analysis of the problems.

In this type of models the modelling of the vehicles is conducted based on formulations
grounded on the multibody dynamics [8–10], on formulations based on the finite-element
method [11–14] and also on hybrid formulations that combine both forms of modelling [15].
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822 D. Ribeiro et al.

In formulations based on the multibody dynamics, the carbody, bogies and axles of the
vehicles are modelled through rigid structures connected by springs and dampers which sim-
ulate the primary and secondary suspensions. Applications of such formulations can be found
in the study developed by Wu et al. [16], on the modelling of conventional trains, and also
Kwark et al. [8] and Lee and Kim [17], on the modelling of articulated trains.

In formulations based on the finite-element method it is possible to consider the deforma-
bility of the carbody, bogies and axles. Beam-finite elements arranged in a grid [18], as well as
shell-finite elements [11,19,20] and volume-finite elements [11], have been used for modelling
the carbody of the vehicle. The development of these models requires the knowledge of the
geometrical and mechanical parameters of the vehicle’s structure. This information, in most
cases, is difficult to obtain from the vehicle manufacturers.

The use of models which consider the deformability of the carbody of the vehicle becomes
more important due to the tendency to use increasingly lighter and slender structures in the
manufacture of trains to reduce weight, construction costs, etc. [9]. Several authors such as
Iwinicki [21], Carlbom [22], Diana et al. [23] and Tomioka et al. [18,20] showed that the flexu-
ral vibration of the carbody may contribute, in a large extent, to the accelerations that passengers
are subjected to. The frequencies of these vibration modes range from 8.5 Hz to 13 Hz [12,
24–27], which is significantly relevant regarding human beings’ sensitivity to vibration.

Diana et al. [23] showed that, due to the suspension of heavy equipment in the under-floor,
there may be local vibration modes on the floor of the vehicle that can also affect passenger
comfort.

Studies carried out by Carlbom [22] and Wei and Griffin [28,29] included the passenger-seat
system in the models of vehicles. Carlbom [22] proposed several models for this system. In
the simplest model, with one degree of freedom, the mass of the passenger is suspended by
a spring and a damper. In the more complex model, with two degrees of freedom, part of the
mass of the passenger is suspended by a spring and a damper while the other part (about 5–20%
of the total mass) is not suspended. Wei and Griffin [29] conducted an extensive experimental
study on the dynamic characteristics of the passenger-seat system that placed the range of the
vibration frequencies between 3 Hz and 5 Hz.

The implementation of automatic procedures for the calibration of the numerical models of
railway vehicles is still poorly reported in the bibliography. Iterative calibration methodologies
based on optimisation techniques, such as the gradient-based techniques [11,30] or genetic
algorithms [31], were used in the few identified studies.

The experimental identification of the modal parameters of the vehicles is usually performed
considering the vehicle at rest or in motion. In tests where the vehicle is at rest excitation is
induced by hydraulic actuators, electrodynamics exciters [11,19], impact hammers [11,14] or
by the impact of other vehicles [32]. In tests with moving vehicles the excitation is induced
by the irregularities of the track [32].

This article describes the calibration of a numerical model of an Alfa Pendular train vehicle
base on modal parameters. The three-dimensional numerical model developed for the vehicle
uses shell-finite elements for the carbody and beam-finite elements, together with spring-
damper elements, in order to simulate the axles and bogies. This highly complex model also
includes the modelling of the passenger-seat system.

The modal parameters of the vehicle were determined based on a set of forced vibration tests
that focused specifically on the carbody, bogie and passenger-seat system. The calibration of
the numerical model was conducted using a submodelling/multistep approach involving two
phases: the first phase concerned the calibration of the model of the bogie and the second phase
focused on the calibration of the complete model of the vehicle. The calibration methodology
of numerical models involved a sensitivity analysis and an optimisation. The global sensitivity
analysis was based on a stochastic sampling technique [33] and allowed the identification of the
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Vehicle System Dynamics 823

numerical parameters that most affect the modal responses and, therefore, should be included
in the optimisation of the model. The optimisation was carried out based on an iterative pro-
cedure using a genetic algorithm [34,35]. A mode pairing criterion based on the modal strain
energy using the Enhanced Modal Assurance Criterion (EMAC) [36] was used to achieve
the correct pairing of the numerical and experimental vibration modes. The implementation
of this criterion, which was used in previous works of Brehm et al. [36] in structures with
real vibration modes, was applied in this paper, for the first time, to structures with complex
vibration modes based on a state formulation. The efficiency of this criterion, in comparison
with classical Modal Assurance Criterion (MAC) [37], is demonstrated. Finally, the modal
parameters of the calibrated numerical model are compared with the modal parameters of the
initial numerical model.

2. The Alfa Pendular train

2.1. General description

The CPA 4000 series train, known as Alfa Pendular, exists since 1999 and connects Lisbon
and Porto. Currently there are 10 units serving the public rail transport operator in Portugal
(CP). This train consists of six vehicles, four motor vehicles (BAS, BBS, BBN and BAN) and
two hauled vehicles (RNB and RNH). The train has a total length of 158.9 m and can reach a
speed of 220 km/h. The total weight, in normal load conditions, is 323.3 t. The axle loads vary
between 128.8 and 136.6 kN. Figure 1 shows a perspective of the Alfa Pendular train with the
identification of all vehicles.

2.2. BBN vehicle

The BBN vehicle is a tourist class vehicle with a capacity of 62 passengers distributed into
four alignments. Both bogies of this vehicle are motor bogies. The total mass of the vehicle,
including the bogies, achieve 52.2 t, in running order, and 55.0 t, in normal load conditions.
The length of the vehicle is 25.9 m. The distance between the bogie pivots of the vehicle equals
19.0 m and the wheelbase equals 2.7 m. Figure 2 shows a side view and a plan view of the
BBN vehicle’s interior.

The carbody is formed by a tubular structure made of aluminium alloy consisting of 20
alveolar extruded panels longitudinally welded. The seats are directly fixed to the carbody’s
structure through metallic joints. Figure 3 shows a cross-section of the structure of the carbody
with the identification of its components: base (1), side walls (2) and cover (3), and further
details of a joint between a side wall panel and a cover panel and also the details of a base
panel.

Figure 1. Alfa Pendular train.
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824 D. Ribeiro et al.

(a)

(b)

Figure 2. BBN vehicle: (a) side view; (b) plan view.

(a) (b)

Figure 3. Carbody: (a) cross-section; (b) structural details.

Figure 4 shows a schematic illustration of the bogie. The main structure, or chassis, is made
of mild steel consisting of two girders (1) connected by two tubular crossbars (2), forming a
double H structure. The connections between the girders’ elements and between the girders
and the crossbars are welded.

The bogie’s chassis rests on two axles (3), specifically on the axle boxes (6) through springs
(9) and dampers (10) of the primary suspensions and two traction rods, a lower one (7) and
an upper one (8). In the axle box there is a bumpstop limiting the opening of the primary
suspension springs.

Each bogie has two axles, one motor axle with a reduction gear unit (5) and two brake discs
(4), and one trailer axle, with three brake discs. Figure 5 shows an image of a trailer axle.
Joining the two girders there is a bolster which is articulated at the ends and also supports the
calipers of the braking system.

The tilting bolster is supported over the chassis by secondary suspensions. The same tilting
bolster, supports, in turn, the load bolster which is connected to the carbody of the vehicle.
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Vehicle System Dynamics 825

Figure 4. Motor bogie [38].

Figure 5. Trailer axle.

These two bolsters, linked by connecting rods and hydraulic actuators, allow the tilting of the
carbody.

Figure 6(a) illustrates the connecting elements between the chassis and the tilting bolster
(13), namely the springs (12) as well as a vertical (14) and a transverse (15) damper from
the secondary suspension. The secondary suspension springs are supported by circular elastic
blocks attached to the central area of the chassis (element (11) of Figure 4). The load bolster
(17) rests on the tilting bolster through groups of connecting rods (18) which enable the rotation
of the carbody around its longitudinal axis due to the action of two hydraulic actuators (19)
(Figure 6(b)). The yaw motion of the carbody is prevented by two yaw dampers connecting
the load bolsters to the girders. The carbody (16) is rigidly connected to the load bolster.

Table 1 shows the mass distribution in the BBN vehicle. The equipment located in the under-
floor includes the engine and traction converter, the active suspension controller, the tilt and
braking system controllers, the tanks and the air-conditioning system. The mass correspond-
ing to coatings, bathroom equipment, electrical panels, cabinets, wiring, glazing, couplings,
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826 D. Ribeiro et al.

(a) (b)

Figure 6. Details of the bogie: (a) tilting bolster; (b) load bolster [38].

Table 1. Mass distribution in the BBN vehicle.

Element Component Mass (kg)

Carbody Structure (base, side walls and cover)a 6770
Equipment Seatsb 1325

Under-floora 7851
Others 19,694

Bogiesa 16,560 (2 × 8280)

Axles and wheelsetsa Motor 1884
Trailer 1538

aEstimated values based on the project’s data.
bValues provided by EMEF.

protective covers, etc. was included in the item others under the component equipment. The
mass of the bogies includes the masses of the axles and wheelsets.

3. Numerical modelling

3.1. Description

The modal analysis of the BBN vehicle was performed using a three-dimensional finite-
element model developed in theANSYS software [39]. The use of a finite-element formulation
allows considering the influence of the deformability of the carbody, bogies and axles. Figure 7
presents a perspective, a side view and a top view of the numerical model.

The carbody was modelled by shell-finite elements while the bogies were modelled by
beam-finite elements, with the exception of the suspensions, the connecting rods and the tilting
system which were modelled by spring-damper assemblies. Additionally, the passenger-seat
system was modelled, in a simplified manner, by a one-DOF system composed of a mass over
a spring-damper assembly.

The masses of the equipment located in the under-floor of the carbody and bogies were
simulated through mass elements. The structure was discretised with 1082 shell elements,
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Vehicle System Dynamics 827

Figure 7. Numerical model of the BBN vehicle: (a) perspective; (b) side view; (c) top view.

1029 beam elements and 148 spring-damper assemblies. The total number of nodes is 1902,
corresponding to 10,704 degrees of freedom.

3.2. Carbody

Table 2 presents the main geometric and mechanical parameters of the carbody’s numerical
modelling, including the designation, the selected value, the unit and the bibliographic refer-
ences that were used. Additionally, the characteristics of the statistical distribution of some
of the parameters, later used in the calibration phase of the model (see Section 6), are also
shown.

Figure 8 identifies the panels of finite elements considered in the numerical modelling of
the carbody in correspondence with the base, cover and side walls. In the modelling of the side
walls special attention was given to the positioning of openings corresponding to windows
and access doors.

The finite elements that simulate the various panels have length l and constant thickness
e and are constituted by elastic and orthotropic materials. The thickness of each panel was
determined based on the condition that the cross-sectional area of the finite-element panel
is equal to the cross-sectional area of the real panel. The inertia correction of the panels, in
directions x and z, was performed using the RMI parameter (Ratio of the bending Moment of
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828 D. Ribeiro et al.

Table 2. Characterisation of the main parameters of the numerical model of the carbody.

Statistical distribution

Average value/ Limits Adopted
Parameter Designation Type standard deviation (lower/upper) value Unit Ref.

KS1 Stiffness of
the vertical
secondary
suspension

Front bogie Uniform 256.4/7.5 247/272.9 256.4 kN/m [40]

KS2 Rear bogie

cS Vertical secondary suspen-
sion damping

Uniform 35/3.0 29.8/40.3 35 kN s/m [40]

cAL Yaw suspension damping Uniform 400/34.6 340/460 400 kN s/m [40]

Kb Stiffness of the tilting
bolster-load bolster
connection rod

Uniform 20,000/8660 5000/35,000 20,000 kN/m [40]

ρalum Aluminium density – –/– –/– 2700 kg/m3 [41]

E Modulus of deforma-
bility of aluminium

– –/– –/– 70 GPa –

RMIb Corrective
factor of the
moment of
inertia

Base Uniform 225/101 50/400 90 – [40]

RMIp Side walls Uniform 90/34.6 30/150 114 –

RMIc Cover Uniform 300/57.7 200/400 386 –

�Mb Additional
mass

Base Uniform 70/11.5 50/90 70 % [40]

�Mp Side walls Uniform 20/8.7 5/35 20 %

�Mc Cover Uniform 7.5/4.3 0/15 10 %

ebas Equivalent
thickness

Base – –/– –/– 10.2 mm –

epar Side walls – –/– –/– 10.3 mm –

ecob Cover – –/– –/– 8.8 mm –

Figure 8. Finite-elements panels from the numerical modelling of the carbody.
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Vehicle System Dynamics 829

Figure 9. Numerical model of a portion of the carbody’s panel.

Inertia) [39]:

RMI = Ireal

Imod
(1)

in which Ireal is the real inertia of the panel and Imod is the inertia calculated based on the
thickness of the shell-finite element:

Imod = le3

12
. (2)

The finite-element model shown in Figure 9 was developed in order to evaluate the relation
between longitudinal stiffness (direction x) and transverse stiffness (direction z) of the panels.
The model refers to a portion of a base panel with a plan dimension equal to 1.0 × 1.0 m2. The
lower, upper and diagonal plates were modelled using 3 mm thick shell-finite elements. The
supports prevent translational movements in all directions and were positioned alternately on
edges 1 and 2. Loading consists of a unit value vertical load, equally distributed, and applied
to the upper plate.

The relation between the transverse and longitudinal stiffness was estimated based on the
vertical displacement values of the central node of the panel, considering the supports placed
on edges 1 and 2, alternately. The results revealed that the stiffness in the transverse direction
is approximately 0.774 times the stiffness in the longitudinal direction. The same relation was
applied to the side walls and cover panels.

The additional masses of the base, side walls and cover of the carbody refer to the mass
parcels of the item others under the component equipment (Table 1) and were uniformly
distributed on the surface of the respective structural elements.

The stiffness and damping parameters of the secondary suspension elements as well as
their respective variation limits were estimated based on the values provided by the train’s
manufacturer [40].

3.3. Bogie

Figure 10 presents a perspective of the numerical model of the bogie. The chosen colours,
combined with the legend, facilitate the identification of the different elements of the bogie.

The beam elements connecting the wheelsets to the axle box have zero stiffness around
their axle, so as to simulate the linkage with the axle box. The support conditions imposed on
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830 D. Ribeiro et al.

Figure 10. Numerical model of the bogie.

Table 3. Geometric characteristics of the structural elements of the bogies [40].

Geometrical
Element Cross-section characteristics

Axle A = 0.00778 m2

Ix = 0.267 × 10−4 m4

Iy = 0.267 × 10−4 m4

Iz = 0.534 × 10−4 m4

Girder (central zone) A = 0.01093 m2

Ix = 0.857 × 10−4 m4

Iy = 0.887 × 10−4 m4

Iz = 0.121 × 10−3 m4

Crossbar A = 0.00718 m2

Ix = 0.210 × 10−4 m4

Iy = 0.210 × 10−4 m4

Iz = 0.421 × 10−4 m4

the bogie, particularly on the girders and on the tilting and load bolsters, allow translational
vertical movements and rotations around the x and z axes, preventing any other movements.

Table 3 shows the geometrical characteristics of the sections of the various elements that
constitute the bogies, particularly the axles, girders and crossbars. The geometric characteris-
tics are expressed in terms of the area (A) and inertias (I). The modulus of deformability and
density of steel were considered equal to 200 GPa and 7850 kg/m3, respectively.

Table 4 describes the main mechanical and geometrical parameters of the numerical model of
the bogie, including designation, adopted value, unit and bibliographic references. Moreover,
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Vehicle System Dynamics 831

Table 4. Characterisation of the main parameters of the numerical model of the bogie.

Statistical distribution

Average
value/

standard Limits Adopted
Parameter Designation Type deviation (lower/upper) value Unit Ref.

KP Stiffness of the primary
suspension

Uniform 564/26.6 518/610 564 kN/m [40]

cP Damping of the primary
suspension

Uniform 18/1.6 15.3/20.7 18 kN s/m [40]

Kbls Stiffness of
the axle box
connecting
rods

Upper Uniform 6.5/0.8 5.2/7.8 6.5 MN/m [40]

Kbli Lower Uniform 25/2.9 20/30 25 MN/m

Krc Stiffness of the wheel–rail
connection

– –/– –/– 1.5674 ×109 mN/m [42]

�Mlc Additional
mass

Girder (central
area)

Uniform 75/43.3 0/150 42 kg/m [40]

�Mle Girder
(extremities)

Uniform 30/17.3 0/60 38 kg/m

�Mt Crossbar Uniform 125/72.2 0/250 92 kg/m

�Me Axles – –/– –/– 271 kg/m

the characteristics of the statistical distribution of certain parameters, which will be used in
the model’s calibration phase (see Section 6), are also indicated.

The stiffness and damping parameters of primary suspension elements and their respective
variation limits were estimated based on information from the manufacturer [40]. The addi-
tional mass of the bogie, at the girders, crossbars and axles, is related to the mass of springs,
dampers, connecting rods, links, reinforcement plates, axle boxes and others. These masses
were linearly distributed in the different elements. In what concerns the girders the additional
mass was further divided into two parcels according to their location: in the central zone, i.e.
in the sections located between the crossbars and at the extremities.

The wheel–rail connection was modelled by a spring element with unidirectional behaviour.

3.4. Modal parameters

Table 5 shows the damped and undamped natural frequencies of the main vibration modes
of the BBN vehicle. The damped frequencies are calculated based on a modal analysis that
includes the damping matrix. In what concerns the bogies, for modes 1B and 2B, there are
different frequency values according to the movement of the two bogies in phase and in
antiphase, respectively. In the 3B mode, the different values of the frequencies are related to
the isolated movements of the left and right bogies, respectively.

The modal results show differences between damped and undamped natural frequencies.
These differences are more notorious for the rigid body modes of the carbody and bogies
since these modes involve significant movements of the suspensions. In case of the bogies the
differences are even more important since this additional damping is provided simultaneously
by the primary and secondary suspensions.

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

P]
 a

t 1
7:

17
 1

8 
M

ay
 2

01
3 



832 D. Ribeiro et al.

Table 5. Numerical natural frequencies of the carbody and bogies.

Damped Undamped
Element Mode Nature of vibration mode frequency (Hz) frequency (Hz)

Carbody 1C Rigid body Rolling 0.86 0.82
2C Bouncing 1.04 1.00
3C Pitching 1.42 1.33
4C Structural First distortion 10.21 10.21
5C First bending 16.20 16.20
6C First torsion 15.05 15.03

Bogies 1B Rigid body Bouncing 8.21/8.18 6.57/6.26
2B Rolling 4.89/5.28 4.09/4.53
3B Pitching 12.10/12.04 9.50/9.41

Figure 11. Numerical rigid body and structural modes of vibration of the carbody.

Figure 11 illustrates the modal configurations associated with rigid body modes (1C, 2C
and 3C) and structural modes of distortion (4C), bending (5C) and torsion (6C) of the carbody.
In these modes the movements of the bogie have very low amplitude.

Figure 12 shows the modal configurations, in perspective and cross-section view, of a bogie
of the vehicle. Mode 1B comprises the bouncing movement of the bogie. Modes 2B and 3B
comprise the rolling and pitching movements of the bogie, respectively. In these modes the
carbody shows very limited movements.

4. Dynamic tests

This section describes the experimental tests of the BBN vehicle involving the dynamic tests
of the carbody, bogie and passenger-seat system. The results of these tests will be used to
calibrate the numerical model of the vehicle.
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Vehicle System Dynamics 833

Figure 12. Numerical modes of vibration of the bogies.

4.1. Carbody test

The dynamic test of the carbody was conducted at EMEF facilities, in Porto, in order to identify
the natural frequencies and vibration modes of the carbody involving rigid body and structural
movements. EMEF is the company responsible for the maintenance of the CP trains. Figure 13
presents a perspective view of the tested vehicle. The mass of the carbody is equal to 35.64 t.

The carbody was instrumented with 14 PCB piezoelectric accelerometers (A0–A13), model
393A03, placed on the base of the carbody next to the intersection with the side walls, according
to the scheme presented in Figure 14.

The accelerometers located within the area of the seats were positioned by means of metallic
angles fixed to the structure of the seat with magnetic disks (Figure 15(a)). The accelerometers
located at the ends of the carbody, in the access area, have been installed in steel blocks directly
laid on the floor (Figure 15(b)).

The data acquisition was performed through the NI cDAQ-9172 system using three modules
NI 9233 for IEPE type accelerometers. The time series were acquired for 12 min periods, with
a sampling frequency of 2000 Hz, and then decimated to a frequency of 100 Hz.

Attending to the high damping of the vibration modes of the vehicle, it was necessary to use
an external excitation in order to increase the vibration levels. That excitation was achieved
through people jumping and, consequently, applying impulsive actions to the floor of the
carbody.

Accelerometers were also installed on bogies, in this experiment, but due to accessibility
restrictions it was not possible to excite the bogies with appropriate levels of vibration in order
to facilitate the identification of modal parameters. It should be noted that the vibration modes

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

P]
 a

t 1
7:

17
 1

8 
M

ay
 2

01
3 



834 D. Ribeiro et al.

Figure 13. View of the tested BBN vehicle.

Figure 14. Location of the accelerometers in the carbody of the vehicle.

Figure 15. Accelerometers installed in the carbody of the vehicle: (a) seat; (b) floor.

of the bogies, within testing conditions, are considerably damped due to the dampers of both
primary and secondary suspension systems.

The identification of the carbody’s modal parameters was carried out through the application
of the stochastic subspace identification method based on the time series of acceleration
(SSI-DATA) available in the ARTeMIS software [43].

Figure 16 shows the stabilisation diagrams that were estimated based on state models of order
between 1 and 160. The alignments highlighted in the figure correspond to the five vibration
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Vehicle System Dynamics 835

Figure 16. Identification of modal parameters through the SSI-DATA method.

Figure 17. Experimental frequencies and vibration modes of the carbody.

modes of the carbody, which were identified due to this test, apart from other alignments
associated with vibration modes of the seats and bogies.

Figure 17 illustrates the configurations of the identified vibration modes and the values of
their natural frequencies. It was not possible to identify the mode of vibration 6C.

4.2. Bogie test

The dynamic test of the bogie was performed in EMEF facilities in Entroncamento. Figure 18
shows an overview of the tested bogie and the reaction frame. Secondary suspensions, yaw
dampers, tilting and load bolsters were disassembled in order to perform the test. Loads were
applied to the bogie by two hydraulic actuators, in the area of the support blocks of the
secondary suspensions, in order to reproduce the loads imposed by the carbody of the vehicle.
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836 D. Ribeiro et al.

Figure 18. Dynamic test of the bogie: (a) overview; (b) actuator and distribution blocks.

Figure 19. Dynamic test of the bogie: (a) plant with the location of the accelerometers; (b) detail of the installation.

This was also necessary to prevent the primary suspensions from being blocked by the axle
boxes bumpstops. Each actuator applied a load equal to approximately 70 kN, which was
constant during the test. The transfer of loads to the bogie was accomplished with the help of
wood distribution blocks, as illustrated in Figure 18(b).

The test was conducted using eight PCB piezoelectric accelerometers (A0–A7), model
393A03, vertically positioned at the ends of the girders, as illustrated in Figure 19(a). Magnetic
bases connect the accelerometers to the girders, as illustrated in detail in Figure 19(b).

The data acquisition was performed using the cDAQ NI-9172 system using two modules
NI 9233 for IEPE type accelerometers, powered by a battery system. The time series were
obtained through 5 min periods with a sampling frequency of 2000 Hz, and then decimated to
a frequency of 200 Hz.

In order to excite the bogie, impulses were applied on its structure through rubber-tip
hammers. Controlling the intensity of the impulses was essential to avoid saturation of the
signals.

The test of the bogie was initially carried out with the primary dampers installed and,
afterwards, without the dampers. The identification of the bogie’s modal parameters, under
test conditions, was also performed through the SSI-DATA method available in the ARTeMIS
software.

Figure 20 shows the estimated stabilisation diagrams based on state models of order
between 1 and 140, when testing the bogies without dampers (Figure 20(a)) and with dampers
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Vehicle System Dynamics 837

(a)

(b)

Figure 20. Identification of modal parameters through the SSI-DATA method: (a) bogie without dampers; (b) bogie
with dampers.

(Figure 20(b)) of the primary suspension installed. The same figure indicates the alignments
concerning four vibration modes identified in the test without dampers (modes 1BT to 4BT)
and with dampers (modes 1′BT to 4′BT).

The inclusion of dampers resulted in the increase of frequency of all identified modes, with
particular focus on the first mode (1BT and 1′BT) whose frequency has increased from 11.90
to 14.02 Hz, i.e. an increase of about 18%.

Figure 21 presents the values of the natural frequencies and the configurations of the identi-
fied modes. Modes 1BT/1′BT and 3BT/3′BT are longitudinal and transverse rotation modes,
respectively. Mode 4BT/4′BT is a longitudinal rotation mode. Mode 2BT/2′BT is a transla-
tion mode whose motor axle’s ordinates are higher than the trailer axle’s ordinates. This is due
to the non-uniform distribution of mass due to the reduction gear unit connected to the motor
axle and partially supported by the crossbar.

4.3. Passenger-seat system test

The dynamic characteristics of the passenger-seat system were estimated based on a dynamic
test involving the instrumentation with accelerometers placed on the seat cushion and on the
seat structure next to their connection to the carbody (Figure 22(a)).
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838 D. Ribeiro et al.

Figure 21. Experimental frequencies and vibration modes of the bogie.

The PCB accelerometer, model 356B41, installed in the seat cushion has a circular flat shape,
specially designed for placement in the passenger-seat interface. The test was performed with
a passenger whose mass equals 80 kg. The excitation of the system was assured by a group of
people who, in a random manner in time and space, jumped near the seat.

Figure 22(b) shows the experimentally and numerically determined transmissibility func-
tions based on a one-DOF dynamic model whose calibration was based on the test results.
This type of simplified models has been used by several authors such as Carlbom [22] and
Wei and Griffin [28,29].

The best adjustment between the experimental and numerical curves was obtained for
a stiffness of the seat equal to 58.4 × 103 N/m and a damping equal to 1658.6 Ns/m.
The obtained values are within the same order of magnitude as the values estimated
by Wei and Griffin [29] on experimental measurements performed on railway vehi-
cles’ seats. The curves show the existence of a function peak for a frequency equal to
4.28 Hz.
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Vehicle System Dynamics 839

Figure 22. Dynamic test of the passenger-seat system: (a) PCB’s triaxial accelerometer, model 356B4; (b)
transmissibility function experimentally and numerically obtained based on a 1-DOF model.

5. Calibration methodology

5.1. Computational implementation

The calibration of the numerical model of the BBN vehicle was performed using an iterative
method based on an optimisation technique [44]. This method consists on the resolution of an
optimisation problem, which consists of the minimisation of an objective function by varying
a set of the preselected model parameters. The preselection of the numerical parameters is
carried out based on a global sensitivity analysis [33].

Figure 23 presents a flowchart illustrating the iterative method of calibration based on a
genetic algorithm involving the use of three softwares: ANSYS [39], MATLAB [45] and
OptiSlang [46]. The main aspects of the implemented calibration methodology are described
in reference [47].

The calculation of modal parameters in systems with proportional damping matrix is based
on a classic modal analysis [48,49]. In systems with non-proportional damping matrix the
same calculation is based on a state-space formulation [50,51].

The mode-pairing technique aims to establish a correspondence between experimental and
numerical vibration modes. This task is often complex due to alterations in the order of
the numerical modes, resulting from variations on the numerical parameters which occur
during the optimisation process and also due to the limited number of degrees of freedom
of experimental modes, which increases the number of possible correspondence between
numerical and experimental modes [36]. In this paper the correspondence between numerical
and experimental modes is performed through an energetic criterion based on the modal strain
energy and on the EMAC parameter [36,52]. The technique used for pairing complex vibration
modes, based on the fundamentals of a state-space formulation, is addressed in Section 5.2.

The objective function (f ) is defined based on the differences between the numerical and
experimental modal parameters:

f = a
n∑

i=1

|f exp
i − f num

i |
f exp
i

+ b
n∑

i=1

|MAC(ϕ
exp
i , ϕnum

i ) − 1|, (3)

where f exp
i and f num

i are the experimental and numerical frequencies referring to mode i, φ
exp
i

and φnum
i are the vectors containing the experimental and numerical modal information related
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840 D. Ribeiro et al.

Figure 23. Calibration methodology for the numerical model.

to mode i, a and b are weighting factors of the objective function terms and n is the total number
of vibration modes.

5.2. Pairing technique of complex vibration modes

The criterion based on the modal strain energy and on the EMAC parameter has been success-
fully applied in the pairing of systems with real vibration modes [36]. However, its application
to systems with complex vibration modes, like railway vehicles, cannot be done directly, given
that there are no orthogonality conditions of the vibration modes in relation to the mass and
stiffness matrices [36].

The main theoretical foundations for the pairing technique of complex modes, proposed in
this work, based on the application of a state-space formulation [51] are presented below.

In a state-space formulation the result from the orthogonality conditions are:

�TQ� = [\ bj \
]

, (4)

where � is the matrix containing the eigenvectors of the system which are related to the
frequencies and vibration modes as follows:

� =
[

�1 · · · �n′ �∗
1 · · · �∗

n′
�1λ1 · · · �n′λn′ �∗

1λ
∗
1 · · · �∗

n′λ∗
n′

]
, (5)
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Vehicle System Dynamics 841

where � and �∗ are the vectors of the vibration modes in correspondence to frequencies λk

and λ∗
k , which are conjugated pairs of complex numbers, n′ is the number of vibration modes,

Q is a matrix which incorporates the stiffness and mass matrices:

Q =
[
K 0
0 −M

]
(6)

and bj is a complex number.
Similar to the formulation proposed by Brehm et al. [36] this new formulation is also

based on the calculation of the strain energy of clusters, i.e. degrees of freedom groups of the
numerical model.

Based on the Q matrix it is possible to set up the Qkl submatrices which connect the degrees
of freedom of clusters k and l, as follows:

Qkl =
[

Kkl 0
0 −Mkl

]
. (7)

The modal energy of the j vibration mode in relation to cluster k (MSEjk) is calculated using
the following expression:

MSEjk = 1

2

n∑
l=1

�T
jkQkl�jl, (8)

where �jk is the matrix containing the modal information of numerical modes j, corresponding
to the degrees of freedom of cluster k; �jl is the matrix containing the modal information of
numerical modes j, corresponding to the degrees of freedom of cluster l, and n is the total
number of clusters.

The relative energy (
∏

jk) represents the parcel of total energy mobilised in vibration mode
j considering only the degrees of freedom of cluster k. This parameter is a scalar whose value
varies between 0 and 1 and is given by:

∏
jk

= |MSEjk|
|MSEj| = | ∑n

l=1 �T
jkQkl�ji|

|�T
j Q�j| with MSEj �= 0. (9)

The EMACijk parameter results from the ponderation of the MACij parameter [37] through
the relative modal energy (

∏
jk) of the various clusters:

EMACijk =
∏

jk
MACij. (10)

A given experimental mode is paired with the numerical mode to which the highest value of
the EMAC parameter corresponds.

6. Calibration

The experimental calibration of the numerical model of the BBN vehicle was performed based
on modal parameters which were identified by the dynamic tests of the bogie and carbody.
The first phase focused on the calibration of the numerical model of the bogie under test
conditions. The second phase focused on the calibration of the complete numerical model of
the vehicle. The numerical parameters of the bogie estimated in the first phase were assumed
as deterministic parameters in the second phase.
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842 D. Ribeiro et al.

6.1. Calibration of the bogie

6.1.1. Numerical model under test conditions

The calibration of the numerical model of the bogie forced the development of a model that
would reproduce the specific conditions of the test (Figure 24). Changes to the original model
involved the removal of springs and dampers from the secondary suspensions and from the
tilting and load bolsters. Elements were also added to simulate the interface between the bogie
and the actuation system, including distribution blocks and elastic blocks of the secondary
suspensions. Rigid supports were introduced, at the contact point of the hydraulic actuators,
with the ability to assume different positions, thus meeting the deviations of the contact point
in the longitudinal (x) and transverse (z) directions. In the longitudinal direction the element
which simulates the distribution block was divided into 10 sections, each with a length of
0.04 m, creating 11 possible positions for the support (positions 0–10). Positions 0 and 10
correspond to the support position located in the point with lowest and highest coordinate
according to axis x, respectively. Rigid beam elements, each with a length of 0.05 m, were
inserted in the direction which is transversal to the distribution block, to allow positioning of
the support in two new positions (positions −1 and 1) corresponding to the lower and higher
coordinates according to axis z, respectively.

The elastic blocks of the suspension were modelled by spring elements positioned in the
vertical direction. The stiffness of the contact between distribution blocks and elastic blocks
of the suspension was also modelled, in the x and z directions, through spring elements.

Table 6 describes the mechanical and geometrical parameters of the numerical model
including designation, statistical distribution, adopted value and its corresponding unit. These
parameters should be considered together with the parameters indicated in Table 4.

The value of the vertical stiffness of the secondary suspension’s elastic block was esti-
mated based on the elements of the project [53]. The position of the contact point with the
actuation system, in longitudinal and transverse directions, may assume different values for
the left and right hydraulic actuators. The longitudinal position of the actuator was limited to
positions 2–8.

Figure 24. Numerical model of the bogie under test conditions.
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Vehicle System Dynamics 843

Table 6. Characterisation of the parameters of the numerical model of the bogie under test conditions.

Statistical distribution

Average
value/

standard Limits Adopted
Parameter Designation Type deviation (lower/upper) value Unit

Kb Stiffness of the
secondary
suspen-
sion’s
elastic block

Dir ya Uniform 12,000/1732 9000/15,000 12,000 kN/m

Kbtl Dir x and Dir za Uniform 25,250/14,289 500/50,000 5000 kN/m

Posle Position of
the contact
point of the
actuation
system

Dir xa Left side Uniform 5/1.7 2/8 5 –

Posld Right side

Poste Dir za Left side Uniform 0/0.6 −1/1 0 –

Postd Right side

Em Modulus of deformability of wood Uniform 8/2.3 4/12 10 GPa

aAccording to the referential of Figure 24.

Figure 25. Identification of clusters from the numerical model of the bogie under test conditions.

6.1.2. Mode pairing

Figure 25 presents the four clusters in which the model was divided for the mode pairing.
The girders, crossbars and axles clusters only contain the degrees of freedom associated with
the vertical direction (y). The remaining translation and rotation degrees of freedom were
included in the other elements cluster.

Figure 26 shows the relative Modal Strain Energy (MSE) values for the various clusters and
30 numerical vibration modes, regarding the modal problem without damping (Figure 26(a))
and with damping (Figure 26(b)) of the suspensions.
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844 D. Ribeiro et al.

(a)

(b)

Figure 26. Values of relative MSE for the numerical vibration modes of the bogie under test conditions: (a) without
damping; (b) with damping of the suspensions.

Figure 27 illustrates the MAC and EMAC correlation matrices of vibration modes, exper-
imentally and numerically obtained, for cases without damping (Figure 27(a)) and with
damping (Figure 27(b)) of suspensions.
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Vehicle System Dynamics 845

(a) (b)

Figure 27. Correlation between the results of the initial numerical model of the tested bogie and the experimental
results in terms of MAC and EMAC parameters for modal analysis: (a) without damping; (b) with damping of
suspensions.

EMAC values of the various vibration modes, other than modes 2BT and 2′BT, were obtained
by weighting MAC values for the modal strain energy of the cluster girders in direction y. This
is the cluster that best relates to the positions and directions of the sensors used in the dynamic
testing of the bogie. EMAC values of vibration modes 2BT and 2′BT resulted from weighting
MAC values for the modal strain energy of clusters girders and crossbars in direction y.

The EMAC parameter facilitated the pairing of, virtually, all vibration modes, having been
essential to the pairing of experimental modes 1BT, 1′BT and 4′BT. If, for example, the MAC
parameter was used, experimental mode 1BT would be paired with numerical mode 3, which
involves vibration of the support bolster of the braking system which, by structural compatibil-
ity, generates small amplitude rotational movements of the bogie. Based on the EMAC parame-
ter, the correct match between experimental mode 1BT and numerical mode 1 was established.
This is a global rotation mode that essentially mobilises the strain energy of the girders.

6.1.3. Sensitivity analysis

Figure 28 shows the results of the global sensitivity analysis using Spearman’s rank correlation
coefficient. This sensitivity analysis was performed using a stochastic sampling technique
based on 500 samples generated by the Latin Hypercube method. This analysis was based
on the parameters intervals presented in Tables 4 and 6. The correlation coefficients between
[−0.25, 0.25] were excluded from the graphical representation. The random generation of
samples, particularly the parameters of the bogie’s additional mass, was subject to the following
restrictions:

−ε ≤ �M − [Llc�Mlc + Lle�Mle + Lt�Mt] ≤ ε, (11)

where �M equals 842 kg, and Llc, Lle and Lt represent the total length of the central area of
the girders, the extremities of the girders and crossbars, equal to 4.46 m, 3.56 m and 5.26 m,
respectively, and ε is a tolerance considered equal to 150 kg.
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846 D. Ribeiro et al.

Figure 28. Spearman’s rank correlation coefficient between the parameters and responses of the numerical model
of the bogie under test conditions.

The correlation matrix shows that the stiffness of the primary suspensions, the additional
mass of the girders (central area and extremities) and the stiffness of the lower traction rod of
the axle box have significant influence over the vibration frequencies. In turn, the position of
the actuators affects MAC values, particularly in modes 1BT/1′BT. The vertical stiffness of
the secondary suspension blocks influences the vibration frequencies and also the MAC values
in a significant way. The remaining analysed parameters do not have significant influence on
the modal responses and were therefore excluded from the optimisation phase.

The influence of the primary suspensions’stiffness over the frequencies of modes 1BT/1′BT
and 4BT/4′BT, for which the distance between the suspensions and the rotation axle of the
bogie is larger, should be emphasised. In these modes the elastic block of the suspension has
no influence over the responses due to its location near the rotation axle. It is not the case
of the frequencies of modes 2BT/2′BT and 3BT/3′BT, which involve transverse translation
and rotation of the bogie, respectively, and for which the stiffness of the suspension blocks,
compared with the primary suspensions, is decisive for controlling the responses.

6.1.4. Optimisation

The optimisation of the model involved 10 numerical parameters (Kb, Kp, �Mlc, �Mle, �Mt

Posle, Posld , Kbli, cp and Kbtl) and 16 modal results (8 vibration frequencies and 8 MAC values).
The genetic algorithm was based on an initial population of 30 individuals considering 250
generations, in a total of 7500 individuals.The initial population was randomly generated by the
Latin Hypercube method. A number of elites equal to 1 and a number of substitute individuals
also equal to 1 have been defined in this algorithm. The crossover rate was assumed to be 50%
and the mutation rate was considered equal to 15% with a standard deviation variable along
the optimisation between 0.10 and 0.01.
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Vehicle System Dynamics 847

Figure 29. Values of numerical parameters for optimisation cases GB1–GB4: (a) stiffness and damping of the
primary suspension and increment of masses; (b) characteristics of the elastic elements and actuation system.

The objective function is identical to that of Expression (3) considering a total number of
vibration modes equal to 8 and weighting factors a and b equal to 1.

The optimisation problem still includes restrictions related to the parameters of additional
mass of the bogie.

Optimal values of the parameters were obtained from the results of four independent opti-
misation cases (GB1–GB4) based on different initial populations. Figure 29 shows the ratios
of the values of each parameter of the model in relation to the limits indicated in Tables 2, 4
and 6. The limits of the distributions of some of the parameters were extended, such as the
cases of the stiffness of the primary suspension (500/1000 kN/m), and the stiffness of the axle
box’s traction rods (3/10 and 10/40 MN/m) due to the systematic tendency of the optimum
solutions of these parameters to reach the limits indicated in Table 4. A 0% ratio means that
the parameter coincides with the lower limit. A ratio of 100% means that it coincides with the
upper limit. The stiffness and damping parameters of the primary suspension and increments
of mass are presented in Figure 29(a) indicating, in brackets, the numerical parameters’values.
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848 D. Ribeiro et al.

Figure 30. Comparative analysis of the errors of experimental and numerical responses, before and after calibration:
(a) vibration frequencies; (b) MAC.

The parameters related to the elastic elements (blocks and rod) and actuation system are shown
in Figure 29(b).

The analysed parameters present a good stability with variations below 10%, except for the
damping of the primary damper. This is one of the parameters that the sensitivity analysis has
shown to have a smaller influence over the numerical responses.

Figure 30 summarises the error values between the numerical and experimental vibration
frequencies, taking as reference the average values of the experimental frequencies, and the
values of the MAC parameter, before and after calibration.

The results after calibration are related to optimisation case GB2, which was the one pre-
senting the lowest residual of the objective function. The average error of the frequencies
decreased from 10.6% before calibration to 0.8% after calibration. In turn, the average value
of the MAC parameter increased from 0.894 before calibration to 0.953 after calibration.

As visualised in Figure 31, the experimentally obtained and numerically derived optimised
modal configurations of the bogie coincide almost perfectly.
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Vehicle System Dynamics 849

Figure 31. Comparison between the experimental and numerical vibration modes of the bogie after calibration.

6.2. Calibration of the complete model of the BBN vehicle

6.2.1. Sensitivity analysis

Figure 32 presents the results of the global sensitivity analysis using Spearman’s rank correla-
tion coefficient. The sensitivity analysis was performed using a stochastic sampling technique
based on 250 samples generated by the Latin Hypercube method. This analysis was based on
the parameters intervals presented in Table 2. The random generation of samples, particularly
for the parameters of the carbody’s additional mass, was subject to the following restrictions:

−ε ≤ 100 − [�Mb + �Mp + �Mc] ≤ ε, (12)

where �Mb, �Mp and �Mc represent the additional mass on the base, side walls and cover,
respectively, and ε is a tolerance equal to 10%. The mode pairing was performed by application
of a technique based on the modal strain energy and on the EMAC parameter.

The correlation matrix shows that the stiffness of secondary suspensions, from front (KS1)

and rear (KS2) bogies, has significant influence over the frequencies and MAC values of the
rigid body modes of the carbody. In turn, the RMI parameters from the base (RMIb) and side
walls (RMIp) essentially control the frequencies and MAC values of the structural modes
of the carbody. The parameters additional mass (�Mb, �Mc and �Mp) and stiffness of the
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850 D. Ribeiro et al.

Figure 32. Spearman’s rank correlation coefficient between the parameters and responses of the carbody’s numerical
model.

connecting rod between the tilting and load bolsters (Kb) have significant influence over the
vibration frequency of mode 1C. The remaining analysed parameters did not have significant
influence with respect to the modal responses, and were consequently excluded from the
optimisation phase.

It is possible to verify that the flexural stiffness of the side walls, which is controlled by the
walls’ RMI parameter, is important for controlling the torsional stiffness of the carbody, as
demonstrated by the high value of the correlation coefficient between the walls’RMI parameter
and the frequency of mode 4C.

6.2.2. Optimisation

The optimisation of the model involved 7 numerical parameters (KS1, KS2, RMIb, RMIp �Mb,
�Mc and �Mp) and 10 modal results (5 vibration frequencies and 5 MAC values). The
control parameters of the genetic algorithm and the objective function are identical to those
in the optimisation of the bogie. The only difference is related to the total number of modes
considered in the objective function, in this case equal to 5. The optimisation problem also
included constraints involving the carbody’s additional mass parameters. The mode pairing
was performed by the application of a technique based on the modal strain energy and on the
EMAC parameter.

Optimal values of the parameters were obtained from the results of four independent opti-
misation cases (GC1–GC4) based on different initial populations. Figure 33 shows the values’
ratios of each parameter of the model in relation to the limits given in Table 2. The lower and
upper stiffness limits of the secondary suspension were extended from 242 and 272.9 kN/m to
200 and 400 kN/m, respectively. Parameters related to the characteristics of the secondary sus-
pension, connecting rod and geometrical properties of the carbody are presented in Figure 33(a)
indicating, in brackets, the estimated values for the stiffness of the secondary suspension. The
parameters referring to mass distribution are presented in Figure 33(b).

It is noticeable that the most stable parameters, with variations below 10%, are those that
most affect the responses, including the stiffness of secondary suspensions and RMI parameters
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Figure 33. Values of numerical parameters for optimisation cases GC1–GC4: (a) characteristics of the suspension,
connecting rods and geometrical properties of the carbody; (b) masses.

of the base and side walls. The stiffness values of the front bogie’s secondary suspension are
higher than those estimated for the rear bogie.

Regarding the additional masses of the side walls and cover, the estimates show higher
variations, close to 25%. This should be related to the fact that these parameters contribute in
a similar way to the participant mass on vibration mode 1C. Therefore, there may be different
combinations of these parameters leading to the same solution, in terms of optimisation of the
problem.

Figure 34 summarises the error values of the numerical and experimental vibration fre-
quencies taking as reference the average values of the experimental frequencies, and of the
MAC parameter, before and after calibration. The results after calibration are related to the
GC1 optimisation case, which was the one with the lowest final residual of the objective func-
tion. The frequencies’ average error dropped from 20.3%, before calibration, to 2.9%, after
calibration. This error decrease is mainly due to the reduction of the error associated with the
frequencies of structural modes 4C and 5C. The average value of the MAC parameter did not
change significantly, increasing from 0.927, before calibration, to 0.937, after calibration.
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852 D. Ribeiro et al.

The excellent agreement between the carbody’s experimentally obtained and numerically
derived optimised modal configurations can be verified in Figure 35.

6.3. Final results

The combination between the numerical parameters, obtained for the optimisation case of the
bogie GB2, and the parameters obtained in optimisation case of the complete vehicle GC1,
were the basis for the establishment of the vehicle’s calibrated numerical model.

Table 7 presents the values of the damped vibration frequencies of the main vibration modes
of the BBN vehicle obtained from the calibrated numerical model.

Comparing the values of the frequencies with the values given in Table 5, concerning the
initial numerical model, there is a visible tendency towards the frequency increase on the rigid
body modes of the carbody and bogies, being that, in the bogies’ case, this increase ranged
from 10% to 55%. This tendency is due to the significant increase of the stiffness of the primary

Figure 34. Comparative analysis of the errors from the experimental and numerical responses, before and after
calibration in terms of: (a) vibration frequencies; (b) MAC.
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Figure 35. Comparison between the vibration modes of the carbody, experimentally and numerically obtained,
after calibration.

Table 7. Natural frequencies of the BBN vehicle
obtained from the calibrated numerical model.

Damped frequency
Element Mode (Hz)

Carbody 1C 1.01
2C 1.24
3C 1.70
4C 8.39
5C 12.16
6C 17.73

Bogies 1B 9.21/9.24
2B 7.70/8.12
3B 14.16/14.09

and secondary suspension springs. In turn, the structural modes of the carbody, particularly
modes 4C and 5C showed a decreased tendency of approximately 20%, mainly due to the
reduction of the RMI parameter of the carbody’s side walls.

7. Conclusions

This paper described the experimental calibration of the numerical model of a BBN vehicle
of the Alfa Pendular train based on modal parameters. The dynamic tests performed on the
vehicle and bogie allowed the identification of frequencies and modal configurations of a
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large number of vibration modes involving rigid body and structural movements. The bogie
test results showed that the inclusion of primary dampers led to an increase of the frequencies
of the identified vibration modes, particularly of the longitudinal rotation mode. The dynamic
test of the seat also permitted to identify the vibration frequency of the passenger-seat system,
close to 4.3 Hz, and estimate the stiffness and damping parameters.

The calibration of the numerical model was conducted through an iterative methodol-
ogy based on an optimisation algorithm and was performed using a submodelling/multistep
approach involving two phases: the first phase focused on the calibration of the model of the
bogie under test conditions and the second focused on the calibration of the complete model
of the vehicle.

Global sensitivity analysis allowed the identification of numerical parameters to be consid-
ered in the calibration. The parameters that have showed the highest sensitivities in relation
to the modal responses were, for the bogie, the vertical stiffness of the secondary suspension
block and the vertical stiffness of the primary suspensions. As for the carbody, the RMI param-
eters of the base and side walls and the vertical stiffness of the secondary suspension were the
parameters with highest sensitivity in relation to the modal responses.

The optimisation of the numerical model was conducted using a genetic algorithm involving
a total of 17 numerical parameters and 26 modal responses (13 vibration frequencies and 13
MAC values). The results of the optimisation cases of the bogie and vehicle, based on different
initial populations, led mostly to very stable numerical parameters’ values, particularly for
those highly correlated with the responses.

The comparison between the numerical vibration frequencies’ values, before and after cal-
ibration, and the experimental vibration frequencies, has revealed significant improvements
on the initial numerical models. The average error of vibration frequencies of the modes of
the bogie under test conditions went from 10.6%, before calibration, to 0.8%, after calibra-
tion. Concerning the vibration modes of the complete model of the vehicle, the average error
of frequencies went from 20.3%, before calibration, to 2.9% after calibration. Significant
improvements were also observed in MAC values, particularly in the vibration modes of the
bogie. This result demonstrates the robustness and efficiency of genetic algorithms on the
estimation of the vehicle’s modal responses.

The combination of numerical parameters obtained for the GB2 bogie optimisation case
with the parameters obtained for the GC1 case of vehicle optimisation provided the basis
for developing the calibrated numerical model of BBN vehicle. Compared with the initial
numerical model, the calibrated numerical models show higher frequency values of the rigid-
body modes of the carbody and bogies, essentially due to the increased stiffness of the primary
and secondary suspension springs. On the other hand, most of the carbody’s structural modes
tended to decrease, largely due to a reduction of the RMI parameter of the side walls of the
vehicle’s carbody.

In future studies, the calibrated numerical model of the vehicle will be used to access the
dynamic behaviour of the train-track coupled system, in terms of passengers comfort and
wheel–rail contact stability, on plain track, on bridges or on transition zones.
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